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INTRODUCTION 
 

Parkinson’s disease (PD), the second most common 

neurodegenerative disease after Alzheimer’s disease, 

affects 6.1 million individuals worldwide. The 

incidence of PD increases rapidly with age making it a 

major source of disability and global health burden  

[1–3]. PD is a highly clinically heterogeneous condition 
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ABSTRACT 
 

Parkinson’s disease (PD) is a common age-related neurodegenerative disease that affects the structural 
architecture of the cerebral cortex. Cortical thickness (CTh) via surface-based morphometry (SBM) analysis 
is a popular measure to assess brain structural alterations in the gray matter in PD. However, the results of 
CTh analysis in PD lack consistency and have not been systematically reviewed. We conducted a 
comprehensive coordinate-based meta-analysis (CBMA) of 38 CTh studies (57 comparison datasets) in 1,843 
patients with PD using the latest seed-based d mapping software. Compared with 1,172 healthy controls, no 
significantly consistent CTh alterations were found in patients with PD, suggesting CTh as an unreliable 
neuroimaging marker for PD. The lack of consistent CTh alterations in PD could be ascribed to the 
heterogeneity in clinical populations, variations in imaging methods, and underpowered small sample sizes. 
These results highlight the need to control for potential confounding factors to produce robust and 
reproducible CTh results in PD. 
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that is characterized by both cardinal motor symptoms, 

such as resting tremor, rigidity, and bradykinesia, and 

several non-motor symptoms throughout disease course, 

such as cognitive impairment, apathy, depression, 

anxiety, impulse control disorders, sleep disturbance, 

fatigue, pain, visual hallucinations, and autonomic 

dysfunction [4, 5]. The pathophysiology of PD is 

complex and involves several neural networks in 

addition to dopaminergic dysfunction [6–9]. Neuro-

degeneration may occur several years before PD is 

diagnosed based on characteristic motor symptoms [10]. 

Modern neuroimaging techniques have immensely 

contributed to the understanding of pathophysiology, 

early and differential diagnosis, severity, and 

progression of PD [6, 9, 11, 12]. 

 

Although degeneration of the substantia nigra is the 

primary histopathological feature of PD, the cerebral 

cortex is also affected as the disease progresses [13]. 

Cortical thickness (CTh) analysis of structural magnetic 

resonance imaging (MRI) data is a highly validated and 

popular surface-based technique for assessing changes 

in cortical gray matter (GM). Compared to voxel-based 

morphometry (VBM) that measures the regional GM 

volume as the product of the cortical surface area, CTh, 

and/or cortical folding, CTh analysis is more sensitive 

and directly assesses cortical morphology [14–17]. CTh 

analysis has been widely used to assess brain 

morphology in PD in relation to demographic and 

clinical characteristics, such as the age of onset, age, 

disease duration, motor deficits, disease stages, and 

divergent non-motor symptoms [17–43]. Certain study 

groups reported that CTh alterations served as 

indicators of neural degeneration in PD [15, 44], 

whereas others failed to identify cortical morphological 

features in patients with PD as compared with healthy 

controls (HCs) [38, 45–49]. Despite significant 

advances in understanding the neurobiological 

characteristics of PD, CTh analysis results lack 

consistency and have not been systematically reviewed. 

 

A coordinate-based meta-analysis (CBMA) 

quantitatively combines data from individual 

neuroimaging studies to assess brain regions with 

significantly consistent structural or functional 

alterations in a particular neuropsychiatric disorder 

using the location of peak coordinates in three-

dimensional (3D) anatomical spaces (x, y, z) [50, 51].  

Recently, CBMA has been developed for surface-based 

morphometry (SBM) studies to identify consistent CTh 

abnormalities in major depressive disorder [52]. We 

conducted a CBMA of SBM studies to investigate CTh 

alterations in PD using seed-based d mapping with the 
permutation of subject images (SDM-PSI) [53, 54] and 

following the recent guidelines and recommendations 

[50, 51]. 

