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Glucagon-like peptide-1 (GLP-1) enhances meal-related insulin secretion, which lowers

blood glucose excursions. In addition to its incretin action, GLP-1 acts on the GLP-1

receptor (GLP-1R) in the brain to suppress feeding. These combined actions of GLP-1R

signaling cause improvements in glycemic control as well as weight loss in type II

diabetes (T2DM) patients treated with GLP-1R agonists. This is a superior advantage of

GLP-1R pharmaceuticals as many other drugs used to treat T2DM are weight neutral

or actual cause weight gain. This review summarizes GLP-1R action on energy and

glucose metabolism, the effectiveness of current GLP-1R agonists on weight loss in

T2DM patients, as well as GLP-1R combination therapies.
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Introduction

Obesity is a global health problem and increases the risk of developing type II diabetes melli-
tus (T2DM), cardiovascular disease, and dyslipidemia. These metabolic complications caused by
obesity result in a decreased lifespan (Fontaine et al., 2003; Olshansky et al., 2005). The cost
of treating obesity-related diseases has reached epic proportions and is estimated to cost $147
billion in the US alone (Finkelstein et al., 2009). Many treatments approved for T2DM treat-
ment such as sulphonylureas and thiazolidinediones (TZDs) improve glucose metabolism but
have the unwanted side effect of causing weight gain (Thule and Umpierrez, 2014) and (Kahn
et al., 2006; Home et al., 2009; Ryan et al., 2011). As the majority of patients with T2DM are
also obese, medications that exacerbate weight gain are not ideal. Moreover, small reductions in
body weight alone can have beneficial effects on blood pressure as well as glucose and cholesterol
metabolism (Klein et al., 2004; Wing et al., 2011). Therefore, therapies that promote weight loss
and simultaneously improve glucose metabolism are superior treatments for obese patients with
T2DM.

Glucagon-like peptide-1 (GLP-1) is a gastrointestinal hormone as well as a neurotransmit-
ter. GLP-1 was initially discovered for its ability to enhance glucose-stimulated insulin secretion
(GSIS) (Kreymann et al., 1987; Mojsov et al., 1987). Shortly after this, it was demonstrated that
GLP-1 suppresses food intake through CNS-mediated mechanisms (Turton et al., 1996; Tang-
Christensen et al., 1998). Consistent findings have shown that GLP-1R agonism promotes weight
loss and improves glucose homeostasis in rodents, monkeys and humans (reviewed in Barrera
et al., 2011a). This dual action has made GLP-1 analogs superior therapeutics for the treatment of
T2DM.
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The Anatomical Distribution of the
Endogenous GLP-1 System

GLP-1 is derived from the preproglucagon gene. In the periphery,
posttranslational processing of preproglucagon in the alpha-cells
of the pancreas produces glucagon and a small amount of GLP-1
whereas the main source of peripheral GLP-1 production occurs
through the posttranslational processing of preproglucagon in
the L-cells of the gut (reviewed in Holst, 2007 and Campbell and
Drucker, 2013). The GLP-1R is located in a number of periph-
eral tissues including the pancreas, gastrointestinal tract, kidney,
lung and heart (Thorens, 1992; Bullock et al., 1996; Pyke et al.,
2014). The GLP-1R is a class B1 G-protein coupled receptor that
predominately couples to a Gαs subunit leading to the activation
of adenylyl cyclase (Kirkpatrick et al., 2012; Willard and Sloop,
2012).

In the brain, preproglucagon expressing neurons are localized
to the brainstem in regions including the nucleus of the soli-
tary tract (NTS) and ventrolateral medulla (Merchenthaler et al.,
1999) and these neurons produce a number of peptides includ-
ing GLP-1, oxyntomodulin, and glucagon-like peptide-2 (Holst,
2007). CNS preproglucagon distribution is similar in rodents,
monkeys, and humans (Merchenthaler et al., 1999; Vrang and
Grove, 2011; Zheng et al., 2015). Brainstem preproglucagon
expressing fibers project to many areas of the brain with the most
abundant projections to areas hypothalamic areas that control
energy homeostasis including the arcuate nucleus (ARC), par-
aventricular nucleus (PVN), and dorsomedial nucleus (DMH)
(Jin et al., 1988). The distribution of the GLP-1R is similar to pre-
proglucagon fiber projections with high expression in hypothala-
mic areas that regulate energy homeostasis, both in rodents and
non-human primates (Merchenthaler et al., 1999; Heppner et al.,
2015).

