
Biology Needs Evolutionary Software Tools: Let’s Build
Them Right

Anton Nekrutenko,*,1 Galaxy Team,2 Jeremy Goecks,3 James Taylor,4 and
Daniel Blankenberg5

1Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA
2The Galaxy Project, https://github.com/orgs/galaxyproject/people Biomedical Engineering
3Department, Computational Biology Program, Oregon Health and Science University, Portland, OR
4Department of Biology, Johns Hopkins University, Baltimore, MD
5Lerner Research Institute, Cleveland Clinic, Cleveland, OH

*Corresponding author: E-mail: anton@nekrut.org.

Associate editor: Sudhir Kumar

Abstract

Research in population genetics and evolutionary biology has always provided a computational backbone for life sciences
as a whole. Today evolutionary and population biology reasoning are essential for interpretation of large complex
datasets that are characteristic of all domains of today’s life sciences ranging from cancer biology to microbial ecology.
This situation makes algorithms and software tools developed by our community more important than ever before. This
means that we, developers of software tool for molecular evolutionary analyses, now have a shared responsibility to make
these tools accessible using modern technological developments as well as provide adequate documentation and
training.

Key words: software, evolutionary biology, computational biology.

When Lewontin and Hubby (Hubby and Lewontin 1966;
Lewontin and Hubby 1966) demonstrated that genetic vari-
ation in natural populations can be observed directly at high
resolution (i.e., protein-level), they provided evolutionary and
population biology with the ability to generate much more
interesting and insightful datasets. Initially, these datasets
were small by today’s standards. For example, their two clas-
sical Genetics papers contained all (!) data in the main text
along with all calculations. The development of recombinant
DNA and sequence determination techniques in the 1970s
allowed for generation of larger datasets such as the sequenc-
ing of an entire alcohol dehydrogenase gene from several
populations of Drosophila in early 1980s (Kreitman 1983).
That same period of late 1970s and early 1980s also saw
the emergence of personal computers and the development
of the first evolutionary analysis toolkit—PHYLIP (Felsenstein
1993)—the oldest continuously maintained software in our
field. In mid-2000 the development of next-generation
sequencing techniques has brought low-cost, high output
data generation capacity to all areas of life sciences. A by-
product of this data explosion was that a number of biomed-
ical domains that were traditionally distant from evolutionary
thinking found themselves in a situation where data interpre-
tation should be performed in the evolutionary context. For
example, analyses of infectious diseases such as AIDS and
influenza, proliferation of malignant tumors, emergence of
antibiotic resistance, and many others types of problems
can only be fully understood in the context of evolutionary

analyses. Truly, Dobzhansky (1973) was right in saying that
“Nothing in biology makes sense except in the light of
evolution”. These unique circumstances position evolution-
ary and population biology at the center of life sciences—a
place well deserved. But it also places a special responsibility
on us—practitioners of this field—to make our software tools
useful and comprehensible by the broad life sciences com-
munity. Below, we examine recent developments that would
make this possible.

To be usable, software tools should minimally be accessible
and (well) documented. To gauge these parameters within
recently published molecular evolution software tools we
have examined all Methods and Resource articles published
in MBE between January 2017 and March 2018. We only
looked at articles that were either freely available (outside
the paywall) or had a clearly specified URL pointing to the
software within the abstract. This is because readers from
other biological domains are unlikely to be subscribed to
MBE. There were 23 papers describing new software tools
(see supplementary table S1). Twenty-two had source code
deposited in GitHub or R archive (The Comprehensive R
Archive Network [CRAN])—a testament to the openness
of the field. We then looked at how easily these tools can
be used in practice. This presented a less exciting picture: only
three tools contained enough information (documentation
and/or tutorials) to actually be easily installed and used. Two
additional tools has been added to Bioconda (see below)
greatly improving their usability. Thus the conclusion so far

