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The primary cause of injury-related death for the elders is represented by falls. The scientific community devoted them particular
attention, since injuries can be limited by an early detection of the event.The solution proposed in this paper is based on a combined
One-Class SVM (OCSVM) and template-matching classifier that discriminate human falls from nonfalls in a semisupervised
framework. Acoustic signals are captured by means of a Floor Acoustic Sensor; then Mel-Frequency Cepstral Coefficients and
Gaussian Mean Supervectors (GMSs) are extracted for the fall/nonfall discrimination. Here we propose a single-sensor two-
stage user-aided approach: in the first stage, the OCSVM detects abnormal acoustic events. In the second, the template-matching
classifier produces the final decision exploiting a set of template GMSs related to the events marked as false positives by the user.
The performance of the algorithm has been evaluated on a corpus containing human falls and nonfall sounds. Compared to the
OCSVM only approach, the proposed algorithm improves the performance by 10.14% in clean conditions and 4.84% in noisy
conditions. Compared to Popescu and Mahnot (2009) the performance improvement is 19.96% in clean conditions and 8.08% in
noisy conditions.

1. Introduction

The ageing of population is posing major concerns in gov-
ernments and public institutions, since it will consistently
increase the demand for healthcare services and the burden
on healthcare systems [1]. The strategy adopted to reduce the
impact of this demographic change on the society is to invest
in intelligent technologies able to support the elderly directly
in their homes [2].

Being the primary cause of injury-related death for the
elders [3], human fall detection has been a major research
topic in the last years. Several works appeared in the literature
that present different solutions for a prompt detection of a
human fall.The sensors at their basis are either “environmen-
tal” (e.g., infrared sensors, pressure, microphones, and cam-
eras) if they are placed in the environment or “wearable” (e.g.,
accelerometers) if they are worn by the monitored person
[4]. Regarding the algorithms, “analytical methods” classify

an event as a fall or nonfall by thresholding the acquired
signals or the features extracted from them [5]. These
methods require manual tuning of their hyperparameters for
different operating scenarios and subjects. On the contrary,
“machine learning” methods learn to discriminate falls from
nonfalls directly from the data [5]. They can be divided
into “supervised methods,” which require a labelled dataset
for training, and “unsupervised methods,” which base their
decision on a normality model built from nonfall events only.
Unsupervised methods have been proposed since human
falls are “rare” events, and it would be difficult to capture
a sufficient amount of examples for representing them in
different operating scenarios (e.g., rooms, floor material) and
subjects. Unsupervised methods, on the contrary, consider
a human fall as an event that deviate from normality, and
they are based on one-class classifiers. Their weakness is that
certain events deviate from normality as the human fall (e.g.,
the fall of an object), and thus they may produce false alarms.
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The approach proposed in this paper for reducing the
problem consists of a combined One-Class Support Vector
Machine (OCSVM) [6] and template-matching classifier
that operate in cascade. The general idea is that a human
fall produces a sound considerably different from the ones
commonly occurring in a home (e.g., voices, sounds from
electronic devices, and footsteps). The OCSVM is trained on
a large set of “normal” sounds to detect acoustic events that
deviate from normality. However, it is expected that certain
acoustic events are as abnormal as a human fall (e.g., the fall of
book and a chair), and thus they could raise false alarms.The
template-matching classifier operates in a user-aided super-
vised manner and it is employed to reduce such errors by
using a set of templates that represent these events. Templates
are identified by the user that marks the occurrence of a false
positive instead of a true human fall event. The fall detector
operates on a environmental sensor, that is, on the signals
captured by a Floor Acoustic Sensor (FAS), and it extracts
Mel-Frequency Cepstral Coefficients (MFCCs) [7] andGaus-
sian Mean Supervectors (GMSs) [8] for classification by the
OCSVM and template-matching classifier. The performance
of the algorithm has been assessed on a large corpus of fall
events created by the authors.The corpus contains human fall
events reproduced by employing the “Rescue Randy” human-
mimicking doll (https://www.simulaids.com/1475.htm) [9–
11] and nonfall events represented by dropping of objects,
music, and sounds related to common human activities.
The experiments have been conducted in clean and noisy
conditions in three scenarios: the first comprises human falls,
human activity, and music; the second comprises human
falls and object falls; the third represents the most realistic
scenario and comprises all the classes of the first and second
sets. The significance of the proposed method has been
evaluated by implementing and assessing the algorithm with
the OCSVM only and GMSs as input and the algorithm
described in [12] based onOCSVMandwithMFCCs as input.

The outline of the paper is the following: Section 2
presents an overview of the recent literature on fall detection
algorithms based on environmental sensors. Section 3 moti-
vates the proposed approach and presents the contribution
of the paper. Section 4 describes the proposed fall detection
algorithm. Section 5 describes the experiments conducted to
evaluate the performance of the approach. Finally, Section 6
concludes the paper and presents future developments.