RESULTS 
 

Included studies and characteristics 

 

A literature search produced 602 results, of which 38 

studies finally met the inclusion criteria [15, 17, 20, 22, 

24, 25, 31, 33–39, 41, 43–49, 55–70]. The flowchart in 

Figure 1 shows the study selection process. These 

studies included 57 PD-HC comparison datasets 

comprising 1,843 non-demented patients with PD 

(mean age: 62.87 years) and 1,172 HC subjects (mean 

age: 62.48 years). Sample sizes in the included datasets 

ranged from 8 to 151 (mean: 32.33) in the patient group 

and from 10 to 58 (mean: 29.3) in the HC group. The 

following demographic and clinical characteristics were 

reported in these studies: gender distribution in 53 

datasets (56.32% male in the patient group and 54.48% 

male in the HC group), education level in 35 datasets 

(mean of 12.21 years in the patient group and a mean of 

12.98 years in the HC group), disease duration in 54 

datasets (mean: 5.43 years), Hoehn and Yahr (HY) 

stage in 45 datasets (mean: 2.05), United Parkinson’s 

disease rating scale, part III (UPDRS-III) in 52 datasets 

(mean: 23.62 without considering the medication state), 

levodopa equivalent daily dose (LEDD) in 35 datasets 

(mean: 506.33mg), and mini-mental state examination 

(MMSE) in 37 datasets (mean of 26.98 in the patient 

group and a mean of 28.68 in the HC group) 

(Supplementary Table 2). As listed in Supplementary 

Table 3, 3.0 Tesla MRI scanners were applied to 46 

datasets (80.7%), and 50 datasets (87.7%) used 

thresholds corrected for multiple comparisons in the 

statistical analysis. Of the 57 datasets, only 26 (45.6%) 

underwent quality control for imaging data by a visual 

check and/or a subsequent manual edit as mentioned in 

the articles. Quality assessment scores of the included 

studies are listed in Supplementary Table 2. 

 

Main CBMA 

 

We detected no consistent CTh differences between 

patients with PD and HC subjects (n = 57 datasets) 

using the threshold-free cluster enhancement (TFCE)-

based family-wise error (FWE) correction (p < 0.05 

and voxel extent ≥ 10). Although we used a less 

stringent significance level (uncorrected p < 0.005 and 

voxel extent ≥ 10), there was still a lack of significant 

results. 

 

Subgroup CBMA 

 

The following datasets were used to conduct eight 

subgroup CBMAs: datasets obtained using 3.0 Tesla 

MRI scanners (n = 46), datasets with a slice thickness of 

lower than 1 mm or voxel size lower than 1×1×1 mm3 

(n = 48), datasets processed using FreeSurfer software 
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packages (n = 51), datasets with full width half maximum (FWHM) of the smoothing kernel size of 

15 mm or less (n = 44), datasets with at least one 

covariate included in the statistical model (n = 42), and 

datasets for which thresholds were corrected for 

multiple comparisons (n = 50), datasets with quality 

control of imaging data (n = 26), and those not 

specifying it (n = 31). None of the subgroup CBMAs 

demonstrated significantly consistent findings using the 

TFCE-based FWE correction (p < 0.05 and voxel extent

 

 
 

Figure 1. PRISMA flow chart describing the study selection process. PRISMA, Preferred Reporting Items of Systematic Review and 
Meta-Analysis; PD, Parkinson’s disease; SBM, surface-based morphometry; CTh, cortical thickness; ROI, region of interest. 
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≥ 10). Other subgroup CBMAs were not conducted 

because of the insufficient datasets included. Of the 

datasets included, only a few datasets explicitly 

subtyped PD patients with mild cognitive impairment 

(MCI) (n = 6). Other clinical subtypes were the case as 

well. 

 

Jackknife sensitivity, heterogeneity and publication 

bias analyses 

 

Jackknife sensitivity analysis revealed that the lack of 

significantly consistent CTh differences between 

patients with PD and HC subjects survived in all 

combination of the datasets. 

 

We could not perform subsequent heterogeneity and 

publication bias analyses because the main CBMA did 

not reveal any significant brain clusters. 