P
ersp

ective

� The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is
properly cited. Open Access
1372 Mol. Biol. Evol. 35(6):1372–1375 doi:10.1093/molbev/msy084 Advance Access publication April 23, 2018

https://github.com/orgs/galaxyproject/people
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:
Deleted Text: (NGS)
Deleted Text: ``
Deleted Text: (<xref ref-type=
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy084#supplementary-data

is that the community is open (the absolute majority of tools
are in the open source domain) but significantly lacks in the
area of making tools truly usable. Below we summarize tech-
nological developments that can significantly improve the
usability of our software while putting minimal strain on
developers. Specifically, we discuss advances in package and
environment management for installing tools, software con-
tainerization for isolating tools and dependencies, and inte-
grative frameworks that provide access to a wide range of
tools through a single user interface (UI) (fig. 1).

Tools for Packaging and Distributing
Software
Several recent developments promise to significantly help
make software distribution less of a burden on developers.
The first of these developments is evolution of frameworks for
management of tool dependencies and runtime environ-
ments. The biggest problem for many (especially naı̈ve) users
is installation, especially when the tool needs to be compiled
from the source code and properly installed (fig. 1A). The
situation is often aggravated by dependencies such as external
libraries required for successful building of executables within
a multitude of operating systems (OSs) and local

configurations. Conda (https://conda.io, last accessed March
2018) represents the latest generation of open source package
and environment managers developed specifically to mitigate
this issue (fig. 1B). With Conda, tools and their dependencies
can be easily installed through a simple, one-step command.
Conda also works across programming languages and OSs,
making it widely useful. Leveraging Conda, Bioconda (https://
bioconda.github.io, last accessed March 2018) is a community
project dedicated to data analysis in life sciences that contains
over 3,700 tool packages with contributions by more than 400
authors (Dale et al. 2017). Despite the fact that Bioconda is
one of the most recent package managers dedicated to bio-
medical tools, it contains by far the largest number of soft-
ware tools, underscoring its rapid uptake by the community
(fig. 2 in Dale et al. 2017). Bioconda packages are well main-
tained and include a testing system to ensure their quality.

Another transformative development is software contain-
erization platforms (or, simply, containers) represented by
Docker (https://www.docker.com, last accessed March
2018), Singularity (Kurtzer et al. 2017), and rkt (https://cor-
eos.com/rkt, last accessed March 2018). Containers are run
within host’s OS’s kernel but “containerize” every other as-
pect of the runtime environment, providing higher isolation
from local environment compared with what Conda virtual

FIG. 1. Examples of different deployment strategies for a single tool IQ-Tree (Nguyen et al. 2015). (A) Compiling from the source code on Linux
(installation instruction specific to MacOS and Windows are described in IQ-Tree website). These instruction do not include installation of
compiler and cmake as well as environment configuration (e.g., PATH variable). (B) Because IQ-Tree is available from Bioconda (https://
bioconda.github.io/recipes/iqtree, last accessed March 2018) is can be installed with much less effort. Here we first create an isolated virtual
environment (conda create), switch to that environment (source activate), and finally install IQ-Tree itself (conda install). In
contrast to (A) this takes care of all dependencies and environment configuration making the package immediately ready for use. Because
Bioconda automatically creates containers the tool can be run from within a container (docker run). Note that in these cases (Conda and
Docker) we explicitly specify version of IQ-Tree (1.5.5). Ability of specify software versions is essential for making analyses transparent and
reproducible. (C) Finally, because IQ-Tree is already in Conda it is trivial to incorporate it into Galaxy—an integrative environment (this screenshot
is from http://usegalaxy.eu, last accessed March 2018). This provides users with a consistent interface and ability to combine IQ-Tree with other
tools within a Galaxy such as, for example, tools for generation of multiple alignments.

