
nanomaterials

Review

Developments in Synthesis and Potential Electronic and
Magnetic Applications of Pristine and Doped Graphynes

Gisya Abdi 1,2 , Abdolhamid Alizadeh 3, Wojciech Grochala 1 and Andrzej Szczurek 1,*

����������
�������

Citation: Abdi, G.; Alizadeh, A.;

Grochala, W.; Szczurek, A.

Developments in Synthesis and

Potential Electronic and Magnetic

Applications of Pristine and Doped

Graphynes. Nanomaterials 2021, 11,

2268. https://doi.org/10.3390/

nano11092268

Academic Editor: José

Miguel González-Domínguez

Received: 23 July 2021

Accepted: 30 August 2021

Published: 31 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland;
abdi_gisya@yahoo.com (G.A.); w.grochala@cent.uw.edu.pl (W.G.)

2 Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology,
al. A. Mickiewicza 30, 30-059 Krakow, Poland

3 Department of Organic Chemistry, Faculty of Physics and Chemistry, Alzahra University,
Tehran 1993893973, Iran; ahalizadeh2@hotmail.com

* Correspondence: a.szczurek@cent.uw.edu.pl; Tel.: +48-22-554-08-11

Abstract: Doping and its consequences on the electronic features, optoelectronic features, and
magnetism of graphynes (GYs) are reviewed in this work. First, synthetic strategies that consider nu-
merous chemically and dimensionally different structures are discussed. Simultaneous or subsequent
doping with heteroatoms, controlling dimensions, applying strain, and applying external electric
fields can serve as effective ways to modulate the band structure of these new sp2/sp allotropes of
carbon. The fundamental band gap is crucially dependent on morphology, with low dimensional
GYs displaying a broader band gap than their bulk counterparts. Accurately chosen precursors and
synthesis conditions ensure complete control of the morphological, electronic, and physicochemical
properties of resulting GY sheets as well as the distribution of dopants deposited on GY surfaces.
The uniform and quantitative inclusion of non-metallic (B, Cl, N, O, or P) and metallic (Fe, Co,
or Ni) elements into graphyne derivatives were theoretically and experimentally studied, which
improved their electronic and magnetic properties as row systems or in heterojunction. The effect of
heteroatoms associated with metallic impurities on the magnetic properties of GYs was investigated.
Finally, the flexibility of doped GYs’ electronic and magnetic features recommends them for new
electronic and optoelectronic applications.

Keywords: graphyne-like materials; synthesis and doping; electronic and magnetic properties;
electronic transport; photodetectors