GLP-1R-Mediated Action on Glucose
Metabolism: Peripheral vs. CNS Actions

GLP-1R signaling plays a critical role in the maintenance of glu-
cose homeostasis as deletion of the GLP-1R in mice results in
impaired glucose tolerance (Scrocchi et al., 1996) and physio-
logical levels of GLP-1 enhance meal-related insulin secretion in
humans (Kreymann et al., 1987; Mojsov et al., 1987). Although it
is well established that the endogenous GLP-1R system is essen-
tial for glycemic control, the specific GLP-1R population that
mediates this effect is still a matter of debate. In the periphery,
GLP-1 acts directly on pancreatic islets to enhance GSIS (Mojsov
et al., 1987) and inhibit glucagon release (Komatsu et al., 1989). A
study in transgenic animals demonstrates that selectively restor-
ing pancreatic GLP-1Rs in GLP-1R null mice normalizes glucose
tolerance in these animals suggesting that GLP-1R expression in
the pancreas is sufficient to maintain normal glucose metabolism
(Lamont et al., 2012). In contrast, another study demonstrated
that transgenic mice with a beta-cell specific deletion of the GLP-
1R have impaired intraperitoneal (ip) glucose tolerance butmain-
tain normal oral glucose tolerance (Smith et al., 2014). These
data demonstrate that GLP-1R signaling in the beta cells reduces

hyperglycemia but other GLP-1Rs, possibly on neural tissue, are
involved in mediating the incretin action of GLP-1.

In addition to this direct control of beta cells, GLP-1R signal-
ing plays a role in the control of glucose homeostasis by regu-
lating the activity of neurons both in the peripheral and central
nervous system. Thus, blockade of hepatic portal GLP-1R signal-
ing causes glucose intolerance in rats, suggesting that GLP-1Rs
located on nerve terminals in the hepatic portal vein contribute
to the incretin action of GLP-1 (Vahl et al., 2007). Furthermore,
GLP-1 stimulates preganglionic vagal neurons projecting to the
pancreas (Wan et al., 2007), raising the possibility that this mech-
anism may contribute to GLP-1 stimulation of insulin secretion.

Rodent studies involving pharmacological manipulation of
GLP-1R in the brain by intracerebroventricular (ICV) adminis-
tration of agonists and antagonists demonstrate a role for brain
GLP-1R signaling in the control of glucose metabolism. However,
this regulation appears to be complex, likely as a result of the con-
tribution of multiple sites throughout the CNS that target distinct
elements in peripheral tissues that play a role in the control of glu-
cose homeostasis. For instance, central administration of GLP-1R
agonists increases the ability of insulin to suppress endogenous
glucose production (Knauf et al., 2005; Sandoval et al., 2008;
Burmeister et al., 2012). Interestingly, this occurs despite a reduc-
tion in glucose uptake in muscle (Knauf et al., 2005), which is
consistent with the increased muscle glucose uptake exhibited by
mice lacking GLP-1R expression (Ayala et al., 2009). The com-
plexity of the contribution of CNS-GLP-1R to the control of
glucose homeostasis is accentuated by marked interspecies differ-
ences. For example, chronic ICV infusion of the GLP-1R antag-
onist exendin-9 impairs glucose tolerance in rats, supporting a
role for CNS GLP-1R signaling in the maintenance of glycemic
control (Sandoval et al., 2008; Barrera et al., 2011b). In contrast,
another study in rats demonstrated that acute injection of the
GLP-1R agonist exendin-4 (Ex-4) increases baseline glucose lev-
els in rats which is due to the activation of the sympathetic ner-
vous system (Perez-Tilve et al., 2010). These data indicate that
GLP-1R signaling regulates the activity of different neuronal pop-
ulations involved in the control of specific aspects contributing
to glucose homeostasis. However, recent evidence demonstrates
that this regulation may not be necessary for the maintenance
of whole body glucose metabolism, at least in mice. Hence, mice
lacking GLP-1R only in the peripheral nervous system (PNS) or
central nervous system have normal ip and oral glucose toler-
ance as compared to controls (Sisley et al., 2014). Furthermore,
chronic treatment with the GLP-1 mimetic liraglutide induces
similar improvements on glucose tolerance despite the loss of
PNS or CNS-GLP-1R expression, indicating that non-neuronal
GLP-1R signaling is sufficient for the long-term improvements in
glucose homeostasis induced by liraglutide in mice (Sisley et al.,
2014).

