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Abstract

Monogenic diseases that result in early pregnancy loss or neonatal death are geneti-
cally and phenotypically highly variable. This often poses significant challenges in
arriving at a molecular diagnosis for reproductive planning. Molecular autopsy by
proxy (MABP) refers to the genetic testing of relatives of deceased individuals to
deduce the cause of death. Here, we specifically tested couples who lost one or more
children/pregnancies with no available DNA. We developed our testing strategy
using whole exome sequencing data from 83 consanguineous Saudi couples. We
detected the shared carrier state of 50 pathogenic variants/likely pathogenic variants
in 43 families and of 28 variants of uncertain significance in 24 families. Negative
results were seen in 16 couples after variant reclassification. In 10 families, the risk of
more than one genetic disease was documented. Secondary findings were seen in
10 families: either genetic variants with potential clinical consequences for the tested
individual or a female carrier for X-linked conditions. This couple-based approach has
enabled molecularly informed genetic counseling for 52% (43/83 families). Given the
predominance of autosomal recessive causes of pregnancy and child death in consan-
guineous populations, MABP can be a helpful approach to consanguineous couples

who seek counseling but lack molecular data on their deceased offspring.
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1 | INTRODUCTION

Advances in genomic data utilization have encouraged their adoption in
increasingly diverse clinical settings. Reproductive medicine is one of the
areas where genomic tools have proven to be useful. Genetic tests in
reproductive medicine are typically pursued for three main purposes: to
identify infertility causes, determine genetic diseases transmissible to off-
spring, and optimize assisted reproductive technology (ART).

Many monogenic disorders have a lethal phenotype either early
in utero or later in life. Genetic and chromosomal disorders contribute
significantly to neonatal and infant mortality and morbidity with con-
genital malformations and metabolic crisis are leading causes of
death.2* Indeed, 28% of deaths in neonatal intensive care unit
(NICU) are caused by confirmed genetic diagnoses, a third of which
are only diagnosed post-mortem, which tend to lead to more time
spent in the NICU in Boston Children's Hospital.* Furthermore, the
incidence of inborn errors of metabolism (IEM) in the population of
patients admitted to the PICU was 2.2%-3% in different populations,
a figure quite similar to the reported incidence for patients with septic
shock.®> Wojcik et al. demonstrates the mortality burden of genetic
diseases in infancy using NGS technology in prenatal, postnatal and
post-mortem samples. This study reveals a higher prevalence of
genetic disorders up to 22% in 573 deceased infants; 54% had chro-
mosomal disorders and 47% had monogenic disorders with one infant
had both chromosomal disorder and monogenic disorder. The propor-
tion of genetic diagnoses made by NGS technologies increased over
the years. For counseling purpose, a confirmed molecular diagnosis is
required to provide a family with the reproductive options.®

Additionally, early pregnancy loss can represent the severe end of
phenotypic spectrum of several monogenic disorders although this
remains poorly addressed in the literature.”2° The incidence of pregnancy
loss from implantation to clinically recognized spontaneous abortion (SAB)
has been reported to be approximately 30%. Pregnancy loss includes SAB
or fetal death prior to 20 weeks (miscarriage) and fetal death at 20 weeks
of gestation or greater (stillbirth or intrauterine fetal demise [IUFD]).
Approximately 50% of the spontaneous pregnancy loss results from chro-
mosomal abnormalities such as aneuploidy.*? It has been suggested that
86% of these abnormalities are numerical chromosomal abnormalities, 6%
are structural abnormalities, and 8% are due to other genetic mechanisms,
such as chromosomal mosaicism and molar pregnancies.’ Due to the sig-
nificant psychological consequences of recurrent pregnancy loss on fami-
lies, determining the underlying genetic etiologies helps in providing the
family with informed reproductive options for normal future pregnancies
as well as minimizing the guilt felt among those losing pregnancies.1212