 

Meta-regression analysis 

 

Meta-regression analysis revealed that a longer disease 

duration (available datasets n = 54) was associated with 

lower CTh in the supplementary motor area/cingulate 

cortex (Montreal Neurological Institute [MNI] 

coordinates: x = –4, y = –2, z = 46; Brodmann area [BA] 

24; SDM-Z = –2.31; TFCE-based FWE corrected p = 

0.009; voxels = 392, Figure 2A). In addition, a lower 

MMSE score in the PD sample (available datasets n = 

37) was associated with lower CTh in the right superior 

temporal gyrus/rolandic operculum (MNI coordinates: x 

= 54, y = –22, z = 12; BAs 48 and 22; SDM-Z = 7.05; 

TFCE-based FWE corrected p = 0.001; voxels = 999), 

left superior/middle temporal gyri (MNI coordinates: x 

= –62, y = –12, z = 0; BAs 48, 21, and 22; SDM-Z = 

6.65; TFCE-based FWE corrected p = 0.009; voxels = 

441), and left inferior temporal gyrus (MNI coordinates: 

x = –60, y = –20, z = –24; BAs 20 and 21; SDM-Z = 

6.57; TFCE-based FWE corrected p = 0.03; voxels = 

169) (Figure 2B). A higher LEDD (available datasets n 

= 35) in the PD sample was associated with lower CTh 

in the medial prefrontal cortex/anterior cingulate cortex 

(MNI coordinates: x = 4, y = 32, z = 38; BAs 32, 24, 10, 

and 8; SDM-Z = –1.66; TFCE-based FWE corrected p = 

0.029; voxels = 1441, Figure 2C). Other variables, such 

as mean age (available from all datasets), male 

percentage in the patient sample (available datasets n = 

53), education level (available datasets n = 35), 

UPDRS-III (available datasets n = 52), and HY stage 

(available datasets n = 45) did not correlate with 

regional CTh alterations (p < 0.05 TFCE-based FWE 

corrected and cluster size ≥ 10 voxels). Results from 

meta-regression of UPDRS-III scores should be 
interpreted with caution as the medication state (on or 

off) was not stated in certain datasets included during 

the assessment of this score. 

DISCUSSION 
 

We conducted CBMAs of SBM studies (57 datasets) to 

quantitatively identify consistent CTh alterations in a 

large pooled sample of PD patients using the latest 

algorithms of SDM-PSI [53, 54] and following the 

recent guidelines and recommendations [50, 51]. 

Compared with 1,172 HC subjects, we did not detect 

consistent CTh alterations in 1,843 patients with PD 

either using a TFCE-based FWE corrected or a more 

lenient uncorrected threshold. Furthermore, jackknife 

analyses and subgroup CBMAs confirmed the non-

reproducibility of results. This finding is in line with the 

related literature that reports a widespread lack of 

replicability in neuroimaging [71]. Thus, CTh analysis 

is an unreliable neuroimaging marker in PD. 
 

PD is a progressive neurodegenerative disorder. It has 

been suggested that cortical neurodegeneration begins 

from stage 4 (associated with early phase motor 

dysfunction) according to the well-established brain 

pathologic staging scheme for PD proposed by Braak et 

al. [13]. All datasets included in the current CBMA 

enrolled patients with PD at their symptomatic stages, 

i.e., showing cortical neurodegeneration that probably 

manifested CTh alterations, although it is still unclear 

whether such alterations are a direct cause of neuro-

degeneration or a by-product [22]. However, our CBMA 

did not detect consistence of CTh alterations in PD 

across studies. A lack of consistent CTh abnormalities in 

patients with PD relative to HCs may suggest that CTh 

analysis of MRI data may not have the power to detect 

such abnormalities paralleling with the neuro-

degeneration. Measuring the 1–5 mm thick cortex based 

on (usually) 1 mm3 voxels from MRI data is made 

inherently challenging; however, FreeSurfer, one of the 

most prominent packages for automatically estimating 

the brain CTh, showed good agreement with histologic 

measurements of CTh [72]. In addition, multiple 

validation studies presented good comparability for 

detecting CTh between advanced image processing 

algorithms [73]. Although reports on comparisons 

between histology and automated techniques from in 

vivo MRI data measuring CTh alterations in PD are 

lacking, we attribute the presence of inconsistent CTh 

abnormalities in PD to heterogeneous clinical 

populations, variations in imaging methods, and under-

powered small sample sizes. 
 

PD is a heterogeneous disorder in terms of clinical 

phenotypes (motor subtypes and variable non-motor 

symptoms throughout the disease course) [4, 5, 74, 75] 

and pathogenetic features [76, 77]. As listed in 
Supplementary Table 2, there were variations regarding 

demographic and clinical characteristics across studies. 