The Endogenous GLP-1 System in the
Regulation of Energy Homeostasis

The endogenous GLP-1 system is densely populated in areas that
control energy homeostasis placing it in the neuroanatomical
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position to regulate food intake and body weight. GLP-1 pro-
ducing neurons in the brainstem are activated following a large
satiating meal suggesting that these neurons relay satiety signals
to higher brain regions (Kreisler et al., 2014). Knockdown of pre-
proglucagon expression in the hindbrain as well as central GLP-
1R antagonism results in hyperphagia and body weight gain in
rats indicating that these neurons are essential for maintenance
of normal body weight (Barrera et al., 2011b). Global knockout
of the GLP-1R produces no body weight or food intake pheno-
type in chow-fed mice (Scrocchi et al., 1996). However, when
these mice are placed on a high-fat diet (HFD) the Glp1r−/−
animals are leaner than wild-type (WT) controls (Hansotia et al.,
2007; Wilson-Perez et al., 2013), a phenotype that goes against
the role of GLP-1R signaling in the control of body weight. How-
ever, the GLP-1R is also involved in adipogenesis in the periphery,
which may account for this discrepancy (Challa et al., 2012). To
further dissect the role of the endogenous CNS GLP-1R system,
conditional CNS specific knockout models were created. Similar
to global Glp1r−/− mice, animals with deletion of the GLP-1R
in vagal afferent/efferent nerves, Phox2b-Cre Glp1rflox/flox, as well
as animals with a deletion of the GLP-1R in the CNS, nestin-Cre
Glp1rflox/flox, maintain a similar body weight and food intake as
control mice on both chow and HFD (Sisley et al., 2014). These
findings challenge whether endogenous PNS or CNS GLP-1R
signaling is essential for maintaining normal energy homeosta-
sis. Again, these discrepancies in the literature investigating the
role of GLP-1R signaling in the control of energy homeostasis
could be partially due to mammalian species differences, mice vs.
rats, or differences in methodologies used to manipulate GLP-1R
signaling.

Pharmacological Effects of GLP-1R
Agonism on Energy Homeostasis

Despite controversial findings over the role of the endogenous
GLP-1 system in maintaining energy homeostasis, consistent
findings demonstrate that pharmacological administration of
GLP-1R agonists suppresses body weight across a number of
species. The specific sites of action and underlying molecular
mechanisms that mediate GLP-1R-induced body weight loss are
currently being investigated. Here, we review mechanisms by
which GLP-1R agonists reduce body weight.

GLP-1R Regulation of Food Intake
The reduction in body weight induced by GLP-1R agonists is
largely attributed to a reduction in food intake. However, the
specific sites that are involved in mediating GLP-1R induced
hypophagia are not completely understood. Rats receiving vago-
tomy do not reduce food intake in response to peripherally
injected GLP-1 indicating that vagal afferent nerves are needed
to relay peripheral GLP-1 signals to higher brain regions to reg-
ulate feeding (Abbott et al., 2005). In contrast, another group
demonstrated that peripheral administration of either liraglutide
or Ex-4 induced a reduction in food intake in both control rats as
well as rats that have had subdiaphragmatic vagal deafferentation
(Kanoski et al., 2011). However, higher doses of liraglutide and

Ex-4 were necessary in rats with subdiaphragmatic vagal deaf-
ferentation suggesting that vagal afferent neurons contribute to
the suppression of food intake induced by peripherally adminis-
tered GLP-1R mimetics but other brain regions are also involved
in mediating this action (Kanoski et al., 2011). Another study
used a genetic loss of function mouse model to delete the GLP-1R
in vagal afferent/effect nerves (Phox2b-Cre Glp1rflox/flox) (Sisley
et al., 2014). This study showed that chronic peripheral adminis-
tration of liraglutide to Phox2b-Cre Glp1rflox/flox mice fed a HFD
reduced food intake, body weight, and adiposity suggesting that
the PNS is not required for liraglutide to mediate its effects on
energy metabolism. Together these data indicate that although
vagal afferent neurons may contribute to hypophagia induced by
peripheral administration of GLP-1R analogs, these neurons are
not necessary for the hypophagic effect.

It is evident that CNS GLP-1R signaling is essential for medi-
ating the pharmacological action of GLP-1R agonists on energy
metabolism as genetic deletion of CNS GLP-1R signaling in mice
ablates the action of peripherally administered liraglutide on food
intake and body weight reduction (Sisley et al., 2014). How-
ever, the specific brain regions that mediate these actions are not
fully understood. The hindbrain has been implicated in medi-
ating GLP-1R effects on food intake. Rats receiving brainstem-
hypothalamic transection do not have a reduction in food intake
in response to peripherally administered GLP-1 which suggests
that the brainstem plays a critical role in communicating periph-
eral satiety signals to higher brain centers (Abbott et al., 2005).
Furthermore, ICV injection of Ex-4 into the 4th ventricle of rats
causes a suppression of food intake (Hayes et al., 2011). The spe-
cific brain regions in the hindbrain that mediate GLP-1R medi-
ated suppression of food intake are currently being examined.
The lateral parabrachial nucleus may be a critical site of action as
pharmacological activation of GLP-Rs in the lateral parabrachial
nucleus (LPBN) inhibits feeding whereas antagonism of LPBN
GLP-1Rs induces hyperphagia (Alhadeff et al., 2014).