Consanguinity is known to be a possible risk factor for birth
defects, as it results in the expression of rare and deleterious genes
causing autosomal recessive disorders. Saudi Arabia is considered to

be among the countries with the highest rates of consanguineous

marriages, leading to high rates of birth defects and even neonatal
deaths.2* Many families in Saudi Arabia prefer consanguineous mar-
riages in hopes of having already been acquainted with the spouse
and as a way to keep the property within the family and the tradition
alive.¥®> Warsy et al. studied the consanguinity prevalence in well-
educated Saudi females in two generations. The study concludes that
even though there is an awareness that certain genetic disorders
occur at a higher frequency in cousin marriages, there is no decrease
in the prevalence of consanguinity over a generation.'® Although the
contribution of genetics to neonatal deaths and IUFD is not fully
understood, NGS has made it possible to increase awareness of
monogenic diseases in embryonic stages, in addition to uncovering
novel genes in embryonic lethality in humans.81%12

Several strategies have been established to provide families, particu-
larly high-risk families, with accurate risk estimates of having a child with a
genetic condition. Preconception exome-based parental screening is the
process of testing couples for their risk of having a child with a genetic
disease, particularly autosomal recessive and X-linked recessive condi-
tions.?” Sallevelt et al. proposed exome-based preconception carrier
screening (PCS) and a filtering strategy to rapidly identify the majority of
relevant pathogenic mutations.!” Additionally, several studies have investi-
gated the utilization of WES in the prenatal setting in cases of structurally
abnormal pregnancies revealed by prenatal scans as well as in cases of
pregnancy loss and developmental disorders. These studies demonstrated
the clinical applications of WES in pregnancy loss or IUFD and structurally
abnormal pregnancy and have revealed the lethal Mendelian genes that
might contribute to RPL. The few studies using WES in both parents
looked for carrier status of genetic mutation and established a risk in each
family.818-20

MABP is a term we coined to describe genetic testing of couples
or relatives with a deceased offspring (other relatives) which indicates
a priori increased risk of having a child with a recessive genetic dis-
ease before they attempt to conceive. In most families, there is no
clear genetic etiology for the phenotype of early loss without genetic
testing or incomplete genetic testing and therefore it is difficult to
characterize the phenotype early in life or in utero. Furthermore, early
neonatal death without a genetic diagnosis requires parental testing
and family counseling. Therefore, MABP through PCS aims to reveal
the genetic cause for an identified phenotype to provide families with
informed reproductive options.?*

In this study, we describe a couple-based approach using WES in
83 consanguineous Saudi couples with early pregnancy loss, IUFD, neo-
natal death or family history of an unidentified genetic condition without
established genetic diagnosis to determine familial monogenic diseases.
Our goal is to provide high-risk couples with variable reproductive
options, including prenatal diagnosis, preimplantation genetic diagnosis,
acceptance of the genetic risk and preparation for the possibility of having

a child with a certain disease, and avoidance of further conception.
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2 | METHODS

21 | Human subjects

We counseled 83 Saudi consanguineous couples who sought medical
genetics services with a previous history of neonatal and infantile
death, IUFD, and/or pregnancy loss without an established genetic
diagnosis to determine the familial monogenic diseases that could
have been due to a recessive disorder. Detailed clinical information
was gathered, including family history of monogenic disease, consan-
guinity, past medical history, and death reports. As applicable, couples
and their children were recruited by written informed consent forms
approved by the Internal Review Board of King Saud University Medi-

cal Center and King Faisal Specialist Hospital and Research Centre.

2.2 | Whole exome sequencing
Double-stranded DNA capture baits against approximately 36.5 Mb of
the human coding exome (targeting >98% of the coding RefSeq and Gen-
code v28 regions, which were obtained from the human genome build
GRCh37/hg19 on May 2018) were used to enrich target regions from
fragmented genomic DNA with the Twist Human Core Exome Plus kit
(Twist Bioscience). The generated library was sequenced on an lllumina
platform to obtain at least 20x coverage depth for >98% of the targeted
bases. An in-house bioinformatics pipeline, including read alignment to
GRCh37/hgl9 genome assembly, variant calling and annotation, and
comprehensive variant filtering, was applied. All disease-causing variants
reported in HGMD® in ClinVar as well as all variants with minor allele fre-
quencies (MAFs) below 1% in the genomAD database were considered.