2. Related Works

Fall detection approaches can be distinguished based on their
sensing technologies and on the algorithm that discriminates
falls from nonfalls [3, 13, 14]. As mentioned before, passive
infrared sensors, vibration and pressure sensors, cameras,
and microphones belong to the family of “environmental”
sensors since they are located on the environment where
the fall event takes place. On the contrary, accelerometers,
heart rate, electrocardiogram (ECG), and body temperature
sensors belong to the family of “wearable” sensors since they
are embedded in a device worn by the monitored person.

The algorithms can be distinguished between “analytical
methods,” which base their decision on thresholding the

acquired signals or the related features, andmachine learning
methods that “learn” the characteristics of the fall signal
directly from the data [5]. The methods proposed in [15–18]
are “analytical methods” that employ wearable devices and
decide whether a fall occurred or not by applying a decision
threshold on the captured signals or on related features.
The disadvantage of this solution is that it requires an a
priori knowledge on the fall signal characteristics andmanual
tuning of the parameters of the algorithm, something that can
be difficult to perform due to the variability of the operating
conditions and of the subjects.

Machine learning techniques have, thus, been adopted in
several recent works to overcome this drawback. Supervised
approaches train the learning algorithm on a large dataset
where all the classes of interest are represented. In [19],
single-tree complex wavelet transform features are extracted
from a floor vibration sensor and classification is performed
by using a multiclass SVM. The training dataset comprises
human falls, walking/running records, sitting on the floor,
slammed door, and fallen book. Approaches based on audio
signals are based on one or more microphones placed on
the ceiling, on the walls, or on the floor. In previous works
by some of the authors [20, 21], an acoustic sensor that
operates similarly to stethoscopes has been employed to
capture the acoustic waves that are transmitted through
the floor. The algorithm is based on MFCCs and GMSs as
features and on multiclass SVM trained on recordings of
the falls of a human-mimicking doll and of several objects.
In [22], the authors employed one aerial microphone and
Perceptual Linear Predictive (PLP) coefficients as features.
Classification is based on GMSs and SVM with a Kullback-
Leibler divergence kernel that is trained to discriminate
between falls and nine classes of nonfall events. In [23], the
authors employed a circular array of eight microphones to
determine the height of the sound source and to filter falls
from nonfalls. MFCCs are used as features and the 𝑘-Nearest
Neighbour (𝑘-NN) classifier performs the final fall/nonfall
discrimination. The classifier is trained on human falls and
nonfall events comprising dropping of objects, walking,
speech, and other sounds related to normal human activities.
Li et al. [24] proposed a multichannel blind source separa-
tion technique based on Nonnegative Matrix Factorization
(NMF). For additional ambient noise reduction a delay-and-
sum beamformer has been used. Then, the MFCC features
are extracted from the enhanced audio and finally a 𝑘-NN
classifier is employed to discriminate the fall event from
nonfalls. Differently, the system proposed in [25] captures
the audio signal by using a smartphone placed on the table.
Four different machine learning classifiers (𝑘-NN, SVM,
least square method, and neural network) are tested with
four different types of features: spectrogram, MFCCs, linear
predictive coding (LPC), and matching pursuit (MP). The
best performance is achieved by using spectrogram features
with ANN classifier with sensitivity, specificity, and accuracy
all above 98%. Acoustic signals have been also employed in
combination with signals acquired with different sensors. In
[11], the authors combined features from sound and vibration
sensors that are then employed by a naive Bayes classifier for
classification. The experiments were conducted on a dataset
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containing falls of the “Rescue Randy” human-mimicking
doll and four objects, and the resulting sensitivity and speci-
ficity were, respectively, 97.5% and 98.6%. Motion, sound,
and video signals are employed in [26]. Signals are captured
both from environment sensors and from body sensors. A
fall is detected by analysing sounds and motion information,
while visual andmotion behaviour indicate the severity of the
fall. The work by Toreyin and colleagues [27] combines PIRs,
microphones, and vibration sensors. Signals are processed to
extract features in the wavelet domain and HMM classifier is
then employed to detect falls. The authors showed that using
PIR signals 100% accuracy can be obtained. The approach
proposed in [28] is based on video signals acquired from the
cameras of Microsoft Kinect. The algorithm comprises a first
stage where features are extracted from important joints of
human skeleton and a second stage where an SVM is trained
on the features extracted from the tracking of the joints.