The hypothalamus has also been implicated as a major cen-
ter for mediating the pharmacological effects of GLP-1R action
on energy metabolism. More specifically, the ARC nucleus of
the hypothalamus has been highlighted as one of the main sites
mediating this action as chemical lesion of the ARC in rats
ablates the anorectic action of GLP-1 (Tang-Christensen et al.,
1998). Peripherally administered liraglutide has recently been
shown to gain access into certain areas of the brain with the
majority entering the ARC and median eminence with smaller
amounts in the PVN (Secher et al., 2014). Animals that lack the
GLP-1R do not show evidence of liraglutide in the ARC sug-
gesting that peripherally administered liraglutide requires the
GLP-1R to enter into the CNS (Secher et al., 2014). The spe-
cific neuronal populations in the ARC that mediate the anorec-
tic action of GLP-1R signaling are currently being investigated.
Much evidence suggests that activation of anorexogenic proopi-
omelanocortin (POMC) neurons and simultaneous inhibition of
orexigenic neuropeptide Y/Agouti-related peptide (NPY/AgRP)
neurons in the ARC appears to be one of the major mechanisms
for GLP-1R mediated inhibition of food intake. In support of
this, ICV administration of GLP-1 in rats has been shown to
attenuate the fasting-induced rise in NPY/AgRP expression and
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decreases fasting-induced inhibition of POMC/CART expres-
sion in the ARC (Seo et al., 2008). Similarly, ICV injection of
Ex-4 increased c-fos expression in alpha-melanocyte stimulat-
ing hormone (alpha-MSH)-immunoreactive neurons in the ARC
of mice (Dalvi et al., 2012). In line with these data, the GLP-
1R has been found to be co-expressed in ARC POMC neurons
in both rats (Sandoval et al., 2008) and mice (Ronnekleiv et al.,
2014) suggesting that GLP-1 can act directly on these neurons.
Electrophysiological recordings support this notion and have
demonstrated that GLP-1 directly stimulates POMC/CART cells,
whereas GLP-1 can also inhibit orexigenic NPY/AgRP cells in
the ARC through an indirect mechanism (Secher et al., 2014).
Consistent with these findings, it has been demonstrated that
the GLP-1R agonist Ex-4 (Ronnekleiv et al., 2014) excites ARC
POMC neurons in mice. Taken together, the data in the liter-
ature indicate that GLP-1R signaling in ARC may be a major
contributor to the homeostatic effects of GLP-1 analogs on feed-
ing, whereas other brain regions such as the brainstem may play
a minor role.

GLP-1R Mediated Effects on Visceral Illness
Much debate exists around whether the suppression of feed-
ing induced by GLP-1 and GLP-1 mimetics is solely a home-
ostatic effect. GLP-1 administration induces visceral illness in
both rodents (Seeley et al., 2000) and humans (Madsbad et al.,
2008). It is clear that the CNS is necessary for GLP-1R medi-
ated induction of visceral illness as mice with a CNS deletion of
the GLP-1R develop conditioned taste aversion (CTA) to lithium
chloride but not to liraglutide (Sisley et al., 2014). The exact brain
region mediating this action is still under investigation. Injection
of GLP-1 directly into the central nucleus of the amygdala (CeA)
of rats results in CTA (Kinzig et al., 2002) whereas injection into
the PVN reduces food intake without eliciting CTA (McMahon
and Wellman, 1998). However, other studies in rats show that
injection of Ex-4 into the medial subnucleus of the NTS pro-
duced CTA whereas injection into the CeA did not induce CTA
(Kanoski et al., 2012). Whether the discrepancy in results of these
studies is due to the use of native GLP-1 vs. Ex-4 is unclear.
Further studies are necessary to understand the mechanisms
involved in GLP-1R induction of visceral illness.

GLP-1R Regulation of Food Reward
In addition to being expressed in hypothalamic areas that regu-
late homeostatic feeding, the GLP-1R is expressed in areas that
mediate food reward in both rodents (Merchenthaler et al., 1999)
and non-human primates (Heppner et al., 2015). Consistent with
the neuroanatomical location, functional studies support a role
for GLP-1R signaling in regulating food reward. Direct injection
of Ex-4 into the nucleus accumbens (NAc) or ventral tegmental
area (VTA) reduces food reward without causing visceral illness
(Dossat et al., 2011; Dickson et al., 2012). Peripheral administra-
tion of liraglutide decreased preference for highly palatable foods
in rats suggesting that GLP-1R mimetics may have therapeutic
potential to decrease food reward (Raun et al., 2007; Hansen
et al., 2012). To further support a role for GLP-1R signaling in
regulating food reward, recent fMRI studies in obese and obese
T2DM patients have demonstrated that intravenous infusion of

exenatide decreases the activation of brain regions involved in
mediating food reward (van Bloemendaal et al., 2014).

