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Abstract: In this communication, we describe microfluidic paper analytical devices (µPADs) easily
fabricated from commercially available Sharpie ink permanent markers on chromatography paper
to colorimetrically detect glucose using glucose oxidase (GOx). Here, solutions of horseradish
peroxidase (HRP), GOx, and potassium iodide (KI)were directly spotted onto the center of the
µPAD and flowed into samples of glucose that were separately spotted on the µPAD. Using an XY
plotter (Roland DGA Corporation, Irvine, CA USA), several ink marks drawn in the paper act as
the hydrophobic barriers, thereby, defining the hydrophilic fluid flow paths of the solutions. Two
paper devices are described that act as independent assay zones. The glucose assay is based on the
enzymatic oxidation of iodide to iodine whereby a color change from clear to brownish-yellow is
associated with the presence of glucose. In these experiments, two designs are highlighted that consist
of circular paper test regions fabricated for colorimetric and subsequent quantification detection of
glucose. The use of permanent markers for paper patterning is inexpensive and rapid and does not
require special laboratory equipment or technical skill.
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1. Introduction

Microfluidics is an exciting technology that has shown considerable promise for producing
practical devices, in particular for the analysis of proteins of medical significance. Recent focus has
been in the development of point-of-care (POC) diagnostic devices that are inexpensive, simple,
disposable, and versatile [1–5]. Lab-on-chip (LOC) technologies can be considered one of the most
promising solutions in POC testing due to the ability to miniaturize and integrate many aspects of a
laboratory onto a small microfluidic chip. Certain properties of microfluidic technologies including
rapid sample processing and precise control of fluids have made them attractive candidates to replace
traditional experimental approaches.

In 2007, a new generation of microfluidic paper-based analytical devices (µPADs) was introduced
as promising platforms for various applications in resource-limited settings [6]. µPAD technology
has shown many advantages including reproducibility, sensitivity, and low limits of detection (LOD).
µPADs are created by patterning hydrophobic materials (wax and polymer) in hydrophilic paper.
Paper is particularly advantageous for microfluidics due to its ability to wick aqueous fluids without
the requirement of active pumping. In addition, paper is thin, available in a variety of thicknesses,
is lightweight, easy to stack, store, and transport, is compatible with biological samples given its
composition, and is available in many forms with a diverse range of properties [7]. Since the
seminal work of Martinez [6,8–15] a myriad of techniques to pattern paper have been detailed
including laser [16,17], wax [8–10,18–21], and inject printing [22], plasma etching [23,24], cutting [25],
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and mechanical plotting [26]. While there have been a number of reports detailing versatile and
inexpensive fabrication methods for POC devices, there is an ever-increasing need in resource-limited
areas for accessing quality diagnostic testing [27–32]. Paper microfluidics have been successfully
applied in a number of applications including screening of antibiotics and pharmaceuticals [33], DNA
detection [34], chemical screening in multilayer 3D cell cultures [35], enzyme assays [36], multiplex
chemical analysis [37], enzyme assays [12], and photoelectrochemical immunoassay [38].

Herein, we describe the design and development of µPADs fabricated from Sharpie ink permanent
markers on chromatography paper to colorimetrically detect glucose using glucose oxidase GOx. Using
a low-cost XY plotter, several ink marks drawn in the paper act as the hydrophobic barriers that define
the hydrophilic fluid flow paths of the solutions. Solutions of reagents and sample are spotted onto
the µPADs and the enzymatic oxidation of iodide to iodine is easily visualized and quantified using
an inexpensive scanner. The use of permanent markers for paper patterning is a viable alternative to
more expensive microfluidic-based patterning techniques for point-of-care (POC) diagnostic devices.

2. Experimental Section

2.1. Chemicals and Reagents

Horseradish peroxidase (HRP) (E.C. 1.11.1.7), GOx (E.C. 1.1.3.4), and KI were purchased form
Sigma Aldrich (St. Louis, MO, USA). Sodium acetate and sodium phosphate were purchased from
Fisher Scientific (Pittsburgh, PA, USA).

Briefly, (1) 2.0 µL (50 mM stock) of glucose (0.0, 0.6, 1.9, 2.5, 3.0, 3.3, 4.4, 6.25, 9.20, and 12.1 mM
for the cloverleaf chip design) diluted in water was spotted using a micropipette on the circular
regions of the µPAD (Figure 1a) and was allowed to dry after spotting; (2) 60 µL of a solution of
HRP:GOx:KI was spotted in the middle chip region as shown in Figure 1a. Similar procedures were
used with the shamrock chip design as well, spotting the middle chips region with 30 µL of a solution
of HRP:GOx:KI instead. Sodium acetate buffer (0.2 M, pH 5.1) was used for the GOx (120 units/mL)
solution. Phosphate buffer (0.1 M, pH 6.0) was used for the HRP (30 units/mL) solution. KI (0.6 M)
was dissolved in distilled water.
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2.2. Device Fabrication