The problem with supervised approaches is that they
require that each class of interest is represented in the training
dataset. However, with real human falls the variability of
the environmental conditions and of the subjects makes it
difficult or impossible to collect a sufficient number of exam-
ples that allow the algorithm to generalise well on unseen
conditions [13]. Unsupervised approaches tackle the problem
as a novelty detection task [29, 30], that is, by learning a
normalitymodel fromdata not related to human falls. Among
approaches using wearable sensors, Zhou et al. [31] propose
a fall detection algorithm based on activity transition extrap-
olated from accelerometers and gyroscopes. The main idea
is to extract features from transition data between adjacent
activities to recognise various kinds of normal and abnormal
activities by means of an OCSVM. Popescu and Mahnot
[12] evaluate three unsupervised methods for acoustic fall
detection: Gaussian Mixture Models, nearest neighbour, and
OCSVM. The acoustic signal is acquired with a single aerial
microphone and the MFCCs contained in a window of 1 s are
used for classification. The experiments are conducted on a
dataset comprising falls and nonfalls represented by dropping
objects, knocking, clapping, and sounds related to phone
calls. A two microphones’ approach has been presented in
[32], where the algorithm first processes the stereo signal
with a source separation stage to remove background noises.
The classification algorithm is based onOCSVM andMFCCs
as in [12]. In the dataset, normal events comprise sound
originating from walking, bending, lying, and sitting. The
authors did not consider falls of other objects that could
significantly confuse the classifier; however they considered
the presence of a television that produced the interfering
sound. The results in terms of Area Under Curve are 0.9928
without interference and 0.9738 with 75% interference.

3. Motivation and Contribution

As shown in the previous section, “unsupervised methods”
are able to overcome the need of manual tuning of “analytical
methods” and the necessity of a large labelled dataset of
“supervised methods.” In “unsupervised methods,” falls are
discriminated from nonfalls based on amodel of “normality”
constructed from a large amount of nonfall events. However,

certain events differ from the “normality” as human falls,
and they may induce the classifier to produce false alarms.
As an example, Figures 1(a) and 1(b) show, respectively, the
waveform and the spectrogram of a segment of “normal”
human activity (footsteps and speech). Figures 1(c) and 1(d)
show the waveform and the spectrogram of a segment of
human fall, and Figures 1(e) and 1(f) show the waveform and
the spectrogram of a book fall. The figures show clearly that
both falls signals differ significantly from the human activity
one; thus a classifier may be induced to consider the fall of a
book as the fall of a person.

The algorithm proposed in this paper reduces the prob-
lem by employing a multistage classification approach that
combines a one-class classifier based on OCSVM with a
template-matching stage.TheOCSVM is trained unsupervis-
edly on a large corpus containing sounds that represent the
“normality.” On the contrary, the template-matching stage
employs a set of templates represented by a small number
of feature vectors marked as false alarm by the user. Thus,
robustness against possible false alarms is achieved by using
only few examples of false positive classes without the need
of multiple sensors. An additional advantage with respect
to the state of the art is that the proposed approach is able
to evolve and improve after its initial training, since the
template set can be augmented as nonfalls events are detected.
Finally, differently from the current literature [12, 22], the
proposed approach employs Gaussian Mean Supervectors
with OCSVM and captures the fall audio signal by means of
a single Floor Acoustic Sensor.

4. The Proposed Approach

The proposed approach is composed of three stages
(Figure 2): the first (“feature extraction”) extracts MFCCs
from the input audio signal and then GMSs to describe
the entire audio segment. The second stage (“abnormal
event detection”) consists of a One-Class SVM classifier
that discriminates between normal and abnormal sounds.
To the authors’ knowledge, OCSVM and GMSs have never
been jointly used for acoustic fall detection. The third stage
represents the innovative contribution of this paper for
reducing false alarms in unsupervised approaches: it consists
of a “template-matching” block that refines the output of
the OCSVM and classifies the input data as fall or nonfall.
The OCSVM is trained unsupervisedly on a large dataset
of everyday sounds with the objective of discriminating
normal from abnormal sounds. As mentioned before, the
basic assumption is that the acoustic events related to human
falls are “rare” with respect to sounds normally occurring
inside a home. The template-matching stage, on the other
side, requires a set of “template” instances that represent
rare events that can be confused with a fall. Referring to
Figure 2, the “template-matching” stage is composed of a set
of “templates,” a block that calculates the distance between
the input GMS and the templates (“Euclidean distance
calculation”), and a “decision” block that decides whether
the event is a fall or a nonfall by evaluating the magnitude
of the distance. The rationale here is that certain acoustic
events are as abnormal as falls and confuse the OCSVM: the
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(a) Normal human activity signal in the time domain
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(b) Normal human activity signal in the frequency domain
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(c) Human fall signal in the time domain
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(d) Human fall signal in the frequency domain
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(e) Book fall signal in the time domain
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(f) Book fall signal in the frequency domain