GLP-1R Action on Brown Adipose Tissue (BAT)
Thermogenesis
In addition to causing changes in feeding, central GLP-1R activa-
tionmay regulate body weight by increasing brown adipose tissue
(BAT) thermogenesis (reviewed in Lockie et al., 2013). Chronic
ICV administration of oxyntomodulin, a GLP-1R agonist, inmice
decreased body weight despite having no significant effects on
food intake (Lockie et al., 2012). Interestingly, BAT temperature
was increased in these animals, which may have contributed to
the weight loss. The effect of oxyntomodulin on body weight and
BAT temperature is not evident in mice that lack the GLP-1R
highlighting a GLP-1R dependent action. To determine the site of
GLP-1R mediated action on BAT thermogenesis, another group
performed intranuclear injections of liraglutide and determined
that the ventromedial nucleus of the hypothalamus (VMH) is the
specific brain region that mediates GLP-1R-induced BAT ther-
mogenesis (Beiroa et al., 2014). Furthermore, this effect involves
hypothalamic AMPK inhibition as pharmacological and genetic
activation of AMPK ablates the effect of liraglutide on BAT ther-
mogenesis. The extent to which GLP-1R activation of BAT con-
tributes to weight loss in humans is still a matter of debate.
Many studies indicate that energy expenditure in humans treated
chronically with GLP-1R agonists experience no change (Harder
et al., 2004; Bradley et al., 2012) or a decrease in energy expendi-
ture (van Can et al., 2014). However, another study reported that
a group of T2DM patients treated with metformin plus liraglu-
tide or metformin plus Ex-4 for 1 year experience an increase
in resting energy expenditure compared to placebo treated con-
trols when energy expenditure was adjusted for fat free mass
(Beiroa et al., 2014). However, from the data provided in that
study, it is not possible to determine the contribution of BAT
thermogenesis to the reported increase in energy expenditure.
Thus, although the increase in CNS-GLP-1R signaling is suffi-
cient to activate BAT thermogenesis, whether this regulation is
necessary for the contribution of BAT thermogenesis to the con-
trol of energy balance, or to the body weight lowering effects of
GLP-1 based therapies still requires further investigation.

GLP-1R Action on Neuroprotection
GLP-1R analogs have neuroprotective and anti-inflammatory
properties, which may be contributing the beneficial effects on
energy metabolism (reviewed in Holscher, 2014). Studies in
rodents have demonstrated that GLP-1R agonists reduce hip-
pocampal cell death by reducing the development of amyloid-β
plaques (McIntyre et al., 2013). This neuroprotective action in
hippocampal cells may be one of the mechanisms whereby GLP-
1R signaling enhances learning and memory in rodent studies
(Oka et al., 1999; During et al., 2003; Abbas et al., 2009; McClean
et al., 2010, 2011; Han et al., 2013). In addition to acting on hip-
pocampal cells, chronic treatment with GLP-1 reduced degener-
ation of dopaminergic neurons in the substantia nigra and led
to an improvement in motor function (Bertilsson et al., 2008;
Harkavyi et al., 2008; Li et al., 2009). Although many preclinical
studies suggest that GLP-1R agonism can act directly on neurons
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to prevent cell death, this neuroprotective property may be sec-
ondary to reduced glucotoxicity and inflammation in the brain
that can result from weight loss and improvements in glycemic
control (Berkseth et al., 2014).

Effectiveness of GLP-1R Agonists on
Weight Loss in Humans

Despite not have a complete understanding of the underlying
molecular mechanisms, GLP-1R activation clearly has beneficial
effects on both energy and glucose metabolism across a number
of species. Moreover, patients with T2DM have impaired incretin
action, which highlights GLP-1 as a useful pharmacotherapy for
restoring glucose control (reviewed in Madsbad, 2014). Unfor-
tunately, GLP-1 is rapidly degraded by the enzyme dipeptidyl
peptidase-4 (DPP-4), which limits the therapeutic efficacy of
native GLP-1 (Deacon et al., 1995). Therefore, synthetic GLP-
1 analogs with resistance to degradation by DPP-4 were devel-
oped. There are currently two classes of GLP-1R analogs that are
currently prescribed for the treatment of T2DM in humans: (1)
GLP-1R agonists and (2) DPP-4 inhibitors (Drucker and Nauck,
2006).