1. Introduction

Among all chemical elements, carbon exhibits the greatest flexibility of its first coordi-
nation sphere, which is usually presented in textbooks as sp, sp2, and sp3 hybridizations.
This plasticity leads to three available types of bonds (single-, double-, and triple-bonded
C atoms) that may occur in diverse, practically unlimited, connectivities. Altogether,
this markedly influences the allotropy of carbon, which is the richest among all chemical
elements. Familiar allotropic forms of carbon include graphite, rhombohedral graphite, di-
amond, lonsdaleite, amorphous carbon (soot with variable sp2/sp3 carbon atom contents),
and a huge variety of human-made high-specific surface area carbons, carbon aerogels [1,2],
carbon foams [3,4], glassy carbon [5,6], polyynes [7], diverse fullerenes from C12 to as
large as C960 [8,9], a multitude of single wall nanotubes [10,11], nano-onions [12], and
more. Last but not least, they include graphene, which has unique physical properties [12].
Other exotic forms such as ultra-high pressure BC8 [13,14], Po-32 [15], and ferromagnetic
carbon [16] have previously been theorized [17] (C18 was even reported [18]), but some are
still disputed. Nevertheless, this structural diversity and versatility of chemical bonding
brings an enormous pool of physicochemical properties, reactivities, and so on; crystal
structures of over 500 periodic allotropes, known and hypothesized, have been collected
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in a unique Sacada database (https://www.sacada.info/) [19]. Despite the long-lasting
research of carbon-based materials, some fundamental issues related to the shape of the
phase diagram and mutual stability of polymorphs, or even their existence, remain un-
resolved to this day [20–22]; e.g., it has been recently claimed that lonsdaleite is not a
genuine allotropic form but a twin of cubic crystals, which raised controversy [23,24]. One
illustration of the intensity of the research field of carbon materials can be provided by an
inspection of the Web of Science database; this resource lists approximately 114,000 papers
using the keyword ‘diamond’, approximately 147,000 papers discussing ‘graphite’, and
approximately 240,000 papers featuring ‘graphene’. It can be safely estimated that—even
given some overlap—well over half a million of over 90 million indexed scientific works
(1900–2021) have been devoted to carbon allotropes. The discovery of graphene triggered
the production of diverse 2D carbonaceous materials including graphone, graphane, and
graphene oxide [25–27]. Graphynes (GYs) are layered two-dimensional structures built
from sp- and sp2-hybridized carbon atoms (Figure 1A).
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tracted attention after the discovery of fullerenes [32]. Though the structure of GY was 
first proposed in 1987 by Baughman et al. [33], the demanding synthesis of GYs hindered 
their dynamic development for more than 20 years [34]. Among all the GYs, the rising-
star γ-graphdiyne (γ-GDY), seen in Figure 1B, was the first GDY member experimentally 
synthesized and reported by Li et al. in 2010 [35]. Because of the promising physical, op-
tical, and mechanical features of GYs, a tremendous amount of research effort has been 
dedicated by theoretical, applied, and synthetic chemists. It is believed that GYs might 
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Wide tunability in structural, mechanical, physical, and chemical properties make
GYs fascinating candidates for use in energy storage, solar cells, electronic and spintronic
devices, UV light detectors, as well as adsorbents in the separation of gases [28]. A GY
can be a useful catalyst in water purification [28]. GYs have shown improved electronic
properties and charge carriers in the optics and electronics industries. Graphone and
graphane are hydrogenated forms of graphene—with fundamental band gaps of 2.45 and
5.4 eV, respectively, and interesting magnetic properties—that have shown potential for
nanoelectronics and spintronics [29–31]. Due to structural similarities with graphene, these
materials are considered to be excellent candidates for carbonaceous electronic devices, and
they surely will be the subject of advanced studies for multiple and versatile applications.
Scientists have been theoretically studying graphynes since the 1980s, which initially
attracted attention after the discovery of fullerenes [32]. Though the structure of GY was
first proposed in 1987 by Baughman et al. [33], the demanding synthesis of GYs hindered
their dynamic development for more than 20 years [34]. Among all the GYs, the rising-
star γ-graphdiyne (γ-GDY), seen in Figure 1B, was the first GDY member experimentally
synthesized and reported by Li et al. in 2010 [35]. Because of the promising physical,
optical, and mechanical features of GYs, a tremendous amount of research effort has been
dedicated by theoretical, applied, and synthetic chemists. It is believed that GYs might pose
competition for more common sp2-hybridized carbon systems, particularly graphene, and
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meet the increasing demand for an alternative candidate to carbonaceous materials. Recent
years have brought a sharp increase in research interest on the synthesis and theoretical
prediction of GYs’ properties in different dimensions, e.g., one-dimensional nanowires
(such as nanotube arrays and ordered stripe arrays), and two-dimensional nanowalls (2D)
and nanosheets (2D), and 3D frameworks [36–38]. More and more works are concerning
pristine GYs’ structures enriched with diverse heteroatoms (B, F, N, O, etc.) [37]. Due
to the broad spectrum of intense scientific activities related to the development of new
forms of GYs, this work emphasizes recent developments in this field, especially dealing
with newly obtained heteroatom-doped structures and investigating the synergic effects of
heteroatoms, metal oxides, and metal ions on the electronic and optoelectronic properties
of doped GYs. In this work, we also focus our attention on theoretical and experimental
research into the magnetism of pristine and doped GYs.