Figure 1: Time domain (on the left) and frequency domain (on the right) representation of a normal human activity signal (a-b), human fall
signal (c-d), and book fall signal (e-f).

template-matching stage reduces false positives by using a
set of examples related to the most confusing classes. In this
work, the algorithm is “user-aided”; that is, templates are
indicated by the user each time the OCSVM produces a false
positive. This is shown in Figure 2 with the person silhouette
near the block that decides whether a detected fall is a false
positive or not (“false positive?”). In general, however, it
is possible to create the templates set a priori by recording
several instances of possible false alarms events. Although
rare, false alarm events (e.g., falls of objects) are certainly
easier to reproduce in laboratory with respect to human falls.
The remainder of this section describes the overall approach
in detail, starting from the acoustic sensor employed for
capturing falls sounds, the feature extraction stage, and the
combined OCSVM/template-matching stages.

4.1. The Floor Acoustic Sensor. The sensor employed to
capture the sounds produced by a fall is shown in Figure 3:
it is composed of a resonant enclosure and a microphone
located inside. The acoustic coupling with the floor surface is
guaranteed by amembrane that lays on it. As demonstrated by
previous works by some of the authors [20, 21, 33], compared
tomicrophones placed onwalls or on the ceiling, this solution
is better able to isolate the sounds produced by a fall from
external interferences (e.g., voice, music). The enclosure has
been manufactured in polylactic acid with a 3D printer, its
diameter is 16.5 cm, and its height 5.5 cm.

Regarding the microphone, an AKG C 400 BL (http://
www.akg.com/pro/p/c400-bl) has been inserted in the enclo-
sure. The AKG C 400 BL is characterized by a hypercardiod

http://www.akg.com/pro/p/c400-bl
http://www.akg.com/pro/p/c400-bl
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(b) A picture of the Floor Acoustic Sensor used during
the recordings

Figure 3: The Floor Acoustic Sensor scheme (a) and picture of the prototype (b).

directivity pattern; thus it has been oriented so that the
maximum gain is towards floor.

4.2. Feature Extraction

4.2.1.Mel-Frequency Cepstral Coefficients. The feature extrac-
tion stage extracts low-level acoustic features represented by
Mel-Frequency Cepstral Coefficients from the input audio
signal. These are then employed to calculate Gaussian Mean
Supervectors (GMSs), which represent higher level descrip-
tors employed for the actual classification. MFCCs have been
originally developed for speech recognition and speaker ver-
ification tasks; however they have been successfully exploited
also for classifying falls [11, 20]. As shown in Figure 4,

Audio 
signal

Mel filterbank
frequency
integration

MFCC

Magnitude
squared

DCT

Preemphasis STFT

Logarithm

Figure 4: The MFCC feature extraction pipeline.

extracting MFCCs involves preemphasizing the input signal
and filtering the output with a set of filters equally spaced in
the mel space. After taking the logarithm of the energy in
each band, the final coefficients are calculated by applying the
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Figure 5: Training of the Universal Background Model from
MFCCs (a) and extraction of Gaussian Mean Supervectors (b).

Discrete Cosine Transform (DCT). In this work, preemphasis
has not been applied, since the energy of the signals acquired
with the FAS is concentrated at frequencies below 1 kHz
and preemphasis would reduce the discriminative capabilities
of the algorithm [20]. For further details on the MFCCs
extraction procedure, please refer to [7, 20].

4.2.2. Gaussian Mean Supervectors. GMSs are higher level
features composed of the means of a Gaussian mixture
model (GMM) adapted with maximum a posteriori (MAP)
algorithm [8, 34].The GMMmodels a Universal Background
Model (UBM) and is trained on a large set of audio data by
using Expectation Maximization (EM) algorithm [35]. Then,
a GMS is calculated by adapting the GMM with the MAP
algorithm [36] and concatenating the adapted GMM mean
values (Figure 5(b)).

More in detail, consider a sequence of 𝐿 MFCC vectors
X = {x1, x2, . . . , x𝐿}, where each x𝑙 has size 𝐷 × 1. The GMM
representing UBM is given by

𝑝 (x𝑙 | 𝜆) = 𝐽∑
𝑗=1

𝑤𝑗𝑝 (x𝑙 | 𝜇𝑗,Σ𝑗) , (1)

where 𝜆 = {𝑤𝑗,𝜇𝑗,Σ𝑗 | 𝑗 = 1, 2, . . . , 𝐽}, 𝑤𝑗 are the mixture
weights, and 𝑝(⋅ | 𝜇𝑗,Σ𝑗) is a multivariate Gaussian distri-
bution with 𝐷 × 1 mean vector 𝜇𝑗 and 𝐷 × 𝐷 diagonal
covariance matrix Σ𝑗.