GLP-1R Agonists
The GLP-1R agonists mediate their action by acting directly on
the GLP-1R. Exenatide (Byetta™) was the first GLP-1R agonist to
be prescribed for the treatment of T2DM and is a synthetic ana-
log of the GLP-1R agonist, Ex-4. Ex-4 was originally isolated from
the venom of Heloderma suspectum and shares 53% sequence
homology with native GLP-1 (Eng et al., 1992). Exenatide has
a relatively short half-life, (60–90min in humans, Kolterman
et al., 2005) and is recommended for twice-daily administration.
Liraglutide (Victoza™) has 97% sequence homology with native
GLP-1 and contains an Arg34Lys substitution as well as a glu-
tamic acid and palmitic acid attached to Lys26. The addition of
the fatty acid side chain to the peptide molecule allows for liraglu-
tide to bind to albumin, which increases the time that the drug
remains in circulation (Knudsen et al., 2000). The half-life for
liraglutide is about 10–14 h in humans (Agerso et al., 2002) and
is recommended for once-daily administration. Both exenatide
(DeFronzo et al., 2005; Heine et al., 2005; Moretto et al., 2008;
Norris et al., 2009) and liraglutide (Astrup et al., 2009; Garber
et al., 2009; Niswender et al., 2013; Lean et al., 2014) significantly
improve glycemic control and cause a significant body weight loss
in T2DM patients. Gastrointestinal side effects including nau-
sea and vomiting have been reported with both exenatide and
liraglutide treatment although these side effects are often tran-
sient and occur mainly during the first few weeks of treatment
in the dose escalation phase. A 26-week clinical study comparing
the effectiveness of liraglutide (1.8mg once-daily) with exenatide
(10µg twice-daily) indicates that patients treated with liraglu-
tide had significantly greater reduction in HbA1c levels as well
as significantly greater reduction in fasting plasma glucose levels
as compared to patients treated with exenatide (Buse et al., 2009).
However, both groups experienced similar levels of weight loss
(−3.24 vs.−2.87 kg, liraglutide vs. exenatide).

A long-acting exenatide compound [exenatide extended
release (ER; Bydureon™)] was synthesized by encapsulating exe-
natide into microspheres of medical-grade poly-(D, L-lactide-co-
glycolide) which enables the drug to be released over an extended
period of time (DeYoung et al., 2011). ER is recommended for
once-weekly injection, which has major advantages in dealing
patients who routinely forget to take their medication (Scott,
2012). The effects of ER once-weekly have been compared to exe-
natide twice-daily and overall ER was more effective at improv-
ing glycemic control and caused less gastrointestinal side-effects
although both compounds caused a similar degree of weight loss
(Drucker et al., 2008; Blevins et al., 2011).

The efficacy of once-weekly ER (2mg) was compared to
that of once-daily liraglutide (1.8mg) in a 26-week trial in
T2DM patients (Buse et al., 2013). Both treatments significantly
improved glucose homeostasis and caused body weight reduc-
tion although liraglutide treated patients experienced a greater
reduction in HbA1c levels, fasting serum glucose as well as a
greater reduction in body weight as compared to ER. Adverse side
effects including nausea, diarrhea and vomiting occurred more
frequently in the liraglutide treated patients.

DPP-4 Inhibitors
The DPP-4 inhibitors mediate their action by inhibiting the
enzyme DPP-4, which prevents the breakdown of GLP-1 and
thereby increases endogenous GLP-1 levels. Sitagliptin (Aschner
et al., 2006), saxagliptin (Rosenstock et al., 2009), and vildagliptin
(Keating, 2010) all improve glucose metabolism in diabetic
patients. One of the advantages of DPP-4 inhibitors is that
patients rarely report nausea during treatment (Madsbad et al.,
2008; Williams-Herman et al., 2010). However, unlike GLP-1R
agonists, DPP-4 inhibitors do not cause significant reductions
in body weight (Meneghini et al., 2011; Aroda et al., 2012).
Taken together, GLP-1R agonists provide a superior advantage
of reducing body weight in T2DM patients. However, T2DM
patients with a lower tolerability for GLP-1R agonists may pre-
fer treatment with DPP-4 inhibitors for the management of
hyperglycemia.

Novel GLP-1R Co-Therapies

The GLP-1R agonists exenatide and liraglutide have promis-
ing effects on both glucose and energy homeostasis in T2DM
patients. However, most effects on body weight are modest and
tend to range between 2 to 4% body weight reduction (reviewed
in Davidson, 2013). For obese individuals, there is a need for a
more powerful weight loss option. By combining GLP-1R ago-
nism with other methods of weight loss, overall weight reduction
can be enhanced. Here, we review therapies that combine GLP-
1R pharmacotherapeutics with other weight loss mechanisms,
which result in superior effects on body weight reduction and
glucose metabolism.