Biology Needs Evolutionary Software Tools . doi:10.1093/molbev/msy084 MBE

1373

Deleted Text: p
Deleted Text: d
Deleted Text: s
https://conda.io
Deleted Text: operating system
https://bioconda.github.io
https://bioconda.github.io
Deleted Text:
Deleted Text: (
Deleted Text:)
https://www.docker.com
https://coreos.com/rkt
https://coreos.com/rkt
Deleted Text: operating system
Deleted Text: to
https://bioconda.github.io/recipes/iqtree
https://bioconda.github.io/recipes/iqtree
http://usegalaxy.eu

environments can provide (these can still be influenced by
the host system; Beaulieu-Jones and Greene 2017). Containers
share a kernel with the host environment, thus the impact on
execution performance is negligible while enabling computa-
tional reproducibility akin to full virtual machines. Contains
are straightforward to create and they are automatically gen-
erated for every tool included into Bioconda (Dale et al. 2017).

Integrative Frameworks
Integrative frameworks are systems where heterogeneous
tools can be applied to a variety of datasets within a single,
unified UI. There are many advantages to such systems: they
provide users with ready-to-use tools that can be combined
into complete workflows, support data storage and compu-
tational needs, automatically convert between file formats,
and provide capabilities for reproducing and sharing analyses.
Galaxy (Blankenberg et al. 2007; Goecks et al. 2010; Afgan et al.
2016) is the most widely used of these platforms (http://bit.ly/
gxyTSstats, last accessed March 2018). It provides access to
hundreds of tools used in a wide variety of analysis scenarios
(e.g., through American http://usegalaxy.org [last accessed
March 2018], European http://usegalaxy.eu [last accessed
March 2018], and Australian http://usegalaxy.org.au [last
accessed March 2018] server instances). It features a web-
based UI while automatically and transparently managing
underlying computation details. In addition to public servers,
it can be deployed on a personal computer, heterogeneous
computer clusters, as well as computation systems provided
by Amazon, Microsoft, Google, and other clouds. It is an open,
community driven project, which ensures its sustainability
and allows it to be adapted for use in a wide variety of re-
search domains from genomics to image analysis to natural
language processing.

The advantage of integrative frameworks is that they pro-
vide multiple tools under the umbrella of a single system. This
means that a user can perform complex, multi-step analyses
in one place. For example, a researcher studying evolution of
antibiotic resistance can start from the very beginning by
assessing the quality and mapping of, say, Illumina data, call-
ing and filtering variants, and identifying sites under selection
all within one system without ever leaving it and never need-
ing to install anything. One can argue that such a
statement—performing everything within a single system—
is unrealistic because 1) one cannot always assess the full
complexity of a given analysis a priori and 2) systems like
Galaxy can never include all possible tools. This is true and
this is why we have developed Interactive Environments (IEs)
within Galaxy (Grüning et al. 2016). Using IEs, one can start a
Jupyter and RStudio session directly within Galaxy (using its
robust computational infrastructure) and perform any type
of ad hoc analysis such as a statistical test or creating a custom
visualization.

Any web-based or command-line tools can be integrated
into Galaxy. However, tools that are already registered with
Conda (or Bioconda) are especially easy to add because all
dependency resolution issues are already solved by the pack-
age manager or software containers (fig. 1C). Depending on its

configuration, Galaxy can create a dedicated Conda environ-
ment for tool execution or “pull” (download) a Docker con-
tainer that was automatically created by Bioconda and invoke
the tool within this container.

Training Is Key
Expansion of areas that can directly benefit from software
tools developed within evolutionary biology means that nu-
merous researchers unfamiliar with these types of analyses
will need to be trained. This means that 1) a framework for
distribution and management of educational materials
should be developed and 2) community-sourced tutorials
need to be produced.