Patterns were designed on the computer using Inkscape software, which were subsequently
printed on Whatman grade 1 chromatography paper using Sharpie permanent markers and drawn
using an XY plotter. Ink from commercially available Sharpie pens generally consist of a hydrophobic
resin, solvent, and colorant. The XY plotter creates enough pressure onto the filter cellulose that ink
completely penetrates through the chromatography paper. Evaporation of solvent is almost immediate
leaving the resin and colorant on the paper resulting in the formation of the hydrophobic walls of the
channels. Two chip designs (Figure 1) resembling a cloverleaf (A) (four-channel) and shamrock (B)
(three-channel) were printed on areas of 90.3 and 19.7 cm2, respectively, containing separate channel
regions for sample analysis. In one pattern, the chip consisted of four regions to analyze multiple
samples. Here, the center of the chip contained a cocktail of materials. Radiating 1.905 cm from the
center of the chip, and in four directions 90˝ to each other, were located four circular spots. Adjacent to
these spots, and co-linear to the center of the chip, is located another region where final analysis of
sample is determined. Channels were separated by a distance of 1.6 cm (center of glucose spot circle)
and 2.93 cm (center of analyzed circle) from the center of the entire chip. In the shamrock pattern, the
cocktail of materials flow 1.24 cm from the center of the chip to the detection spot in the analyzed circle.
The three channels are separated 120˝ from each other, having a distance of 0.84 cm (from the center
of the glucose spot circle) and 1.73 cm (from the center of the analyzed circle) from the center of the
entire chip.

3. Results and Discussion

To demonstrate the efficacy of the Sharpie permanent marker µPADs, we examined the enzymatic
oxidation of iodide to iodine. Here, glucose is oxidized by GOx forming hydrogen peroxide that
is subsequently reduced to water by HRP concomitant with the oxidation of iodide to iodine. In
the present work, solutions of HRP, GOx, and KI were directly spotted onto the center region of the
µPAD and flowed into samples of glucose that were separately spotted on the µPAD on the individual
circular regions (Figure 1c).

With the present µPAD, samples of different concentrations of glucose were simultaneously
analyzed using a cloverleaf–shaped chip (Figure 2). The solution containing GOx:HRP:KI flows across
the channels through capillary action and consequently moves onto the region of the chip containing
the dried glucose. At this point, oxidation of KI to iodine ccurs resulting in the formation of a colored
region in the final chip region. The chip was allowed to dry for ten minutes and the region was scanned
on a Canon CanoScan LiDE 210 Desktop Scanner (Canon Inc., Tokyo, Japan) with a resolution of
600 DPI. This data was plotted onto GraphPad Prism 5.0 (GraphPad Software, Inc., La Jolla, CA, USA).

Figure 2 shows the images taken of the detection spot for each channel of the cloverleaf µPAD. We
were able to detect differences on the resulting yellow intensity as a function of glucose concentration.
As the concentration of glucose increased (0 to 12.1 mM), a noticeable difference in color intensity
is observed. Figure 3a is a saturation curve of the corrected average yellow intensity as a function
of glucose concentration. The signal for the glucose assay correlates with concentration of analyte.
The data and error bars in the figure are the mean and relative standard deviation, respectively. The
responses are linear between 0 and 5 mM glucose and deviate from linearity at higher concentrations
of analytes before leveling off. For the majority of healthy individuals, normal blood sugar levels range
from 4.0 to 6.0 mM when fasting and can be as high as 7.8 mM two hours after eating. Hence, the results
show that the µPAD fabricated using permanent markers yields reproducible and accurate quantitative
analysis of glucose and within the range of healthy and diabetic patients. The limit of detection (LOD)
was approximately 0.3 mM comparable to values (0.5 mM) reported in the literature [8]. While glucose
is not usually found in urine, the normal range is 0–0.8 mM. The presence of glucose in the urine is
called glycosuria or glucosuria. The µPAD has the capability of measuring multiple samples in parallel
simultaneously and in a short period of time. It is also possible to modify the cloverleaf design thereby
allowing for the detection and analysis of more than the current three samples.
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Figure 4 shows the images taken of the detection spot for each channel of the shamrock-shaped
µPADs. Similar results were obtained as that found for the four-channeled chip. Figure 3B is a
saturation curve of the corrected average yellow intensity as a function of glucose concentration. It
is apparent that the shamrock-shaped µPAD is less sensitive perhaps due to the single channel that
connects the sample flows from the center of the µPAD to the three channel outlets. The cloverleaf
design has two channels that allow for fluid flow. These results demonstrate that µPADs fabricated
using Sharpie permanent markers are reliable and yield quantitative analytical results appropriate for
POC testing.
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The use of permanent markers allows for facile fabrication of microfluidic platforms, especially in
resource limited settings. The devices can easily be produced at low cost in great numbers and in a
variety of designs accommodating the analysis of many samples in little time. These reasons make
the use of permanent marker inks a logical alternative to other complex fabrication systems including
printing and cutting methods.

While the current study utilizes an XY plotter, similar construction of the microfluidic platforms
can likely be accomplished using a stencil template. Furthermore, preliminary work using free drawn
platforms, without a computer generated design, has shown similar results to those described herein
that will make analysis of other relevant chemical species (uric acid, lactic acid, cholesterol, etc.) easier
and faster.
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4. Conclusions

We have presented the design and development of a µPAD easily fabricated from commercially
available Sharpie ink permanent markers on chromatography paper to detect glucose using the enzyme
glucose oxidase. Using an XY plotter, several ink marks drawn on paper act as the hydrophobic barriers
to define the hydrophilic fluid flow paths of solutions. Using this method, it is possible to both design
and fabricate such devices with new designs within a few hours.

Paper-based microfluidics will continue to emerge as a multiplexable platform for POC
diagnostics, thereby transcending the capabilities of existing assays in resource-limited settings. The
fabrication simplicity of µPADs using permanent markers should further lower the costs of enzyme
assays. This technology holds great promise in bioanalysis due to its sample storage, mixing, and
filtration capabilities, sample volume control, and ability to analyze an array of samples simultaneously.
Furthermore, their use in other areas including environmental testing, defense-related applications,
forensic analysis, and food safety testing holds great promise.
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