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Abstract

Objective: Primary hyperparathyroidism is most often caused by a sporadic single-gland 
parathyroid adenoma (PTA), a tumor type for which cyclin D1 is the only known and 
experimentally validated oncoprotein. However, the molecular origins of its frequent 
overexpression have remained mostly elusive. In this study, we explored a potential 
tumorigenic mechanism that could increase cyclin D1 stability through a defect in 
molecules responsible for its degradation.
Methods: We examined two tumor suppressor genes known to modulate cyclin D1 
ubiquitination, PRKN and FBXO4 (FBX4), for evidence of classic two-hit tumor suppressor 
inactivation within a cohort of 82 PTA cases. We examined the cohort for intragenic 
inactivating and splice site mutations by Sanger sequencing and for locus-associated loss 
of heterozygosity (LOH) by microsatellite analysis.
Results: We identified no evidence of bi-allelic tumor suppressor inactivation of PRKN or 
FBXO4 via inactivating mutation or splice site perturbation, neither in combination with 
nor independent of LOH. Among the 82 cases, we encountered previously documented 
benign single nucleotide polymorphisms (SNPs) in 35 tumors at frequencies similar 
to those reported in the germlines of the general population. Eight cases exhibited 
intragenic LOH at the PRKN locus, in some cases extending to cover at least an additional 
1.7 Mb of chromosome 6q25-26. FBXO4 was not affected by LOH.
Conclusion: The absence of evidence for specific bi-allelic inactivation in PRKN and FBXO4 
in this sizeable cohort suggests that these genes only rarely, if ever, serve as classic driver 
tumor suppressors responsible for the growth of PTAs.

Introduction

Primary hyperparathyroidism (PHPT) is a common 
endocrine disorder that affects up to 36 people per 1000 
population, disproportionately impacting women such 
that about 2% of post-menopausal women will eventually 
develop PHPT (1). Approximately 85% of all PHPT 
cases are caused by sporadic single-gland parathyroid 

adenomas (PTAs), benign tumors which typically release 
inappropriately high levels of parathyroid hormone 
(PTH) and cause hypercalcemia, in turn often leading to 
osteoporosis, kidney stones, and myriad neurocognitive 
symptoms. Knowledge of oncogenic pathways active in 
PTA remains incomplete, and increased understanding 
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of its molecular pathogenesis could lead to advances 
in disease prevention, diagnosis, and development of 
nonsurgical treatment options.

Cyclin D1, encoded by CCND1, is the only known 
and experimentally validated PTA oncoprotein – yet the 
molecular origins of its frequent overexpression have 
remained mostly elusive. CCND1 was initially identified 
and implicated as a driver oncogene via the discovery 
of a chromosome 11 rearrangement in PTA (2, 3, 4), in 
which the promoter for the parathyroid hormone gene 
(PTH) is juxtaposed to the coding region of CCND1 and 
thus drives its overexpression in a parathyroid-specific 
manner (5). Subsequent studies in a mouse model 
confirmed the ability of overexpressed cyclin D1 to 
drive hyperparathyroidism (6). Interestingly, cyclin D1 
overexpression at the protein level has been reported 
in 20-40% of PTAs (7, 8, 9, 10, 11, 12). This observation 
can be explained by DNA rearrangement involving the 
CCND1 locus in about 8% of cases (13), suggesting that 
one or more additional causes of pathogenic cyclin D1 
overexpression remain to be discovered. Some potential 
causes, such as stabilizing intragenic mutation (14, 15, 16) 
have not been substantiated by available evidence. Other 
possibilities, such as epigenetic upregulation via CCND1 
promoter hypomethylation (17, 18), have not yet been 
addressed in studies of parathyroid neoplasia, although 
methylation abnormalities have been interestingly 
reported in certain cyclin-dependent inhibitor genes in 
association with CCND1 overexpression (19).

We hypothesized that in some PTAs, excess cyclin D1 
may be attributable to enhanced stability of the protein 
(20, 21). In fact, several mechanisms by which cyclin 
D1 could resist proteolysis remain unexplored in PTA. 
Given the absence of stabilizing alterations in the CCND1 
coding sequence itself (14, 15, 16), other regulators of 
cyclin D1 stability may prove worthwhile investigatory 
targets – in particular, tumor suppressor genes that 
encode cyclin D1-targeting degradation machinery. For 
example, ubiquitin ligase complex components PRKN 
(PARK2 or Parkin), an E3 ubiquitin ligase, and FBXO4 
(FBX4), a substrate recognition protein, have been 
implicated as important regulators of proteasomal cyclin 
D1 degradation and other tumor-suppressive functions 
(22, 23, 24, 25). Their eponymous genes, PRKN and 
FBXO4, exhibit evidence consistent with potential two-
hit tumor suppressor inactivation (26, 27) across many 
types of cancer. Specifically, somatic copy number loss, 
microdeletions, missense mutations, and nonsense 
mutations are frequently reported in both PRKN and 
FBXO4 (28, 29, 30, 31, 32). Therefore, we investigated a 

cohort of typically presenting, single-gland, sporadic PTAs 
for somatic inactivation via coding or splice site mutations 
or allelic loss in PRKN and FBXO4.