2. From Atomic Structure Suggestion to Experimental Appearance

In 1987, Baughman et al. [33] proposed a novel two-dimensional allotrope of carbon
assembled by aromatic centers (sp2) linked to each other by acetylenic bridges (sp); these
were named graphynes (GYs). In the beginning, GYs (a general name given to this type
of material) were designated according to the number of carbons included in the various
rings forming a given network (shaped pores in the structure). For example, A, B, and
C networks were called 18,18,18-graphyne (Figure 2A), 12,12,12-graphyne (Figure 2B),
and 6,6,6-graphyne (Figure 2C), respectively. The latter theoretically present the lowest
energy of carbon phases consisting of flat molecular sheets obtained by inserting acetylene
linkers between the aromatic rings into the pristine honeycomb graphene structure. As
energetically favorable, the 6,6,6-graphyne has a special place in the GY family, and the
term “graphyne” without specifying the number of carbons is reserved for this phase [39].
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In 1997, Haley et al. proposed new forms of GYs called graphdiyne (GDY), a nanos-
tructure formed from two adjacent acetylenic linkers between aromatic carbon atoms in
contrast to graphyne, which is made of carbons connected by one triple bond [40]. There-
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fore, to investigate new structures, different GY networks designations were developed and
used in the literature [39,41]. Figure 2 shows several types of GY structures named in ac-
cordance with the widespread terminology including α-graphyne (Figure 2A), β-graphyne
(Figure 2B), γ-graphyne (Figure 2C), α-graphdiyne (Figure 2D), β-graphdiyne (Figure 2E),
and γ-graphdiyne (Figure 2F). The last nomenclature method named γ-graphynes with
various numbers of acetylenic linkers in a structure, such as graph-n-yne (n = 1, 2, 3 . . . ,
where n is the number of triple bonds). The mentioned nomenclature methods properly
operate when naming the most conventional GYs and GDYs. However, the graphyne
naming system causes considerable problems and should be standardized, especially for
structures containing heteroatoms. In this paper, GYs, GDYs, and their derivatives are all
briefly designated as graphyne- or graphdiyne-like structures with the abbreviation “GYs”
and “GDYs”, respectively.

In order to prepare extended structures of GYs, chemists developed versatile synthetic
methods grouped into two subsections: top-down and bottom-up [42]. The top-down
methods have the potential to obtain two dimensional structures from their bulk precursors
through processes such as mechanochemical synthesis and vapor-liquid-solid (VLS) growth.
The bottom-up formulations result in the formation of thin films or a few layers of GYs
through coupling reactions of desired substrates in carefully chosen and strictly controlled
conditions. “On-surface” coupling synthesis conducted in an ultra-high vacuum (UHVS),
chemical vapor deposition (CVD), thermal treatments, and wet-synthetic approaches are
practical subdivisions of the bottom-up method.

By summarizing the most representative and effective synthetic methods, we hope
they can create an idea and solid foundation for preparing GYs with given applications in
various research fields. The wet-synthetic strategy is the most successful and high-demand
method for the preparation of a wide range of applicable GYs, in both pristine and doped
natures. In order to facilitate understanding and comparison, the wet-synthetic methods are
classified into two categories based on the different phases where the coupling reaction of
the reactants occurs amid the synthesis process: one-phase (homogenous reaction) and two-
phase (interfacial reaction). Two-phase methods have three sub-divisions: liquid/liquid,
solid/liquid, and gas/liquid.

We intend to summarize the developments in preparation methods resulting in differ-
ent GY morphologies (nanowires, nanotubes, nanowalls, nanoribbons, nanosheets, etc.),
as well as different chemical compositions. The broad-spectrum synthesis protocols em-
ployed in cross-coupling or homocoupling reactions of graphynes’ subunits and deriva-
tives were named after their inventors as Glaser [43], Eglinton [44], Hay [45], Negishi [46],
Hiyama [47], and Sonogashira [48] reactions. All these methods, briefly presented in
Table 1, were proven to be applicable to the preparation of valuable and scientifically
important heteroatom-doped GYs.

Table 1. Synthetic methods employed in cross-coupling or homocoupling reactions for the preparation of graphyne
derivatives; year when a given method was invented is indicated.

Synthetic Method Year Condition Reaction [Ref.]

Glaser coupling 1869

- Catalyst: Cu(I)
- Oxidant: O2
- Base: ammonia
- Terminal alkyne

2 R–C≡C–H→ R–C≡C–C≡C–R [43]

Eglinton coupling 1959

- Catalyst: Cu(II)
- Base: pyridine
- Terminal alkyne

2 R–C≡C–H→ R–C≡C–C≡C–R [44]
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Table 1. Cont.

Synthetic Method Year Condition Reaction [Ref.]