The investigation for relevant variants was focused on coding exons
and flanking +20 intronic bases. All potential modes of inheritance pat-
terns were considered. In addition, family histories and clinical information
were used to evaluate identified variants with respect to their pathoge-
nicity and causality; the variants were categorized as diagnostic, inconclu-
sive and unremarkable. All variants related to the phenotype of the
patient, except benign or likely benign variants, were reported.

Our lab has established stringent quality criteria and validation processes
for variants detected by NGS. Low-quality single nucleotide variants and all
relevant deletion/insertion variants were confirmed by Sanger sequencing.

Consequently, we warrant a specificity of >99.9% for all reported variants.

2.3 | Interpretation strategy

Causative pathogenic variants that were detected in both partners in
the same autosomal recessive gene are classified as diagnostic. This
indicates an increased risk for their progeny to be affected by autoso-
mal recessive disease if both are heterozygous.

Variants of uncertain clinical significance (VUS) detected in both
partners in the same autosomal recessive gene are classified as incon-
clusive. According to the American College of Medical Genetics
(ACMG) recommendation, VUS were studied further by family

segregation and/or clinical consistency (Figure 3). In selected cases, we
have performed deletion and duplication analysis in the other partner in
the case of a pathogenic variant detected in one partner consistent with
the phenotype for further clarification.

The variants in the latter category were carefully chosen to qualify as
much as possible as pathogenic, likely pathogenic if the genes were
established in the online Mendelian inheritance in man database. Regarding
the genetic variation te in candidate research genes, we have considered
only genes with compelling biological candidacy (special emphasis was
made on animal models, but other lines of evidence were also pursued).

Variants with no clinical relevance to the described phenotype
and/or VUS excluded by family segregation or by lack of clinical con-
sistency were classified as unremarkable.

24 | Multiplex ligation-dependent probe
amplification

Multiplex ligation-dependent probe amplification (MLPA) is a technique
used to identify variations in the copy number of genes and if there are
deletions or duplications in specific genes. We have used specific MLPA
probes to recognize adjacent target-specific sequences, and only in the
presence of a perfect match without a single gap, after hybridization, the
probes ligated and amplified after which PCR amplification is performed
using only one PCR primers pair, which is fluorescently labeled followed
by separation by size by capillary electrophoresis.?? In one of the family,
we have found a pathogenic variant in PEX12 gene in the father and
negative maternal exome. So, we performed quantitative PCR assay
(qPCR) by using six gene-specific amplicons encompassing the coding
exons 1, 2, 3 (or part of it) of the PEX12: NM_000286.2 genes.

3 | RESULTS

3.1 | Human subjects

All 83 counseled families were consanguineous couples. Clinical infor-
mation was completed for 77% of the families, and 61% of the fami-
lies had recurrent neonatal deaths with a reported phenotype.

As demonstrated in Figure 1, couples with nephews or nieces who
died with of undetermined genetic diseases represented 7% (N = 6 cou-
ples) of the cases; RPL including IUFD and miscarriages represented 24%
(N = 20 couples) of the cases; neonatal deaths in the offspring represen-
ted 60% (N = 50 couples) of cases; both neonatal death and RPL repre-

sented about 9% of our cohort (N = 7 couples).

3.2 | Whole exome sequencing and interpretation
of the results

Duo WES was performed in 83 Saudi consanguineous parents and
showed high-diagnostic yield (65% total). Eighty-one variants were found
in 67 families, including pathogenic, likely pathogenic variants and VUS.
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3.2.1 | Diagnostic

Pathogenic or likely pathogenic variants that segregated in the family
and showed clinical consistency were found in 52% of the families
(N = 43 couples) (Figure 2). Diagnostic result with the variants in both
parents were identified in the following genes: POLR3A, ECHS1, CTU2,
ACAD9, GUSB, MMUT, IBA57, BCS1L, STXBP2, HSPG2, CANT1, MMAB,
MALT1, EVC2, FRAS1, CEP290, TCTN2, NPHS1, ISPD, CRIPT, MKS1,
CC2D2A, EML1, PEX26, LGI4, KLHL7, TMEM231, GAA, DNAH5, CDT1,
LAMB2, MRAP, ACADVL TRIP11, PAX1, AK2, and SLC26A3 KIAA0586,
LZTR1, MPDZ, NPHP3 (Table 1).