To achieve the first goal, we and the Galaxy community
have built an infrastructure for creation and delivery of train-
ing materials that enables transparent peer-review and cura-
tion to guarantee high quality and current content. In doing
this we took inspiration from the Software and Data
Carpentry (SDC) (Wilson 2014) projects where materials
are openly reviewed and iteratively developed on GitHub
(https://github.com/, last accessed March 2018) to capture
the breadth of community expertise. SDC delivers training via
online tutorials with hands-on sections, which offer better
training support than videos because trainees who are ac-
tively participating learn more (Dollar et al. 2007). The con-
tent of these web pages is easy to edit, thus reducing the
contribution barrier. The tutorials are developed in
Markdown, a plain text markup language, which is automat-
ically transformed into web-browser accessible pages. Using
these strategies, we created a GitHub repository (https://
github.com/galaxyproject/training-material, last accessed
March 2018) to collect, manage, and distribute training mate-
rials. This infrastructure has been developed in accordance
with the FAIR (Findable, Accessible, Interoperable, Reusable)
principles (Wilkinson et al. 2016). Using the framework de-
scribed above, we relaunched the Galaxy Training Network
(GTN; https://galaxyproject.org/teach/gtn, last accessed
March 2018). This growing network currently consists of 33
scientific groups (https://galaxyproject.org/teach/trainers, last
accessed March 2018) invested in Galaxy-based training. The
GTN regularly organizes training events worldwide and offers
best practices for developing Galaxy-based training material,
advice on compute platform choice to use for training, and a
catalog of existing training resources for Galaxy. There is cur-
rently a paucity of tutorials targeting evolutionary- and
population-biology types of analyses. We hope that this re-
port will precipitate their development.

Going Forward
Concluding, we would like to introduce a short set of recom-
mendations that can potentially widen the impact of the
software produced within the field of evolutionary biology.

(1) Use modern software distribution practices. Using
systems like Conda dramatically simplifies installation
of software tools for end users. The importance of this
cannot be overemphasized. Many readers will recall
“horrors” of source code not compiling properly or

Nekrutenko et al. . doi:10.1093/molbev/msy084 MBE

1374

Deleted Text: (
Deleted Text:)
Deleted Text: f
Deleted Text: user interface (
Deleted Text:)
http://bit.ly/gxyTSstats
http://bit.ly/gxyTSstats
http://usegalaxy.org
http://usegalaxy.eu
http://usegalaxy.org.au
Deleted Text: -
Deleted Text: user interface
Deleted Text: (
Deleted Text: (
Deleted Text: i
Deleted Text: k
Deleted Text: (
Deleted Text: (
Deleted Text: -
Deleted Text: (SDC)
https://github.com
https://github.com/galaxyproject/training-material
https://github.com/galaxyproject/training-material
https://galaxyproject.org/teach/gtn
https://galaxyproject.org/teach/trainers
Deleted Text: f

searching for the right version of a needed software
library. For a naı̈ve user such a situation is the end of an
attempt to ever try the software. Using Conda reduces
this unnecessary complexity to simply using conda in-
stall, which will automatically retrieve dependencies
and install needed components. This does not only
benefit the user. This benefits the software developer
as well. After all, the “fitness” of software is directly
proportional to the number of users and these
approaches will increase the number of users.

(2) Use integrative environments because stand-alone
web applications have limited utility. It is often tempt-
ing to develop a web-server for a singular tool or a
collection of tools. However single-purpose web servers
usually do not have all tools necessary for performing a
complete from-data-to-publication type of analysis.
For example, a website implementing a tree recon-
struction algorithm (such as PhyML; Guindon et al.
2010) will use sequence alignments in a particular for-
mat (e.g., Newick) as the input. But these alignments
need to be generated somehow and converted to an
appropriate format—a set of manipulations the web-
site is unlikely to provide. On the other hand, incorpo-
rating the tool into a system like Galaxy empowers
users to combine the tool in novel ways with hundreds
of other utilities as well as to interactive computing
environments such as Jupyter and RStudio. This also
frees developers from website development—
significant time that can be spent, well, wrapping tools
in Conda, Galaxy, and developing tutorials.

(3) Documentation and training efforts always pay off.
It is redundant to say that documentation is key to
everything. Tutorial development is hard work because
one needs to design analyses using specially tailored
minimal datasets that will produce meaningful results
and tell an engaging story. However, only domain spe-
cialists can produce quality educational materials and
so we appeal to all readers of this piece: if you have ever
developed an analysis tool, make a tutorial to showcase
what your tool can do. Ultimately (as we mentioned
above) this will only increase the “fitness” of your
software.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.