Hay coupling 1962

- Catalyst: Cu(I)
- Base: tetram-

ethylethylenedi-
amine
(TMEDA)

- Terminal alkyne

2 R–C≡C–H→ R–C≡C–C≡C–R [45]

Negishi cross-coupling
reaction 1977

- Catalyst:
palladium (0)

- Nickel:
co-catalyst-

- Organic halides
or triflates

RX + R′-ZnX′ + MLn → R-R′

X = Cl, Br, I, triflate and acetyloxy
X′ = Cl, Br, I

R = alkenyl, aryl, allyl, alkynyl or propargyl
R′ = alkenyl, aryl, allyl, alkyl, benzyl,

homoallyl, and homopropargyl.
L = triphenylphosphine, DPPE, BINAP or

chiraphos
M = Ni, Pd

[46]

Hiyama coupling 1988 - Palladium (0)

R-SiR′ ′3 + R′-X→ R-R′

R: aryl, alkenyl or alkynyl
R′: aryl, alkenyl, alkynyl or alkyl

R′ ′: Cl, F or alkyl
X: Cl, Br, I or OTf

[47]

Sonogashira
cross-coupling reaction 2002

- Aqueous media
- Mild base
- Palladium (0)
- Copper as

co-catalyst

R1-X + H–C≡C–R2 → R1–C≡C–R2
R1: aryl

R2: aryl or vinyl
X: I, Br, Cl or OTf

[48]

Theoretically proposed graphynes (GYs) induced tremendous effort to find applicable
routes, resulting in the fabrication of these materials [39]. The controlled oligo-trimerization
of cyclo-carbons such as cyclo-C18 (cycle made of nine acetylenic groups) and cyclo-C12
(cycle made of six acetylenic groups) and the oxidative polymerization of monomeric
acetylenic precursors or synthetic macrocyclic compounds under Glaser–Hay coupling
conditions are potential methods for the synthesis of γ-GDY, γ-GY, β-GDY, and other
derivatives [49–52]. As an alternative strategy to investigate the potential properties of
GYs, Haley et al. proposed a method for the synthetic preparation of γ-GY and γ-GDY
substructures [40,53]. These subunits can be next used as the first block in the construc-
tion of extended GY structures. This breakthrough in synthetic approaches to alkynyl
carbon materials revealed possibilities for the synthesis of low-dimensional carbonaceous
nanomaterials involving acetylenic scaffolds [40,54–57]. Since the first report of γ-GDY
preparation in 2010, exciting progress has been made in the experimental preparation of
GYs. In the next sections, we describe different, well-developed synthetic protocols leading
to graphyne-like structures composed of C, as well as structures chemically modified by
heteroatoms (e.g., N, F, Cl, H, S, and B).

2.1. Mechanochemical Synthesis

A mechanochemical synthesis route is used in one of the most effective methods. Its
strength lies in its simplicity, rapidity, and repeatability. As a result, solid extended GYs
or their subunits with reproducible features may be produced. Under mechanical impact
and at an elevated local temperature resulting from particle collisions, selected bonds of
substrates are broken and new compounds may form in the solid-state, thus overcoming
the problems associated with solution-based chemistry processes.

The reaction of hexachlorobenzene (HCB; known as a persistent organic pollutant) and
calcium carbide (CaC2; known as an efficient and safe co-milling reagent) in a planetary



Nanomaterials 2021, 11, 2268 6 of 39

ball mill at room temperature within 20 min of milling at a mass ratio of CaC2/HCB = 0.9
and a rotation speed of 300 rpm, as proposed by Li et al. [58] in 2017, caught the atten-
tion of materials chemists in the preparation of GYs. After this development, a mature
mechanochemical approach was applied by Li et al. in 2017 for the one-step high-yield syn-
thesis of GY monomers [59]. One year later, Cui et al. synthesized hydrogen-substituted
graphyne (H-GY) and γ-graphyne (GY) via the ball-milling-driven mechanochemical
cross-coupling of 1,3,5-tribromobenzene (PhBr3), hexabromobenzene (PhBr6), and CaC2 as
precursors under a vacuum. Finally, the impurities were removed with diluted nitric acid
and benzene (Figure 3) [60,61].
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2.2. The Vapor–Liquid–Solid Growth