TheGMSM of the sequenceX is obtained by adapting the
means of theUBMmodel withmaximum a posteriori (MAP)
algorithm and then concatenating the mean vectors:

M = [𝜇𝑇1 ,𝜇𝑇2 , . . . ,𝜇𝑇𝐽 ]𝑇 , (2)

where 𝑇 denotes the transpose operator. Regardless of the
number of vectors in the sequence X,M is a 𝐷𝐽 × 1 vector.

The number of Gaussians 𝐽 can be determined on a
validation set.

4.3. One-Class SVM. A One-Class SVM consists in a dis-
criminant function that takes the value +1 in a small region

that captures the majority of the data points of a set and −1
outside that region [6]. The discriminant function has the
following expression:

𝑓 (x) = sgn(∑
𝑖

𝛼𝑖 ⋅ 𝑘 (x𝑖, x) − 𝜌) , (3)

where x𝑖 denotes the 𝑖-th support vector and 𝑘(⋅, ⋅) represents
the kernel function, for example, the radial basis function𝑘(x, y) = exp(−𝛾‖x − y‖2). The position of the hyperplane,
thus, defines the region that represents normal data points.
For each point x that lies outside this region, the function𝑓(x) takes the value −1, whereas, for point inside the region,
it takes the value +1.

The terms 𝛼𝑖 can be found by solving the solution to the
dual problem:

min
𝛼

12∑
𝑖𝑗

𝛼𝑖𝛼𝑗𝑘 (x𝑖, x𝑗) ,
subject to 0 ≤ 𝛼𝑖 ≤ 1

]𝑙 ,
∑
𝑖

𝛼𝑖 = 1.
(4)

The term ] ∈ (0, 1] is a hyperparameter of the algorithm that
is determined on a validation set.

The offset 𝜌 can be obtained from the Karush-Kuhn-
Tucker (KKT) condition with the expression [37]

𝜌 = ∑
𝑗

𝛼𝑗𝑘 (x𝑗, x𝑖) , (5)

which is satisfied for any 𝛼𝑖 that is not at the upper or lower
bound.

4.4. Template-Matching. The template-matching classifier
operates on a set of templates, that is, supervectors, which
can be defined a priori or selected by the user when the
OCSVM detects an abnormal sound that is not a human fall.
Denoting by x the supervector of the input signal and with
Y = {y1, . . . , y𝑁} the set of templates, the algorithm operates
by calculating the Euclidean distance 𝐷(𝑖) = ‖x − y𝑖‖ between
the supervector to be classified and all the templates in the
set. Indicating with 𝐷min = min𝑖𝐷(𝑖) , the supervector x is
classified as a fall if 𝐷min > 𝛽 and as nonfall otherwise. The
threshold 𝛽 is a hyperparameter of the algorithm that can be
determined on a validation set.

5. Experiments

5.1. Dataset. The dataset (http://www.a3lab.dii.univpm.it/
research/fasdataset) is composed of audio events correspond-
ing to falls of humans, objects, sounds of normal activities
(voices, footsteps, etc.), and music [20]. Acquisitions have
been performed in a rectangular roommeasuring about 7m×2m using a Presonus AudioBox 44VSL sound card and the
FAS positioned on the floor (Figure 6).

Human falls have been simulated by means of “Rescue
Randy,” a human-mimicking doll employed in water rescues.
The doll has been dropped from upright position and from a
chair, both forward and backward, for a total of 44 events, all

http://www.a3lab.dii.univpm.it/research/fasdataset
http://www.a3lab.dii.univpm.it/research/fasdataset
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Figure 6: The recording setup: the letters A, B, C, and D indicate the positions of fall events.

included in the “human fall” class. Regarding falls of objects,
a ball, a metal basket, a book, a metal fork, a plastic chair,
and a bag have been used to reproduce sounds similar to
human falls that could produce false detection. Each fall event
has been performed at four distances from the FAS, that is,
1, 2, 4, and 6m (Figure 6). Furthermore, for each distance,
the basket and the chair have been overturned from their
natural position, while the other objects have been dropped at
two heights, that is, 0.5m and 1m. Normal activities sounds
have been recorded while persons were performing common
actions, such as walking, talking, and dragging chairs. Finally,
threemusical tracks have been played froma loudspeaker and
acquired back with the FAS.The first track contained classical
music (W. A. Mozart, “Piano Trio in C Major”), while the
second (Led Zeppelin, “Dazed and Confused”) and the third
(Led Zeppelin, “When the Levee Breaks”) contained rock
music.Musical tracks and normal activities sounds have been
divided into segments whose lengths havemean and standard
deviation estimated from instances of fall events. In addition,
they have been employed alone and to create noisy versions
of human and object falls occurrences in order to assess the
algorithm in presence of interferences. The total number of
occurrences for each class is reported in Table 1.