Materials and methods

Patients and samples

Patient samples were obtained with informed consent and 
utilized in accordance with UConn Health Institutional 
Review Board approved protocols and policies of the 
University of Connecticut. Eighty-two cases of sporadic 
parathyroid adenoma were selected for this study according 
to the following criteria: (i) referral for parathyroidectomy 
following a diagnosis of biochemical PHPT, that is, 
hypercalcemia with elevated or inappropriately normal 
parathyroid hormone levels; (ii) absence of personal or 
family history suggestive of a heritable or syndromic form 
of parathyroid disease; (iii) single-gland lesion resected at 
parathyroidectomy, and (iv) histological confirmation of 
a high-purity, adenomatous tumor free of any atypical or 
malignant features. Median patient age was 59 at the time 
of parathyroidectomy (range 19–90). The cohort included 
59 females, 21 males, and 2 samples where gender was 
not noted in deidentified pathology reports. Apart from 
the need to have adequate quantity of tissue available 
for research, and quality of samples for study, cases  
were otherwise unselected in terms of clinical or 
demographic criteria.

Tumor DNA was isolated from fresh frozen patient 
tumor samples by proteinase K digestion, phenol-
chloroform extraction, and ethanol precipitation. 
Matched germline DNA was isolated from peripheral 
blood using PureGene Blood Kit (Qiagen) or from muscle 
tissue using the phenol-chloroform method.

Sequencing

The coding regions of PRKN and FBXO4 and intron-
exon boundaries were amplified by PCR using self-
designed primers (Supplementary Table 1, see section on 
supplementary materials given at the end of this article), 
AmpliTaq Gold DNA Polymerase with Buffer II and MgCl2 
(Applied Biosystems). Each reaction contained 25 ng 
template DNA, 1 U polymerase, 0.5 μM each of forward 
and reverse primers, 200 μM dNTPs, and 1.5 mM of 
MgCl2 in a 20 μL reaction. PCR was conducted as follows: 
denaturation for 10 min at 95°C; 35 cycles of denaturation 
for 30 s at 95°C, annealing for 30 s at 55°C, and extension 
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for 30 s at 72°C; and a final extension step for 10 min at 
72°C. Gel electrophoresis of PCR product was run on a 
1.5% (w/v) agarose, 0.6 μg/mL ethidium bromide gel at 120 
volts for approximately 30 min. PCR product that yielded 
clear bands was enzymatically purified with ExoSAP-IT 
(Applied Biosystems) and Sanger sequenced in forward 
and reverse directions (GENEWIZ, Inc., South Plainfield, 
NJ, USA). Sequence data were aligned to NCBI reference 
sequences (PRKN, NM_004562.3; FBXO4, NM_033484.2) 
and analyzed with Sequencher software (Gene Codes 
Corporation, Ann Arbor, MI, USA). The entire coding 
sequence and intron-exon boundaries were examined for 
mutations. Variant databases dbSNP (33), COSMIC (34), 
and ClinVar (35) were queried for any identified variants. 
Variants were assessed by predictive modeling tools SIFT 
(36) and Poly-Phen (37), and meta prediction tools REVEL 
(38) and MetaLR/dbNSFP (39), all available through 
Ensembl (40).

Loss of heterozygosity

For each tumor and germline sample, five highly 
polymorphic microsatellite loci in and around PRKN 
(D6S1599, D6S305, and D6S1581) and FBXO4 (D5S418 
and D5S2082) were amplified using fluorophore-tagged 
primers, whose sequences are available through the 
UCSC Genome Browser (41). Each reaction contained 
25 ng template DNA, 1 U polymerase, 0.4 μM each of 
forward and reverse primers, 250 μM dNTPs, and 2.5 mM  
of MgCl2 in a 15 μL reaction. PCR was conducted as 
follows: denaturation for 12 min at 95°C; 10 cycles of 
denaturation for 15 s at 95°C, annealing for 15 s at 55°C, 
and extension for 30 s at 72°C; 20 cycles of denaturation 
for 15 s at 89°C, annealing for 15 s at 55°C, and extension 
for 30 s at 72°C; and a final extension step for 10 min 
at 72°C. Gel electrophoresis of PCR product was run on 
a 2% (w/v) agarose, 0.6 μg/mL ethidium bromide gel at 
120 volts for approximately 30 min. PCR product that 
yielded clear bands was submitted to fragment analysis 
(GENEWIZ, Inc., South Plainfield, NJ, USA). Allele peaks 
for each microsatellite locus were called with GeneMarker 
software (SoftGenetics, LLC, State College, PA, USA) (42). 
The allelic ratio (AR) of the fluorescent signals of an 
individual’s discrete alleles were calculated as follows:

AR
A B
A B
T T

G G
=
( )
( )

/
/

The ratio of fluorescent signal from discreet alleles 
A and B was compared between tumor (T) and matched 

germline (G) samples. Consistent with prior studies (43, 
44, 45, 46, 47), cases with allelic ratios above 2 or below 
0.5 – indicative of a two-fold or greater change in allele 
signal ratio in the tumor sample compared to the germline 
sample – were scored as having undergone LOH.

Results

Sequencing

In order to detect inactivating genetic alterations such 
as frameshift indels, early stop codons, or damaging 
substitutions in this cohort of 82 typical PTAs, the coding 
regions and intron-exon boundaries of the 12 exons 
in PRKN and 5 exons in FBXO4 were amplified by PCR 
and subjected to Sanger sequencing. Sequencing did not 
reveal any clearly inactivating mutations that might be 
expected to attenuate the tumor-suppressive function of 
these cyclin D1-modulating genes. In PRKN, we identified 
six heterozygous single nucleotide polymorphisms 
(SNPs) among 35 patients, all of which are previously 
documented SNPs found in the germline at the population 
level (33). Two of the SNPs (rs9456711 and rs144340740) 
were synonymous nucleotide substitutions and annotated 
as benign variants in ClinVar (35). The remaining four 
SNPs (rs1801474, rs9456735, rs1801582, and rs1801334) 
correspond with missense substitutions (S167N, M192L, 
V380L, and D394N, respectively) that are annotated as 
benign by ClinVar (35). Predictive modeling tools SIFT 
(36) and Poly-Phen (37), and meta prediction tools REVEL 
(38) and MetaLR/dbNSFP (39), largely predicted that 
these substitutions would be benign. Exceptions include 
the REVEL prediction of M192L as likely disease causing, 
and the SIFT/MetaLR prediction of D394N as deleterious 
or damaging. However, neither of these variants are 
documented as somatic changes in cancer (34), and 
both occur at frequencies similar to those in the overall 
population (33) and are not otherwise associated with 
a tumor phenotype or aberrant or defunct proteins. In 
FBXO4, we observed a single heterozygous synonymous 
SNP (rs144096644) in one case. This polymorphism is 
reported at a low population level frequency (33) and is 
not associated with tumors (34) or other disease.

Loss of heterozygosity

To detect LOH in PRKN and FBXO4, we probed gene-
flanking and intragenic microsatellite markers by PCR and 
fragment analysis for the loss of an allele in all 82 tumors 
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and their matched germline controls. We examined 
the status of two markers that lie within PRKN intronic 
regions and a third 1.5 MB upstream of the gene (Fig. 1A) 
in addition to two markers that flank FBXO4 (Fig. 1B). A 
total of 8/82 cases (9.8%) exhibited LOH at one or more 
PRKN microsatellite markers (Figs 1A and 2). However, 
only one tumor exhibited LOH at both of the intragenic 
microsatellites (Fig. 1A, case 4). LOH at the upstream 
marker, in this case, allows for the possibility that PRKN 
LOH may be nonspecific, that is, part of a much larger 
stretch of chromosomal loss and therefore not indicative 
of specific selective pressure attributable to deletion of 
the PRKN locus. Similarly, the upstream marker exhibited 
LOH in five other samples where results indicated LOH 
at one intragenic marker, but were uninformative at the 
other (Fig. 1A; cases 13, 29, 53, 57, and 66). Thus, in the 
absence of evidence for concurrent intragenic inactivating 
second hits on the other allele, these observations do not 
implicate PRKN as a classic driving tumor suppressor gene. 
Finally, no tumors in the cohort exhibited LOH at either 
of the FBXO4-flanking markers assayed.