3.2.2 | Inconclusive

VUS were found in 32% of the families (N = 27 couples) (Figure 2).
Segregation, clinical consistency and/or duplication, and deletion ana-
lyses were performed to confirm the pathogenicity of these variants
and resulted in the reclassification of these variants as follows: in 41%
of the families with inconclusive variants (N = 11 couples), the vari-
ants (DOCK7, CHAT, KIAA0586, NDUFAF3, GBA, PEX1, NDUFAF5,
HTRA2, CCDC88C, CPS1, POLR3A) were reclassified as diagnostic; in
11% of the families (N = 3 couple), the variants were reclassified as
benign; ¢.1768G > A:p.(Val590Met) at KIAA0556 gene, c.4552C > G
p.(Arg1518Gly) at DCHS1 gene, and c.685C > G:p.(Pro229Ala) at
TMEM231 gene; and in 48% of the families (N = 13 couples), the vari-
ants remained uncertain (KIAAO556, WDR34, CC2D2A, AGRN, GORAB,
QARS, KLHL40, FH, ACACA, PAX1, FKRP, DOCKé, FKTN, UNC80)
(Figure 2 and Table 2). Therefore, the diagnostic yield increased to
65% (N = 54) (Figure 3).

Clinical summary for indication of parental exome testing and the detection rate for pathogenic variants and VUS [Colour figure

Further analysis revealed two variants in candidate genes, ZMIZ2
and DHX34 (novel genes), that might cause RPL.

323 | Negative

Fifteen percentage of the families had negative results (N = 13 cou-
ples) (Figure 2, Table 1), which accounted for the lack of variants rele-
vant to the phenotype and/or that only one of the partners was a
carrier (no family segregation). Table 1 summarizes the WES findings
for the 83 families, the phenotypes, whether the exome findings mat-
ched the phenotype or not, and the novel variants discovered. Includ-
ing the three families with benign variants makes the undiagnosed
percentage 19% (N = 16 couples).

3.3 | Secondary findings

Few families showed secondary findings, even though these cases
were solved, and, therefore, need counseling in the future. We
detected 10 couples who shared the carrier status of several autoso-
mal recessive disease-associated genes, which indicates a risk of off-
spring having more than one genetic disease of 12%. In family 4, a
well-known pathogenic variant for congenital adrenal hyperplasia,
CYP21A2: c.92C > T, was identified, and even though it segregated in
the family, it was not consistent with the phenotype, as the child's
death was due to persistent lactic acidosis, hypertrophic cardiomyopa-
thy, and high-liver enzyme, which is associated with the ACAD9 gene.
Female carriers for an X-linked condition were seen in three families

(1, 43, and 65), and there was a common pathogenic variant found in
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FIGURE 2 Workflow for all cases with different indications, including the result and the analysis of the result [Colour figure can be viewed at
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both families, G6PD: ¢.233T > C p. (lle78Thr); where only the female
was a carrier, we performed further counseling regarding the 50%
male offspring risk of G6PD deficiency. In family 71, ES of both par-
ents revealed that the female partner carried an X-linked condition AR
gene variant p.(GIn58Leu), but no detected variants could explain
recurrent acrania and IUFD. Furthermore, autosomal-dominant muta-
tions with potential clinical consequences for the tested individuals
were found in five couples (family 36, 52, 65, 66) which changed our
approach to presymptomatic testing for the affected individuals
(Table 3).

Furthermore, MABP identify a carrier status of a pathogenic
genetic variant in one partner that might explain a phenotype in sev-
eral families, but the other partner was not a carrier; for example,
MCPH1 ¢.2595-1G > C/likely pathogenic p.(Argd97*) was found in a
female partner and DDX11 NM_001257144.1:c.1489C > T likely
pathogenic in a male partner, but the variants were not found in the
other partner. Also, WES revealed a heterozygous variant in the
PEX12 gene, c.616C > T p.(GIn206*) in the male partner only. Conse-
quently, we performed MLPA to exclude deletions or duplications in

the other partner that were negative in the couple (Table 3).