Acquisitions have been originally performed with a sam-
pling rate equal to 44.1 kHz and 32-bit depth [20]. In the
experiments, signals have been downsampled to 8 kHz and
the resolution has been reduced to 16 bits. The choice of the
sampling frequency is motivated by the analysis performed
in a previous work by the authors [20], where it was shown
that the signals recorded with the FAS have the majority of
the energy concentrated at frequencies below 1 kHz.

5.2. Experimental Setup. The dataset described previously
has been divided into one set for training the UBM and the
OCSVM and three sets for evaluating the performance.

Training has been performed on the set shown in Table 2
composed of 947 occurrences (1773s) of human activities,

Table 1: Composition of the dataset.

Class Number of occurrences Total length (s)
Basket 64 86
Fork 64 82
Ball 64 129
Book 64 63
Bag 64 57
Chair 96 157
Human falls 44 76
Human activity 665 1218
Music 776 1498

Table 2: Composition of the training-set.

Class Number of occurrences Total length (s)
Human activity 320 593
Music 627 1180
Total 947 1773

classical music, and rock music. The assessment of the
algorithm has been performed on the following datasets:

(i) Set 1 (human fall and background sounds): this set
comprises 44 examples of human fall sounds and
44 examples of human activity and music sounds
(Table 3(a)).

(ii) Set 2 (human fall and object fall sounds): this set
comprises 44 examples of human fall sounds and 44
examples of object fall sounds (Table 4(a)).

(iii) Set 3 (human fall, object fall, and background
sounds): this set comprises 44 examples of human fall
sounds, 22 examples of background sounds, and 22
examples of object fall sounds (Table 5(a)).
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Table 3: Data used in “Set 1.”

(a) Composition of “Set 1”

Class Number of occurrences
Human falls 44
Human activity 15
Music 29

(b) Templates of “Set 1”

Class Number of templates
Clean Noisy

Human activity 13 11
Music 8 16
Total 21 27

Table 4: Data used in “Set 2.”

(a) Composition of “Set 2”

Class Number of occurrences
Human falls 44
Basket 7
Fork 7
Ball 8
Book 7
Bag 8
Chair 7

(b) Templates of “Set 2”

Class Number of templates
Clean Noisy

Basket 55 57
Fork 39 55
Ball 11 52
Book 26 57
Bag 26 56
Chair 86 89
Total 243 366

For each set, the data have been divided into four folds,
each composed of 11 human falls and 11 nonfalls. Then, one
fold has been used for estimating the hyperparameters of
the algorithm and three have been used for calculating the
performance.Thefinal performance is calculated by using the
cumulative true positives, false positives, and false negatives
obtained by varying the test folds. The validation phase
consisted in searching for the number of components of
the UBM, the values of ] and 𝛾 of the OCSVM, and the
value of the threshold 𝛽 in the template-matching stage. The
values assumed by these variables are summarised in Table 6.
The method employed for the template-matching decision
threshold is explained in Section 5.3.

All the aforementioned datasets require a set of templates
for the template-matching stage of the algorithm. In the
case of object falls, the set of templates has been created by

Table 5: Data used in “Set 3.”

(a) Composition of “Set 3”

Class Number of occurrences
Human falls 44
Basket 3
Fork 4
Ball 4
Book 3
Bag 4
Chair 4
Human activity 8
Music 14

(b) Templates of “Set 3”

Class Number of templates
Clean Noisy

Basket 52 57
Fork 57 57
Ball 19 55
Book 53 57
Bag 50 56
Chair 89 89
Human activity 11 4
Music 4 11
Total 335 386

Table 6: Hyperparameters of the algorithm and search space
explored in the validation phase. The search space of the template-
matching threshold 𝛽 is not reported, since it is determined with the
procedure described in Section 5.3.

Stage Hyperparameter Range
UBM 𝐽 1, 2, 4, . . . , 64
OCSVM ] 0.1, 0.2, . . . , 1.0𝛾 2−15, 2−13, . . . , 23
Template-matching 𝛽 See Section 5.3

classifying a set of 372 object falls with the OCSVM and
selecting the occurrences misclassified as human falls. In the
case of background sounds, the set of templates has been
created by calculating the Euclidean distance between each
occurrence of the development-set and each occurrence of a
set of 470 background signals and then selecting the segment
whose distance is minimum. Details on the templates sets are
shown in Tables 3(b), 4(b), and 5(b), respectively, for “Set 1,”
“Set 2,” and “Set 3.”