Synthesis reactions carried out with vapor-liquid-solid (VLS) growth allow one to con-
trol the production of different types of nanomaterials. In general, GY sheets are harvested
on carefully prepared surfaces of monocrystalline silicon coated by metallic nanoparticles
(Au, Fe, Zn, and Ni). The prepared substrate-catalyst support provides favorable phys-
ical features (surface energy, stability, and crystal structure) for the effective growth of
nanostructural materials. The VLS method was applied by Li et al. for graphdiyne (GDY)
film synthesis [62]. In their approach, powdered and vaporized GDY was deposited on
the surface of ZnO nanorods grown on a silicon wafer (Figure 4a). Liquid nanodroplets
of melted zinc (~419 ◦C) formed on one of the ends of the ZnO nanorods (ZnO NRs)
(Figure 4b) served as energetically favorable adsorption sites of incoming vapors of GDY
molecules. Due to the mixing of vapors with melted zinc, a solution of graphdiyne and Zn
was formed (Figure 4c). The continuous influx of fresh portions of GDY molecules resulted
in the formation of a supersaturated solution (GDY-Zn), as well as the fusion of drops and
an increase in their size of droplets, thereby facilitating lateral growth due to the small
edge energy of 2D materials.

2.3. Thermal Treatment

The heating of hexaethynylbenzene (HEB), N-rich precursors (2,4,6-triethynyl-1,3,5-
triazine, TET), and pentaethynylpyridine (PEP) was applied by Zuo et al. to force a homo-
coupling reaction, resulting in GDY nanostructures with different nitrogen percentages and
morphologies (nanoribbon, nanochain, and 3D-networks) [63,64]. Notably, this reaction
could be carried out without using any metal catalyst. The powder of N-rich precursors
were slowly delivered to the preheated conical flask (120 ◦C), leading to an explosive reac-
tion whereby black GDY was obtained (Figure 5a,b). A gradual heating process (10 ◦C/min)
to 120 ◦C in nitrogen converted the light-yellow HEB into black nanoribbon-like morpholo-
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gies without volume change (Figure 5c,i). On the other hand, the implementation of this
treatment in an air atmosphere resulted in GDY nanochains uniformly grown on the 3D
network with a remarkable volume increase of 6 times (Figure 5c,ii). This means that the
oxygen accelerated the dehydrogenation for the coupling reaction. However, the addition
of HEB into a preheated air environment (120 ◦C) rapidly caused a more violent reaction,
and an ultrafine nanochain with a 48-fold volume increase was obtained (Figure 5c,iii).

Nanomaterials 2021, 11, 2268 7 of 40 
 

 

 
Figure 4. The illustration of the increase in a GDY layer in the VLS process on the head of a single 
ZnO NR (a) ZnO NRs in the presence of GDY vapors, (b) Zn droplet on the head of the ZnO NRs, 
and (c) Zn droplets scattered in GDY thin film, produced by connected several neighboring flakes 
of GDY. Redrawn [62]. 

2.3. Thermal Treatment 
The heating of hexaethynylbenzene (HEB), N-rich precursors (2,4,6-triethynyl-1,3,5-

triazine, TET), and pentaethynylpyridine (PEP) was applied by Zuo et al. to force a homo-
coupling reaction, resulting in GDY nanostructures with different nitrogen percentages 
and morphologies (nanoribbon, nanochain, and 3D-networks) [63,64]. Notably, this reac-
tion could be carried out without using any metal catalyst. The powder of N-rich precur-
sors were slowly delivered to the preheated conical flask (120 °C), leading to an explosive 
reaction whereby black GDY was obtained (Figure 5a,b). A gradual heating process (10 
°C/min) to 120 °C in nitrogen converted the light-yellow HEB into black nanoribbon-like 
morphologies without volume change (Figure 5c,i). On the other hand, the implementa-
tion of this treatment in an air atmosphere resulted in GDY nanochains uniformly grown 
on the 3D network with a remarkable volume increase of 6 times (Figure 5c,ii). This means 
that the oxygen accelerated the dehydrogenation for the coupling reaction. However, the 
addition of HEB into a preheated air environment (120 °C) rapidly caused a more violent 
reaction, and an ultrafine nanochain with a 48-fold volume increase was obtained (Figure 
5c,iii).  

Figure 4. The illustration of the increase in a GDY layer in the VLS process on the head of a single ZnO NR (a) ZnO NRs in
the presence of GDY vapors, (b) Zn droplet on the head of the ZnO NRs, and (c) Zn droplets scattered in GDY thin film,
produced by connected several neighboring flakes of GDY. Redrawn [62].