3.4 | Diseases-causing genes observed

The most observed genetic etiology of RPL was complex dys-
morphology disorders; eight genes—including CTU2, KLHL7,
DCHS1, CTD1, and DOCKé—were identified in five families. Addi-
tionally, variants in the TMEM231, DNAH5, and CC2D2A genes
associated with ciliopathy, which is a specific group of multisystem

disorders, were identified in two cases each. Diagnostic results
with the detection of variants in the LGI4 gene causing neurogenic
arthrogryposis were identified in two couples, and AGRN and
CHAD, which are associated with congenital myasthenic syndrome,
were identified in two couples each. Additionally, two couples
each was carrier of DOCK7 or CCDC88C. Congenital muscular
dystrophy genes FKRP and FKTN in other two families, each is car-
rier for one variant. Variants in three genes—GAA, FH, and
AK2—associated with enzyme and metabolic diseases were noted
in three cases. Variants were also identified in other disease cate-
gories, including myopathy (KLHL40), skeletal disorders (TRIP11),
and gastrointestinal disorders (SLC26A3), in four cases.

Additionally, candidate genes that are not consistent with a given
phenotype were identified that might be of clinical significance,
including ZMIZ2 and DHX34.

On the other hand, our analyses showed that inborn errors in
metabolism are the most common causes of neonatal deaths, includ-
ing mitochondrial disorders associated with CPS1, HTRA2, NDUFAF5,
PEX1, GBA, NDUFAF3, PEX26, MMAB, BCSIL, IBA57, MMUT, GUSB,
ACAD9, ECHSI, ACADVL, and AK2. Ciliopathy, associated with EVC2,
CEP290, TCTN2, MKS1, CC2D2A, TMEM231, DNAH5, KIAA0586, and
TCTN2, was the second most common category. The third category
involved neurologic phenotypes (POLR3A, DOCK7, CCDC88C, EML1,
MACF1, MPDZ). Several variants were identified in different disease
categories, including neuromuscular diseases (NEB, ISPD, CHRNG,
KLHL40), complex dysmorphology syndrome (CRIPT, LZTR1, FRAS1),
and renal (NPHS1, NPHP3, LAMB2), skeletal (CANT1, HSPG2, TRIP11),
(STXBP2), and (MALT1)

hematological diseases

(Table 1).

immunological
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GENETIC RESULT OF 83 COUPLES INCLUDING VARIANT OF UNKNOWN CLINICAL SIGNIFICANCE
(VUS) RECLASSIFICATION

B Unremarkable

B Diagnostic

FIGURE 3

B Remained Variant of uncertain significance

H Reclassified as benign variants

Parental exome sequencing results and VUS reclassification (pie chart) [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Autosomal-dominant mutations with potential clinical consequences for the tested individual

Gene Partner Variants

SLC5A2 Male partner ¢.1035_1062del.p.(Val346Alafs*1)
FLT4 Female partner ¢.2740G > C p.(Gly 914Arg)

TTN Male partner c.60451delp.(lle20151Serfs*12)
ASCC1 Female partner c.495del p.(Ala166Profs*14)
HTRA2 Both partners ¢.818_820del (p.Leu273del)

GBA Both partners ¢.520T > A (p.Tyr174Asn)

Abbreviation: OMIM, online Mendelian inheritance in man.

4 | DISCUSSION

WES was first introduced for clinical diagnostic purposes in 2009 and
has since been applied in different clinical settings as a highly valuable
diagnostic approach mainly in postnatal and prenatal genetic diagnosis
of Mendelian disorders. WES has provided an opportunity to afford-
ably screen a patient's exome to establish the genetic basis of dis-
eases.?*"2% The reported diagnostic yield of WES generally ranges
between 25% and 35%, with a maximum yield of 40% in trio analy-
sis?”72? and a high-diagnostic yield of 43%-49% in large consanguine-
ous cohorts from Saudi Arabia.3%3! Another study also reported a
diagnostic yield of 60% in Middle Eastern patients from Qatar.*?