The proposed approach has been compared to the algo-
rithm presented in [12] based on OCSVM. The same algo-
rithmhas also been employed in [32]with amultimicrophone
acquisition setup and a source separation stage. As in [12], the
audio signals are divided into windows of the same lengths,
and the related MFCCs are used for training the OCSVM
and for classification. In [12], 7 MFCCs were extracted from
audio signals sampled at 20 kHz and the length of the window
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Figure 7: Probability distributions of the minimum Euclidean distances among the template sets and human falls and nonfalls in clean
acoustic condition.

was set to 1 s. Here, the feature vectors are the same as the
proposed approach; that is, they are composed of the first
13 MFCCs and their first and second derivatives. The same
window length of [12] cannot be employed here, since the
dataset used in this paper comprises signals with lengths less
than 1 s. Thus, the length of the window corresponds to the
duration of the shortest event in the dataset, and it is equal to
576ms (71 frames). Windows are overlapped by 50%, and, as
in [12], an event is classified as fall if at least two consecutive
frames are classified as novelty by theOCSVM.The same grid
search procedure of the proposed approach has been adopted
to search for the optimal values of ] and 𝛾 of the OCSVM.

The performance has been evaluated in terms of 𝐹1-
Measure calculated as

𝐹1-Measure = 2 ⋅ 𝑡𝑝2 ⋅ 𝑡𝑝 + 𝑓𝑛 + 𝑓𝑝, (6)

where 𝑡𝑝 is the number of correctly classified falls, 𝑓𝑛 is the
number of fallsmisclassified as nonfalls, and𝑓𝑝 is the number
of nonfalls misclassified as falls.

5.3. Choice of the Template-Matching Decision Threshold. A
key point of the proposed approach is the decision threshold𝛽 in the template-matching stage. Choosing a too low value

would result in a low number of false negatives and a high
number of false positives. On the contrary, a too high value
would result in a high number of false negatives and a
low number of false positives. The choice of 𝛽 has been
performed by calculating the minimum Euclidean distance
between each fall and nonfall event in the validation set and
the set of templates. Figures 7 and 8 show, respectively, the
probability distributions for the three sets in clean and noisy
conditions. The decision threshold 𝛽 has been chosen at the
intersection point between the distribution of fall and nonfall
distances. This choice represents a compromise that balances
false positives and false negatives.

Observing clean condition distributions, in “Set 1” the
two densities are considerably overlapped, while in “Set 2” the
overlap is modest. It is expected that the possible improve-
ment of the template-matching stage will be more consistent
for “Set 2” with respect to “Set 1.” “Set 3” contains human
activity and music occurrences as “Set 1” and object falls as
“Set 2”: indeed, the probability distributions (Figure 7(c)) are
more distinct with respect to the ones of “Set 1,” but not so
much as the ones of “Set 2.”

Noisy condition distributions, shown in Figure 8, are
in general less distinct compared to clean condition ones.
The effect of being noisy is to flatten the distances of the
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Figure 8: Probability distributions of the minimum Euclidean distances among the template sets and human falls and nonfalls in noisy
acoustic condition.

fall and nonfall classes, thus resulting in less discriminative
capabilities of the classifier. Thus, it is expected that the
performance improvement in noisy conditions will be more
modest with respect to the one obtained in clean condition.

5.4. Results and Discussion. Figure 9 shows the results in
clean conditions obtained with and without the template-
matching stage, respectively, denoted as “OCSVM +
template-matching” and “OCSVM.” The results obtained
with the method proposed in [12] are denoted with “Popescu
and Mahnot (2009).” Observing the figure, it is evident that
in all the three cases the template-matching approach is able
to improve the performance with respect to “Popescu and
Mahnot (2009)” [12] and the OCSVM only approach. In
particular, in “Set 1,” which comprises human falls, human
activities, and music, the performance improves by 2.03%
with respect to OCSVM and by 19.64% with respect to
“Popescu and Mahnot (2009).” This case can be considered
as the least challenging of the three, since nonfalls events
are considerably different from falls ones. Conversely, “Set
2” comprises both human falls and object falls, and thus it
includes abnormal events whose pattern is similar to the one
of human falls. Indeed, without the template-matching stage,
the performancewith respect to “Set 1” is 17.91% lower, mostly

due the increased false positives rate that goes from 13.64%
to 50.76%. The introduction of the template-matching stage
considerably reduces the number of false positives, leading to
an overall performance improvement of 20.76%. Regarding
“Popescu and Mahnot (2009)” [12], the 𝐹1-Measure is below
both OCSVM and the proposed approach; however it is less
affected by the presence of object falls, since the 𝐹1-Measure
decreases only by 0.64%. “Set 3” comprises human falls,
human activities, music, and object falls and represents the
most realistic test condition of the three. The result obtained
by using the OCSVM classifier alone is 82.25%. As expected,
this result is lower than “Set 1,” since object falls are also
present, and higher than “Set 2,” since human activities
and music segments are easier to discriminate. Introducing
the template-matching stage, the performance improves by
7.64%, leading to an 𝐹1-Measure equal to 89.89%. Differently,
the approach by Popescu andMahnot [12] degrades by 5.25%
with respect to “Set 1” and by 4.61% with respect to “Set
2,” demonstrating that it is less robust to the concurrent
presence of object falls and daily human activities sounds.