Acknowledgments
The authors are grateful to Bioconda, BioContainers, and
Galaxy communities as without these resources this work
would not be possible. This project was supported by

NIH grants U41 HG006620 and R01 AI134384-01 as well as
NSF grant 1661497 to J.T. and A.N.

References
Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, �Cech M,

Chilton J, Clements D, Coraor N, Eberhard C, et al. 2016. The Galaxy
platform for accessible, reproducible and collaborative biomedical
analyses: 2016 update. Nucleic Acids Res. 44(W1):W3.

Beaulieu-Jones BK, Greene CS. 2017. Reproducibility of computational
workflows is automated using continuous analysis. Nat. Biotechnol.
35(4):342–346.

Blankenberg D, Taylor J, Schenck I, He J, Zhang Y, Ghent M,
Veeraraghavan N, Albert I, Miller W, Makova KD, et al. 2007.
A framework for collaborative analysis of ENCODE data: making
large-scale analyses biologist-friendly. Genome Res. 17(6):
960–964.

Dale R, Grüning B, Sjödin A, Rowe J, Chapman BA, Tomkins-Tinch CH,
Valieris R, The Bioconda Team, Köster J. 2017. Bioconda: a sustain-
able and comprehensive software distribution for the life sciences.
bioRxiv [Internet] 207092. Available from: https://www.biorxiv.org/
content/early/2017/10/21/207092

Dobzhansky T. 1973. Nothing in biology makes sense except in the light
of evolution. Am Biol Teach. 35(3): 125–129.

Dollar A, Steif PS, Strader R. 2007. Enhancing traditional classroom in-
struction with web-based Statics course. In: 2007 37th annual fron-
tiers in education conference - global engineering: knowledge
without borders, opportunities without passports. Available from:
http://dx.doi.org/10.1109/fie.2007.4417892

Felsenstein J. 1993. PHYLIP 3.5. Seattle: University of Washington.
Goecks J, Nekrutenko A, Taylor J, Team G. 2010. Galaxy: a compre-

hensive approach for supporting accessible, reproducible, and
transparent computational research in the life sciences. Genome
Biol. 11(8):R86.

Grüning BA, Rasche E, Rebolledo-jaramillo B, Eberhard C, Chilton J,
Coraor N, Backofen R, Taylor J. 2016. Enhancing pre-defined work-
flows with ad hoc analytics using Galaxy, Docker and Jupyter.
Available from: http://dx.doi.org/10.1101/075457

Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O.
2010. New algorithms and methods to estimate maximum-
likelihood phylogenies: assessing the performance of PhyML 3.0.
Syst. Biol. 59(3): 307–321.

Hubby JL, Lewontin RC. 1966. A molecular approach to the study of
genic heterozygosity in natural populations. I. The number of
alleles at different loci in Drosophila pseudoobscura. Genetics
54:577–594.

Kreitman M. 1983. Nucleotide polymorphism at the alcohol dehydro-
genase locus of Drosophila melanogaster. Nature 304(5925):
412–417.

Kurtzer GM, Sochat V, Bauer MW. 2017. Singularity: scientific containers
for mobility of compute. PLoS One 12(5): e0177459.

Lewontin RC, Hubby JL. 1966. A molecular approach to the study of
genic heterozygosity in natural populations. II. Amount of variation
and degree of heterozygosity in natural populations of Drosophila
pseudoobscura. Genetics 54:595–609.

Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M,
Baak A, Blomberg N, Boiten J-W, da Silva Santos LB, Bourne PE, et al.
2016. The FAIR Guiding Principles for scientific data management
and stewardship. Sci Data 3:160018.

Wilson G. 2014. Software Carpentry: lessons learned. F1000Res. 3:62.

Biology Needs Evolutionary Software Tools . doi:10.1093/molbev/msy084 MBE

1375

Deleted Text: (
Deleted Text:)
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy084#supplementary-data
https://www.biorxiv.org/content/early/2017/10/21/207092
https://www.biorxiv.org/content/early/2017/10/21/207092
http://dx.doi.org/10.1109/fie.2007.4417892
http://dx.doi.org/10.1101/075457