Our results provide 51% of the families with a genetic diagnosis,
with an additional 13% of the families if we consider VUS with poten-
tial clinical usefulness. VUS in both parents were found in 31% of our
cohort, and after further analysis of the reports describing the pheno-
type and segregation of the family, we could exclude three (11%) and

consider 12 variants (46%) as potentially disease causing. A negative

Classification OMIM phenotype
Pathogenic Renal glucosuria
Pathogenic Pedal edema

Likely pathogenic Cardiomyopathy, dilated

Likely pathogenic Barrett esophagus/esophageal adenocarcinoma®®

Likely pathogenic Susceptibility to the development of

autosomal dominant Parkinson disease-13

Likely pathogenic Susceptibility of Parkinson disease

result was seen in 16 families (19%). We have counseled our families
who consented to pretesting for the potential for identifying and
reporting incidental (or secondary) findings, which are results that are
not related to the indication for ordering the sequencing but that may
nonetheless be of medical value or utility to the physician and the
patient. In nine families, the results identified a risk of more than one
genetic condition in the family; in three families, the female partner
was determined to carry an X-linked genetic disease; and in six fami-
lies, we discovered that one of the partners carried a heterozygous
mutation with potential clinical consequences for the tested
individual.

The first report of the yield of WES of a couple (Duo WES) of
44 families with at least one death or lethal fetal malformation at any
stage of in utero development and this strategy identified pathogenic/
likely pathogenic variants that was shared by both of the couple and
resulted in cause embryonic or perinatal lethality.® Further utilization
of WES for trio analysis using cultured amniocytes or product of con-

ception from the affected fetuses determined a genetic cause in four


http://wileyonlinelibrary.com
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of seven cases of IUFD,*® and compound heterozygous variants in
DYNC2H1 and ALOX15 were identified in miscarriages from two of
four families with RPL.23 More recent trio-WES studies in fetuses
with ultrasound anomalies that resulted in IUFD or pregnancy termi-
nation identified positive variants in 20%, possible variants in 45%,
and candidate variants in 9% of 84 fetal deaths with ultrasound anom-
alies.®* In a similar work, WES in 15 of 19 POC cases with missed
abortion revealed novel variants potentially associated with early
embryonic lethality.3®> A study using different filtering strategies
proved the applicability of parental WES in eight consanguineous and
25 nonconsanguineous couples for identifying the genetic variants
shared by the couples.?” These results supported the clinical utility of
ES in reproductive medicine to assess in couples planning a pregnancy
the risk of those couples having children affected with a genetic dis-
ease as well as to detect the monogenic etiology of pregnancy loss.
The identification of disease-associated variants provided information
for follow-up genetic counseling regarding recurrence risk and man-
agement of subsequent pregnancies. The discovery of novel variants
could provide insight into the underlying molecular mechanisms of
fetal death.

Several disease categories were noted for the 21 genes carrying vari-
ants of diagnostic value. The most prevalent disease category with recur-
rent pregnancy loss was multisystem disorders; eight genes—including
CTU2, KLHL7, DCHS1, CTD1, and DOCK6—were identified in five families.
Additionally, variants in the TMEM231, DNAH5 and CC2D2A genes of
ciliopathy, which is a specific group of multisystem disorders, were identi-
fied in two cases. The second most common category was neurological
disorders, including neurogenic arthrogryposis in two couples with the
LGI4 gene, congenital myasthenic syndrome in two families with AGRN
and CHAD, other neurological disorders associated with genes including
DOCK7 and CCDC88C in two couples, and muscular dystrophy associated
with FKRP and FKTN in two couples. In contrast, in another study, the
second most common cause of RPL after multisystem disorders was car-
diac anomalies.3® In another study, a molecular panel of 70 genes associ-
ated with cardiac channelopathies and cardiomyopathies in stillbirth cases
was applied to identify pathogenic variants in 12% of 290 cases of IUFD,
which indicates that cardiac anomalies are one of the known causes of
IUFD.¥” Variants in three genes—GAA, FH, and AK2—associated with
enzyme and metabolic diseases were noted in three cases. Variants were
also identified in other disease categories, including myopathy (KLHL40),
skeletal disorders (TRIP11), and gastrointestinal disorders (SLC26A3), in
three cases.