Our meta-regression analyses revealed global cognitive 
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Figure 2. Meta-regression analyses of clinical variables with cortical thickness. (A) A longer disease duration was associated with 
lower CTh in the supplementary motor area/cingulate cortex (MNI coordinates: x = –4, y = –2, z = 46; BA 24; SDM-Z = –2.31; TFCE-based FWE 
corrected p = 0.009; voxels = 392). (B) A lower MMSE score in the PD sample was associated with lower CTh in the right superior temporal 
gyrus/rolandic operculum (MNI coordinates: x = 54, y = –22, z = 12; BAs 48 and 22; SDM-Z = 7.05; TFCE-based FWE corrected p = 0.001; voxels 
= 999), left superior/middle temporal gyri (MNI coordinates: x = –62, y =  –12, z = 0; BAs 48, 21, and 22; SDM-Z = 6.65; TFCE-based FWE 
corrected p = 0.009; voxels = 441), and left inferior temporal gyrus (MNI coordinates: x =  –60, y = –20, z = –24; BAs 20 and 21; SDM-Z = 6.57; 
TFCE-based FWE corrected p = 0.03; voxels = 169). (C) A higher LEDD in the PD sample was associated with lower CTh in the medial prefrontal 
cortex/anterior cingulate cortex (MNI coordinates: x = 4, y = 32, z = 38; BAs 32, 24, 10, and 8; SDM-Z = –1.66; TFCE-based FWE corrected p = 
0.029; voxels = 1441). CTh, cortical thickness; MNI, Montreal Neurological Institute; BA, Brodmann area; SDM, seed-based d mapping; TFCE, 
threshold-free cluster enhancement; FWE, family-wise error; PD, Parkinson’s disease; LEDD, levodopa equivalent daily dose. 
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function, disease duration, and LEDD as confounding 

factors affecting CTh alterations in PD across studies. 

Other variables, such as age, male gender, education 

level, the severity of motor disability, and disease stage 

did correlate with regional CTh alterations. However, 

these results should be interpreted with caution because 

analyses were conducted at the study level not at an 

individual subject level. In individual SBM studies, 

different and inconsistent patterns of CTh abnormalities 

have been associated with demographic and clinical 

characteristics, such as the age of onset [18], age [19], 

disease duration [19–23], gender [24], the severity of 

motor deficits [20, 21, 25], motor laterality [26], and 

disease stages [20, 25, 27]. In addition, CTh 

abnormalities have been reported to correlate with 

several non-motor symptoms, such as cognitive deficits 

[17, 20, 23, 28–34], impulse control disorders [35, 36], 

depression [37–39], progressive olfactory loss [40], 

rapid eye movement sleep behavior disorder [41], pain 

[42], and mild behavioral impairment [43]. 

Furthermore, different subtypes of MCI in PD (amnestic 

MCI and non-amnestic MCI, MCI reverters and MCI 

non-reverters) demonstrate distinct patterns of CTh 

alterations [34, 58, 78]. Moreover, brain-derived 

neurotrophic factor (BDNF) Val66Met polymorphism 

in PD affects cortical thinning pattern [79]. Using a 

hypothesis-free, CTh data-driven approach, Uribe et al. 

identified three cortical phenotypes affected in non-

demented PD patients [80], with different progressive 

patterns over time [81] that may detect prognosis 

markers in PD [80, 81]. Although several longitudinal 

studies showed that CTh alterations in PD were 

sensitive to time [44, 79, 81, 82], the majority of 

previous studies did not comprehensively distinguish 

PD subtypes and conducted neuroimaging analyses only 

at one time point. Thus, heterogeneity in clinical 

populations resulted in inconsistencies and a lack of 

reproducibility across CTh studies. Well-characterized 

subtype-homogeneous samples with both cross-

sectional and longitudinal designs can improve the 

reproducibility [51]. 

 

Apart from the heterogeneity in clinical populations, 

inconsistent CTh alterations in PD are attributed to 

variations in imaging methods. As shown in 

Supplementary Table 3, we noted variations in scanner 

manufacturer and platform, field strength, head coil, 

MR sequence, and voxel size. MRI data of most SBM 

studies included in the CMBA were acquired at a single 

site except for the Parkinson’s Progression Markers 

Initiative (PPMI) cohort, a multicenter database [68].  

Several studies have reported the effects of scanner 

platform [83, 84], field strength [85–87], pulse sequence 
[85, 88, 89], number of coil channels [88], scanner 

relocation [90], imaging sites [83, 91], type of 

computing workstation [92], and operating systems [92, 

93] on cerebral CTh measurements. A higher field 

strength, multi-echo sequence, more coil channels, 

harmonization of CTh measurements across scanners 

and sites, use of homogeneous sets of platforms, and 

constant operating systems would reduce the bias and 

improve the reproducibility. 