Figure 10 shows the results obtained for the three cases in
noisy conditions. As expected, the performance decreases in
all the three evaluated methods. In “Set 1,” the performance
decrease is modest (2.32% for the OCSVM, 2.63% for the
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proposed approach, and 1.44% for “Popescu and Mahnot
(2009)”), demonstrating that theOCSVM is able to effectively
reject nonfall events corrupted bymusic interference.The use
of the template-matching stage increases the performance by
1.72%, thus providing a significant improvement also in noisy
conditions. In “Set 2,” the presence object falls corrupted
by music significantly decreases the performance of the
OCSVM, reducing the 𝐹1-Measure by 12.74% with respect to
the clean “Set 2.” Template-matching provides a performance
improvement of 8.02%, leading to an 𝐹1-Measure higher than
70%.The improvement is lower with respect to the clean “Set
2,” since the variability of the music interference makes the
Euclidean distances of fall and nonfall classes more similar.

Themethod by Popescu andMahnot [12] achieves the highest𝐹1-Measure in this case, confirming the good capabilities of
rejecting dropping objects sound events observed in clean
conditions. In “Set 3,” the proposed approach improves the
performance by 4.77% with respect to OCSVM and by 8.68%
with respect to “Popescu and Mahnot (2009),” confirming
that it is able to achieve the highest performance in the most
realistic scenario of the three.

In summary, the results demonstrated that the introduc-
tion of a template-matching stage significantly improves the
performance both of the OCSVM only approach and of the
method by Popescu and Mahnot [12]: averaging the results
over “Set 1,” “Set 2,” and “Set 3,” the absolute improvement
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with respect to the former is 10.14% in clean conditions and
4.84% in noisy conditions. With respect to the latter [12]
the improvement is 19.96% in clean conditions and 8.08% in
noisy conditions. As shown in Figures 9 and 10, both in clean
and in noisy conditions the 𝐹1-Measure of the method by
Popescu andMahnot [12] is close to 75% in “Set 1” and “Set 2”
and close to 71% in “Set 3.”The different behaviour compared
to the OCSVM only approach can be attributed firstly to the
different feature representation of the audio signal (MFCCs
instead of supervectors). Secondly, to the strategy adopted
for classification: in [12], signals are divided into windows
and a fall is detected if at least two consecutive windows
are classified as fall. Differently, in the proposed algorithm,
the overall signal is represented by a single supervector and
classified as fall or nonfall.

Comparing the results in clean (Figure 9) and noisy
(Figure 10) conditions, it is evident that techniques for reduc-
ing the impact of additive noise are needed. Additionally,
the proposed solution requires the intervention of the user
for selecting the templates after the first classification stage
performed by the OCSVM. This aspect will be addressed
in future works in order to make the algorithm completely
unsupervised.

6. Conclusion

This paper proposed a combined OCSVM and template-
matching classifier to discriminate human falls from nonfalls
in a semisupervised framework. Fall signals are captured
by means of a Floor Acoustic Sensor, and then MFCCs
and GMSs are extracted from the acquired signal. The
OCSVMdiscriminates between normal and abnormal acous-
tic events and the template-matching stage performs the final
fall/nonfall decision. This stage employs a set of template
supervectors represented by the events detected as abnormal
by the OCSVM and marked as false positives by the user.
The performance of the algorithm has been evaluated on
a corpus containing human falls reproduced by a human-
mimicking doll and nonfalls represented by sounds of falling
objects, human activities, and music. In order to confirm the
significance of the approach, it has been compared to the
method proposed in [12] and to the OCSVM only approach.
The results showed that, in the most realistic scenario, the
proposed solution provides a performance improvement
equal to 7.64% in clean conditions and equal to 4.77% in noisy
conditions with respect to the OCSVM only approach and
equal to 19.13% and to 8.68% with respect to [12].

In future works, the concurrent use of the FAS, aerial
microphones, and heterogeneous sensors will be considered
in order to further improve the robustness of the algo-
rithm to external interferences. In addition, the possibility
of removing the user from the classification loop will be
explored, for example, by creating a set of templates related
to object falls in different environments. Finally, in order
to compare the proposed solution with approaches based
on wearable devices, an appropriate corpus will be created
where fall and nonfall events are recorded simultaneously
with environmental and wearable sensors.
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