GLP-1R Agonism in Combination with the
Adjustable Gastric Band
Bariatric surgery is by far the most effective therapy for
weight loss reduction and improvements in glucose metabolism
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(Pories, 2008). The two most effective bariatric procedures,
Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrec-
tomy (VSG) both result in enhanced meal-stimulated GLP-1
release which may be contributing to improvements in glu-
cose metabolism and weight loss induced by these procedures.
However, these types of bariatric surgery are very invasive and
involve an irreversible manipulation of the gastrointestinal tract
(reviewed in Stefater et al., 2012). A less invasive bariatric surgery
is the adjustable gastric band (AGB), which involves placing an
inflatable silicon band around the stomach near the esophageal
junction. To modulate the degree of restriction, the band is
inflated by infusing saline into a subcutaneously implanted port.
Unfortunately, the AGB is far less effective on weight loss as com-
pared to RYGB and VSG (Buchwald et al., 2009), which may be
partially due to the fact that AGB does not enhance circulating
GLP-1 levels (le Roux et al., 2006). A study in rats demonstrated
that AGB can act synergistically with the GLP-1R agonist, Ex-4,
to promote a more substantial weight loss as compared to Ex-4
treatment or AGB alone (Habegger et al., 2013). The advantage
of this approach is that it combines two minimally invasive and
reversible weight loss strategies, which in the future may provide
patients with an alternative approach to weight loss.

Single Molecule Multi-Agonists
A number of metabolic hormones can achieve favorable effects
on body weight loss but cannot be used as a weight loss ther-
apeutic because of negative side effects. A new generation of
pharmacotherapies have been developed which combine GLP-1R
agonism with other metabolic hormones into a single molecule.
This new line of pharmaceuticals maximizes the beneficial effects
on energy and glucose metabolism while minimizing unwanted
side-effects (Tschop and DiMarchi, 2012).

Glucagon (Gcg) has many beneficial effects on energy home-
ostasis including the inhibition of food intake, as well as the
ability to increase energy expenditure and activate BAT which all
lead to a reduction in body weight (reviewed in Habegger et al.,
2010; Heppner et al., 2010). The fact that Gcg causes an elevation
in blood glucose levels in combination with its limited solubil-
ity at a physiological pH has discouraged the use of glucagon as
a therapeutic for weight loss. Single molecules with GLP-1 and
Gcg co-agonism were created to take advantage of the beneficial
effects of both GLP-1 and Gcg on energy metabolism while limit-
ing Gcg induction of hyperglycemia (Day et al., 2009; Pocai et al.,
2009). Diet-induced obese (DIO) mice treated chronically with
the GLP-1/Gcg coagonists lost significant body weight and fat
mass and interestingly, also had improved glucose metabolism.
However, Glp1r−/− mice treated with the GLP-1/Gcg coagonist
experienced a reduction in body weight and fat mass but did
not have improvements in glucose tolerance indicating that GLP-
1R agonism is required to counteract the hyperglycemic effects
of GcgR agonism (Day et al., 2009). The beneficial effects of
single molecule GLP-1/Gcg coagonism were also demonstrated
in ob/ob mice, which had enhanced GSIS and improved glu-
cose tolerance upon acute treatment with a GLP-1/Gcg coagonist
(Gault et al., 2013). To determine the site of action in the brain
that GLP-1 and Gcg coagonism may be occurring, one group
examined c-fos induction upon co-injection of GLP-1 and Gcg

(Parker et al., 2013). Doses of GLP-1 and Gcg that when adminis-
tered alone did not affect food intake were given as a co-injection
which resulted in a significant reduction in feeding and c-fos
induction in both the area postrema and CeA. Whether the sin-
gle molecule GLP-1/Gcg coagnonist has a similar CNS pattern of
activation requires further investigation. Similar beneficial effects
of GLP-1/Gcg coagonism on energy and glucosemetabolism have
been demonstrated in humans. Although not used in a single
molecule, healthy human volunteers showed increased energy
expenditure upon coinfusion of GLP-1 and Gcg, which was not
apparent with GLP-1 infusion alone (Tan et al., 2013). Addi-
tionally, GLP-1/Gcg coinfusion limited the hyperglycemic action
of Gcg (Tan et al., 2013). These data give a promising out-
look that the enhanced effectiveness of GLP-1/Gcg coagnoism
demonstrated in rodents will translate to enhanced weight loss
in humans.