 

In addition, image processing-related factors might have 

produced inconsistent results as well. For instance, head 

motions in patients with PD during imaging and image 

artifacts induce a consistent bias in morphometric 

measurements [94], thus signifying the need for quality 

control to achieve reliable results [95, 96]. However, 

more than half of the studies included in our CBMA did 

not perform or specify a visual check and/or a 

secondary manual intervention for quality control. 

Furthermore, these studies used different processing 

pipelines and software packages (different versions of 

FreeSurfer, CIVET, and CAT12) for estimating CTh, 

which could have introduced bias. Similarly, a previous 

work reported differences in measurement between 

FreeSurfer version v5.0.0 and the two earlier versions 

(v4.3.1 and v4.5.0) [92]. Other studies demonstrated 

both commonalities and differences in CTh measure-

ments between FreeSurfer and CIVET [97–99] and 

between FreeSurfer and CAT12 [100, 101]. 

 

With every modification and improvement in 

algorithms, the performance of various software 

packages should be evaluated [73]. Surface-based 

smoothing reduces noise, increases comparability across 

subjects, and compensates for subtle misalignments 

caused by image distortion [73]. The extent of 

smoothing applied to CTh maps critically affects the 

sensitivity, anatomical precision, and resolution of 

measurements [102]. The fact that studies included in 

the meta-analysis employed variable smoothing kernels 

in the CTh analysis could have overinterpreted the 

results.  Thus, an optimal kernel smoothing method 

using a hierarchical approach based on sequential 

statistical thresholding was proposed [102]. As 

mentioned above, age and gender were associated with 

CTh alterations. During statistical analysis, a regression 

model should leave out confounding variables. 

However, some of the included studies did not treat 

them as covariates in the statistical models. In addition, 

an uncorrected threshold may produce spurious results 

in neuroimaging. Correction for multiple comparisons is 

essential. 

 

A small sample size results in low statistical power, 

making it difficult to detect subtle differences and 

undermining the reliability of results [103]. Sample size 
estimates were heterogeneous over the cortical surface 

[104]. A detection of a 0.25-mm CTh difference (10% 

change in CTh) requires approximately 50 subjects per 
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group [104]. Similarly, a more subtle detection of a 

0.125-mm CTh difference (5% change in CTh) requires 

more than 250 subjects per group [104]. In line with 

these numbers, 47 out of the 57 datasets included in the 

CBMA enrolled less than 50 patients, with no dataset 

including more than 250 patients.  The majority of these 

studies failed to detect CTh differences between 

patients with PD and HCs. Therefore, a priori power 

analysis should be performed to determine an 

appropriate sample size [105]. Furthermore, pooling 

multi-site large-sample datasets using standardized 

imaging protocols, and processing and analysis 

pipelines, like the PPMI, and Alzheimer's Disease 

Neuroimaging Initiative (ADNI), becomes increasingly 

important and should be highly recommended to 

generate reliable results. 

 

The present CBMA had several limitations. We could 

not conduct additional subgroup CBMA due to the low 

number of studies in each PD subtype. When adequate 

qualified and reliable CTh studies are available for 

subtyping PD in the future, we may obtain more 

insights into the cortical characteristics relating to PD. 

The current evidence of lack consistency of CTh 

alterations in PD comes from the CBMA of cross-

sectional results. Although several longitudinal studies 

showed the time effects of CTh alterations in PD [44, 

79, 81, 82], more such studies employing large cohorts 

are warranted to investigate longitudinal CTh alterations 

to reflect neurodegenerative dynamics. CBMA is a 

powerful technique to quantitatively integrate neuro-

imaging studies; however, its algorithms are still 

evolving [50, 106]. Although we used SDM-PSI, the 

latest algorithm, the present CBMA relied only on the 

peak coordinate-related information reported in 

individual original studies. This limitation could be 

overcome by using image-based meta-analyses or 

mixed image- and coordinate-based meta-analyses [54, 

106]. Further, despite being a comprehensive CBMA 

comprising a large pooled sample of PD, certain studies 

or datasets were excluded because of incomplete 

information reported. Data sharing and integrity of 

neuroimaging reports are encouraged in future studies. 