Two novel genes that might have clinical implications and embry-
onic lethality are ZMIZ2: ¢.1270C > T; p. (GIn424*), which causes
embryonic lethality in mouse (https://www.mousephenotype.org/
data/genes/MGI:106374#phenotypesTab), and DHX34: c.1399G > A
P.(D467N), which is predicted to be deleterious in silico. Dhx34 pro-
tein deficiency in zebrafish has been shown to result in severe neu-
rodevelopmental defects and embryonic lethality.>®

Among the solved cases, the most observed causes of neonatal
death were inborn errors in metabolism, mainly mitochondrial disor-
ders due to enzyme deficiencies, followed by ciliopathy and congeni-

tal anomaly disorders.

Other similar efforts with different strategies to reduce the neo-
natal morbidity and mortality as well as the pregnancy loss were con-
ducted in different populations. Variable premarital carrier screening
programs were established in different populations based on carrier
frequency and disease frequency in that population either as obliga-
tory or voluntary screening.®’ In Saudi Arabia, the premarital screen-
ing program that was instituted in 2002, includes sickle cell anemia
and thalassemia as a mandatory screening, as well as in Iran and Tuni-
sia the premarital test is a mandatory program.®° Preconception car-
rier screening program was established in the Jews population since
2013. This program includes several fatal diseases, with a carrier fre-
quency of at least 1:60 and/or a disease frequency of 1:15 000 live
births.?® The program resulted in a significant reduction of these dis-
eases as shown in the Singer study 2020.#! Furthermore, Preconcep-
tion Carrier Screening Programs were also started in the Netherlands
since 2016 for the couples wishing to start a family, to know their
genetic carrier status for 50 severe genetic diseases.*®

Some ethical issues that were considered during the counseling
of these couples included stigmatization and discrimination, knowing
that the individual is a carrier for the autosomal recessive genetic con-
dition and at risk of having affected offspring might cause a negative
view to and about people with those traits. As well as, potential find-
ings of a dominant trait in the tested individual that harbored a
reduced penetrance or variable expressivity, however, it is not yet
expressed clinically. Additionally, as expected this strategy influences
how the couples perceive the planning of a pregnancy and making a
family in a positive light but some undesirable consequences might
impact the family like divorce or remarriage of another wife. Another
concern is that if this test is routine or are they obligated to do it? Are
they guilty if they opt not to?. Some of these ethical dilemmas were
also considered in preconception carrier screening in different
populations.*?

We acknowledge several limitations of MABP. First, this approach
only works to reveal the carrier status of familial variants. Although
our work focused on single gene cases, we note that MABP can also
reveal the carrier status of balanced chromosomal rearrangements,
which were found in a recent very large study to account for a sub-
stantial fraction of recurrent pregnancy loss.** Second, MABP may
only identify the carrier status for autosomal recessive diseases in one
of the couples, although this is less of a problem in consanguineous
couples who tend to share the same variants. Third, as with other
diagnostic applications of ES, VUS remain a formidable challenge.
However, it is hoped that data sharing efforts will contribute to the
successful reclassification of these variants and it is hoped that this
study will contribute toward this goal.

In conclusion, we show that MABP is a highly effective testing
strategy in consanguineous populations where autosomal recessive
variants tend to be a more common cause of premature death among
offspring of couples seeking preconception counseling. Our work
highlights the additional benefit of uncovering additional pathogenic
variants that can empower couples to make reproductive choices for
diseases beyond the ones they are seeking preconception

counseling for.


https://www.mousephenotype.org/data/genes/MGI:106374#phenotypesTab
https://www.mousephenotype.org/data/genes/MGI:106374#phenotypesTab
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