Glucose-dependent insulinotropic polypeptide (GIP) is an
incretin hormone released from the K-cells of the small intestines
and acts on the pancreas to potentiate GSIS (Miyawaki et al.,
1999). Unlike, GLP-1 and Gcg, GIP is not derived from pre-
proglucagon and does not cause a reduction in body weight (Bag-
gio and Drucker, 2007). Interestingly, by combining GLP-1 and
GIP agonism into a single molecule, the GIP/GLP-1 coagonist
has enhanced therapeutic properties to improve glucose toler-
ance and induce weight loss, which was demonstrated in rodents,
non-human primates and humans (Finan et al., 2013). Finally, a
triagonist was synthesized to include GLP-1, Gcg, and GIP ago-
nism (Finan et al., 2015). As compared to mono or coagonists,
the triagonist had enhanced effectiveness to decrease body weight
and fat mass in rodents. This effect was a result of a combina-
tion of a reduction in food intake and a shift in metabolic fuel
preference to favor fat utilization.

An alternative approach aiming to maximize the efficacy
of GLP-1 involves the delivery of nuclear receptor agonists to
specific tissues characterized by the expression of GLP-1R. The
superior efficacy of a singlemolecule combiningGLP-1 and estro-
gen receptor activity improving metabolic control supports the
feasibility of this approach. Estrogen is a steroid hormone with
beneficial effects in the control of energy balance (Brown and
Clegg, 2010; Mauvais-Jarvis et al., 2013; Frank et al., 2014), how-
ever, these properties cannot be taken full advantage of because
estrogen also acts as a carcinogen (Huang et al., 2014). By sta-
bly linking estrogen to GLP-1 in a single molecule, this coago-
nist can take advantage of estrogen’s effects on weight loss while
avoiding the negative side effects on other tissues (Finan et al.,
2012). DIO ovariectomized female mice treated chronically with
a stable estrogen/GLP-1 coagonist had significantly greater body
weight and fat mass loss as compared to GLP-1R monagonists.
Neither proliferation of the uterine lining nor tumor growth were
detected in animals treated with the stable co-agonist indicating
that the molecule was not having negative off target effects on
peripheral tissue. The estrogen/GLP-1 coagonist loses its potency
of action when administered to animals with a CNS specific dele-
tion of the GLP-1R indicating that the GLP-1R is essential for full
effectiveness. The superior beneficial effects of GLP-1/estrogen
co-agonism were also demonstrated in a mouse model prone
to the development of diabetes, the New Zealand obese (NZO)
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FIGURE 1 | GLP-1R signaling in the brain and periphery regulates

energy and glucose metabolism. Body weight loss induced by

GLP-1R agonism is controlled by CNS-mediated mechanisms and is

mainly a result of a reduction in food intake. However, GLP-1R action in

the brain activates brown adipose tissue thermogenesis, which may also

contribute to weight loss. In the brain, GLP-1R signaling regulates

glucose homeostasis by decreasing hepatic glucose production and

decreasing glucose uptake in muscle. In the periphery, GLP-1R agonists

act directly on the pancreas to increase insulin secretion and reduce

glucagon secretion.

mouse. In contrast to GLP-1 mono-therapy, GLP-1/estrogen co-
agonism prevented hyperphagia and beta-cell failure in NZO
mice (Schwenk et al., 2014). Taken together, the addition of
other metabolic hormones to GLP-1R agonism results in superior
effects on glucose and energy homeostasis.

Conclusion

In addition to the well-established role of GLP-1 to improve glu-
cose homeostasis, GLP-1R agonism has beneficial effects on body
weight reduction. The tissue-specific effects of GLP-1R signal-
ing on energy and glucose and energy homeostasis are illustrated
in Figure 1 and are divided into CNS vs. peripheral GLP-1R-
mediated action. The fact that GLP-1R agonists have beneficial
effects on both energy and glucose metabolism places this class of
pharmacotherapies at a superior level compared to other drugs

used to treat T2DM that cause weight gain. Although physio-
logical levels of GLP-1 can improve glycemic control, pharma-
cological levels of GLP-1 must be reached to promote weight
loss. This is demonstrated by comparing the effects of DPP-4
inhibitors vs. GLP-1R agonists in T2DM patients. Both classes
of drugs improve glycemic control in T2DM patients but only
the GLP-1R agonists given at pharmacological doses will cause
weight loss. However, the weight loss induced by GLP-1R mono-
therapies in obese T2DM patients is modest indicating a need

for more robust therapeutic options. Pre-clinical data from stud-
ies that combine GLP-1R agonism with other weight loss strate-
gies such as AGB or other metabolic hormones have highlighted
more potent options for weight loss. Clinical testing of these
combination therapies will be necessary to determine whether
the effects translate to superior weight loss in obese T2DM
patients.
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