 

Conclusions and future perspectives 

 

The present CBMA detected no evidence of consistent 

CTh alterations in patients with PD relative to HCs. 

This could be attributed to underpowered small sample 

sizes, sample heterogeneity, and variations in imaging 

methods. The lack of replicability across CTh studies 

highlights the need to control for potential confounding 

factors. Future studies should involve appropriate 
sample size, well-characterized subtype homogeneous 

samples, pooling of multi-site large-sample datasets, 

higher field strength, multi-echo sequence, more coil 

channels, harmonization of CTh measurements across 

scanners and sites, homogeneous sets of platforms, 

constant operating systems, quality control, well-

validated algorithms, optimal smoothing kernel, 

appropriate covariate regression, correction for multiple 

comparisons, and longitudinal data to investigate CTh 

alterations in PD and produce robust and replicable 

results. 

 

MATERIALS AND METHODS 
 

Protocol and registration 

 

The CBMA was performed following the Preferred 

Reporting Items of Systematic Review and Meta-

Analysis (PRISMA) guidelines [107] and the recent 

guidelines and recommendations for neuroimaging 

meta-analysis [50, 51]. The protocol of this CBMA was 

registered at PROSPERO (http://www.crd.york.ac.uk/ 

PROSPERO) (registration number: CRD42020148775) 

and published [108]. 

 

Data sources and study selection 

 

PubMed, Embase, and Web of Science databases were 

comprehensively searched using the following 

keywords: ((Parkinson disease) OR Parkinson*) AND 

((cortical thickness) OR (cortical thinning) OR (surface-

based morphometry)) for both English and non-English 

papers from the database inception to July 1, 2019 and 

updated on Feb 2, 2020. For studies published in 

Chinese, China National Knowledge Infrastructure 

(CNKI), WanFang, and SinoMed databases were also 

searched. Reference lists of relevant reviews and 

articles selected for inclusion were further manually 

searched. 

 

The criteria for including articles in CBMA were: (i) 

articles on patients with idiopathic PD diagnosed 

according to the accepted criteria [109–111]; (ii) articles 

comparing regional CTh differences between patients 

with idiopathic PD and HC subjects at the whole-brain 

cortical level; (iii) articles reporting peak coordinates of 

significant clusters in standard MNI or Talairach space; 

and (iv) original articles published in a peer-reviewed 

journal in English or Chinese. 

 

Publications were excluded if: (i) the sample size was 

less than seven either in the PD group or the HC group 

[51]; (ii) studies included PD patients with dementia; 

(iii) studies reported significant results without listing 

the three-dimensional coordinates; (iv) studies only 

employed regions of interest analysis, small volume 

corrections, or other statistical thresholds that varied 

depending on the brain regions; (v) studies only 

conducted global CTh analysis; (vi) studies lacked an 

http://www.crd.york.ac.uk/PROSPERO
http://www.crd.york.ac.uk/PROSPERO
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HC group; (vii) studies included patient samples 

overlapping with that with the largest sample size; (viii) 

studies were longitudinal without baseline comparisons; 

(ix) publications were not original articles, such as 

conference abstracts, research protocols, letters, 

reviews, and editorials. 

 

Quality assessment 

 

There is no objective tool to perform a quality 

assessment of CTh studies. Referring to a previous 

work [52], we used a modified 12-point checklist to 

assess the quality of each included study in the CBMA 

(Supplementary Table 1). This checklist integrated the 

items such as the sample characteristics, imaging-

specific methodology employed, and results reported in 

the studies. 

 

Data extraction 

 

The following data were extracted from the included 

studies: the first author’s family name, publication year, 

sample size, number of male patients, age, education 

(years), disease duration, UPDRS-III, HY stage, 

MMSE, LEDD, MR scanner manufacturer and 

platform, field strength, head coil, MR sequence, voxel 

size, imaging-processing software package, smooth 

kernel, statistical model, covariate, statistical threshold, 

peak coordinates, the height of the peaks (t-value, z-

value, and p-value), and their stereotactic reference 

space. 

 

L.Q.S and P.W.Z independently performed the literature 

search, study selection, quality assessment, and data 

extraction. Any inconsistencies or discrepancies were 

resolved by a consensus discussion. 