Discussion

The oncoprotein cyclin D1 is one of the few validated 
drivers of PTA tumorigenesis, yet in many instances the 
molecular mechanism causing cyclin D1 overexpression, 
found in up to 40% of these tumors, remains unknown 
(1). While a pathogenic DNA rearrangement activates the 

cyclin D1 gene in some cases, other potential activating 
mechanisms such as stabilizing mutation (14, 48, 49) 
and amplification (50) of the cyclin D1 gene CCND1 
occur rarely, if at all, in PTA. Although mounting 
evidence suggests that regulators of cyclin D1 stability 
via proteolytic degradation may play a prominent role as 
tumor suppressors, such cyclin D1 pathway components 
like PRKN and FBXO4 have thus far been underexplored 
in PTA. The genetic aberrations in the PRKN and FBXO4 
genes reported in many types of cancer are consistent 
with those characteristics of classical two-hit tumor 
suppressor inactivation, including allelic loss and/or 
intragenic mutations that would be expected to impair 
both alleles.

In this study, we report results of mutational and 
allelic loss analysis of PRKN and FBXO4 in 82 typically 
presenting, sporadic, single-gland PTAs. We uncovered 
no evidence of bi-allelic inactivation; indeed, our 
observations identified only previously documented SNPs 
with no known pathogenicity and only occasional loss 
of intragenic PRKN marker(s). Because PRKN lies within 
the large common fragile site FRA6E, which is prone 
to instability (51), allelic loss of PRKN may often be 
nonspecific and would need to, at minimum, occasionally 
be accompanied by co-occurrence of specific inactivating 
mutations on the other allele in order to constitute 
strong evidence invoking PRKN as a tumor suppressor 
whose inactivation yields a selective advantage (27, 52). 
Our investigation of FBXO4 did not reveal any non-
synonymous intragenic alterations or allelic loss.

Figure 1
Schematic of LOH markers and allelic loss. (A) 
Microsatellite loci D6S1581, D6S305, and D6S1599 
were used to assay heterozygosity at the PRKN 
locus. D6S1581 is located approximately 1.5 MB 
upstream, while D6S305 and D6S1599 lie within 
intronic regions of PRKN. LOH occurred at one or 
more PRKN loci in eight cases, each represented 
by a line with shaded circles indicating 
heterozygosity status at each microsatellite locus. 
(B) The two microsatellite loci nearest to either 
end of FBXO4 were used to infer LOH status at 
that locus. D5S418 lies approximately 1.9 MB 
upstream of FBXO4, while D5S2082 lies 
approximately 84 kB downstream. LOH was not 
detected at either locus in any of the samples.
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Tumor suppressor genes as defined by the classic two-
hit model are often inactivated by intragenic mutations 
and/or allelic loss. Although tumor suppressor genes may 
also be inactivated by a variety of other means – such 
as noncoding mutation, chromosomal rearrangement, 
aberrant methylation, and transcriptional dysregulation, 
most of which necessarily lie outside the scope of this 
study – direct, bi-allelic inactivation remains an essential 
and most definitive means of identifying tumor suppressor 
genes that behave as a bona fide drivers of tumorigenesis, 
as opposed to downstream effectors of tumorigenic 
events. Our observations in a sizeable cohort of PTAs 
thus argue strongly against the hypothesis that PRKN and 
FBXO4 commonly function as classical inactivated tumor 
suppressor genes in PTA.

Additional investigations are required to reveal 
the remaining undiscovered causes of cyclin D1 
overexpression in PTA. Promising avenues for future 
research into PTA tumorigenic drivers will likely involve 
further investigation into genes relating to cyclin D1 
overexpression as well as those in other parathyroid-
relevant pathways. For example, CRYAB encodes an 
essential component of the PRKN-FBXO4 ubiquitination 
complex (29, 53) and provides an appealing subject for 

future study as a potential parathyroid tumor suppressor 
gene. GSK3B is likewise an appealing candidate for future 
exploration because it plays a multi-faceted role in cyclin 
D1 regulation: in addition to its function in inhibiting 
Wnt signaling, of which CCND1 is a transcriptional 
target, GSK3B also mediates phosphorylation of cyclin 
D1 at T268, which is required for nuclear export (54) and 
may also be required for cyclin D1 ubiquitination by the 
PRKN-FBXO4 complex (53). The multiplicity of cyclin 
D1-relevant pathways in which GSK3B is involved, as well 
as its decreased expression reported in some parathyroid 
tumors (55), recommend it for study as a potential tumor 
suppressor in parathyroid neoplasia. Extending beyond 
cyclin D1-centric pathways, the molecular causes of 
epigenetic dysregulation of parathyroid-relevant genes 
such as CASR (56) may also reveal novel parathyroid 
tumorigenic drivers.

Supplementary materials
This is linked to the online version of the paper at https://doi.org/10.1530/
EC-21-0055.
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