 

Data analysis 

 

Main CBMA 

The main CBMA was conducted using the SDM-PSI 

software package (version 6.21, https://www.sdm 

project.com/). SDM-PSI uses a new algorithm for 

CBMA that conducts standard voxelwise tests and, 

importantly, a standard PSI to assess whether effects are 

not null, rather than a test of convergence in other 

CBMA methods [53, 54]. The SDM-PSI uses standard 

statistical procedures to control the familywise error 

rate [54]. Standard procedures were followed including 

the preprocessing steps: conversion of peaks to a 

common MNI space; calculation of maps of lower and 

upper bounds of possible effect sizes for each study 

separately based on the peak information using a 
specific FreeSurfer GM mask [52], full anisotropy = 1, 

isotropic FWHM = 20mm, and voxel = 2mm; mean 

analysis: estimation of the most likely effect size and its 

standard error based on MetaNSUE algorithms [112, 

113], and conducting multiple imputations and meta-

analyses using a standard random-effects model and 

Rubin’s rules; FWE correction for multiple comparisons 

using common permutation tests; and use of TFCE in 

statistical thresholding (p < 0.05 and voxel extent ≥ 10). 

These procedures have been have been described in 

detail previously [53, 54] and in the SDM-PSI reference 

manual (https://www.sdmproject.com/manual/). 

 

Subgroup CBMA 

Subgroup CBMA was conducted when the number of 

datasets was sufficient (n ≥ 10). Subgroup CBMA 

would be performed in clinical subtypes (such as PD 

patients with or without mild cognitive impairment) and 

imaging methodology variables (including datasets 

using 3.0 Tesla MRI scanners, slice thickness lower 

than 1 mm or voxel size lower than 1×1×1 mm3, 

FreeSurfer software packages, FWHM of the smoothing 

kernel size of 15 mm or less, at least one covariate 

included in the statistical model, and thresholds 

corrected for multiple comparisons as well as those 

datasets with quality control of imaging data and those 

not specifying it). 

 

Jackknife sensitivity, heterogeneity and publication 

bias analyses 

To study the effect of each dataset on the pooled CBMA 

results, Jackknife sensitivity analysis was performed by 

iteratively repeating the same analysis K-1 times (K = 

the number of datasets included), discarding one dataset 

each time [114, 115]. 
 

For every significant cluster with a peak MNI 

coordinate reported in the main CBMA, information 

was extracted to derive standard heterogeneity 

statistics I2 based on a standard linear hypothesis, with 

I2 < 50% indicating low heterogeneity. The publication 

bias of the significant brain cluster was assessed using 

the Egger test (p < 0.05). 
 

Meta-regression analysis 

Meta-regression analyses were performed to study the 

potential effects of age, male gender, disease duration, 

UPDRS-III, HY stage, MMSE, and LEDD on CBMA 

results. Statistical significance was determined using the 

TFCE-based FWE corrected threshold (p < 0.05 and 

voxel extent ≥ 10). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2 to 3. 

 

Supplementary Table 1. The checklist of quality assessment for the included cortical thickness studies. 

12-point checklist 

Category 1: Subjects 

1. Patients were evaluated prospectively, specific diagnostic criteria were applied, and demographic data were reported. 

2. Healthy comparison participants were evaluated prospectively; psychiatric and medical illnesses were excluded. 

3. Important variables (e.g., age, gender, drug status, illness duration, motor symptom severity, disease stage, and cognitive 

function) were checked either via stratification or statistics. 

4. Sample size per group: ≥ 20, scores 1; ≥ 7, scores 0.5 

Category 2: Methods for image acquisition and analysis 

5. Magnet strength: 3T, scores 1; 1.5T, scores 0.5 

6. Quality control is performed. 

7. The imaging technique used was clearly described so that it could be reproduced. 

8. Whole brain cortical analysis was automated without a previously defined region. 

9. Spatial coordinates were reported in a standard space (e.g., Talairach or MNI coordinates). 

Category 3: Results and conclusions 

10. Information about the covariates used, such as age and gender in the statistical model were provided.  

11. Statistical results were corrected for multiple comparison scores 1, uncorrected scores 0.5. 

12. Conclusions were consistent with the results obtained, and the limitations were discussed. 

Total score 

 

Supplementary Table 2. Summary of demographic and clinical characteristics of CTh studies included in the  
meta-analysis. 

 

Supplementary Table 3. Imaging characteristics of the CTh studies included in the meta-analysis. 