The doping of carbonaceous materials with N atoms can be realized via the three fol-
lowing routes: chemical vapor deposition (CVD), the pyrolysis (annealing) of N-containing
precursors, and heating with N-rich chemicals. For instance, N-doped GDY, B-doped
GDY, F-doped GDY, and S-doped GDY have been prepared using an annealing strat-
egy [65–70]. In such a case, GDY-based nanomaterials have been thermally treated with
relevant chemicals, such as ammonia (N), B2O3 (B), NH4F (F), and thiourea (S), at a chosen
temperature [70]. The considered methods, however, suffer from drawbacks, such as the
randomness of the doping sites and uncontrolled dopant’s percentage. Therefore, there
is still a need to develop a synthetic strategy that provides 2D carbon materials with a
homogeneous distribution of atoms of the desired type and at specific desired locations.

2.4. “On-Surface” Synthesis under an Ultra-High Vacuum

The so-called “on-surface synthesis” approach is carried out under an ultra-high
vacuum (UHV) and presents considerable potential in building new types of nanomaterials.
In this method, the starting building blocks are deposited onto the surface of a metallic
substrate (Ag and Au) [71–85]. Then, the coupling of precursors occurs, resulting in single-
atom-thick 1D and 2D materials. In contrast to conventional “wet” reactions, it helps here to
eliminate possible undesired influences from surroundings. The chemical character of the
organic precursors and the nature of the applied substrate are crucial factors that determine
the final properties of GDY nanostructures [41]. Features such as the dimensionality of the
organic precursors, the reactivity of their functionalities, the geometry of the surface, and
interactions occurring between the organic building blocks and substrate have significant
effects on the reaction and molecular surface patterns. The reactivity and mass of the
used molecules have significant impacts on the success of synthesis. High reactivity or



Nanomaterials 2021, 11, 2268 8 of 39

weight may prevent them from sublimating on the surface of the substrate. On the other
hand, molecules that are too small will escape from the reaction chamber. The metallic
substrates play a double role as templates and catalysts of the coupling reaction. In the
following sections, we discuss the most effective method for the synthesis of graphyne
analog (sub-structures or infinite nanostructures) based on “on-surface” coupling reactions.
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The production of acetylenic frameworks at interfaces involving the formation of
self-assembled monolayers (SAMs) followed by a cross-linking step to form linked mono-
layers is a direct way to create carbonaceous materials such as carbyne, graphyne, and
graphdiyne [71,72]. “On-surface” homocoupling reactions requiring the detachments of
halogens or hydrogen from precursors functionalized with alkynyl groups have been
reported as effective fabrication methods of low-dimensional carbon-based nanostruc-
tures. An overview of the production of 1D carbonaceous nanomaterials via “on-surface”
approaches was previously described in the literature [73].

Rubben et al. reported a surface-assisted dehydrogenative homocoupling reaction of
terminal alkynes (Csp–H), such as triethynylbenzene (TEB) and (1,3,5-tris-(4-ethynylphenyl)
benzene (Ext-TEB), that was conducted on a Ag(111) surface, wherein the hydrogen was
the only by-product of the reaction. The authors stated that it was an ideal method for
the synthesis of individual chemicals or polymeric structures containing a conjugated
backbone (after annealing at 400 K) [74]. In 2015, Wu et al. investigated the reaction
of 2,5-diethynyl-1,4-bis (phenylethynyl)-benzene (DEBPB) taking place on the surface of
silver with different facets including (111), (110), and (100). The reaction was carried out
with the aid of scanning tunneling microscopy (STM). The Glaser synthesis conducted on
Ag(111) was dominant and yielded one-dimensional, covalently bonded wires. On the
contrary, reactions conducted on Ag(110) and Ag(100) surfaces resulted in one-dimensional
organometallic frameworks built on terminal alkynes and metal atoms. (Figure 6) [75].

Klappenberger et al. employed a Ag(877) support to obtain one-dimensional conju-
gated molecular threads as components of extended GYs with lengths reaching 30 nm [76].
Thermal dehydrogenative reactions carried out on a flat Ag(111) plate were found to
be associated with several undesirable side reactions that resulted in the formation of
branched, irregular nanostructures. Liu et al. induced a dehydrogenative reaction of
2,5-diethynyl-1,4-bis(4-bromophenylethynyl)benzene and noticed that bromine adatoms
affected the activation of C–H groups in terminal alkynes occurring at 298 K on a Ag(111)
surface [77]. The STM studies disclosed the formation of organometallic species followed
by their partial conversion to covalently bonded nanostructures after annealing at 420 K.
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In 2018, Xu et al. applied a dehalogenative homocoupling reaction to tribromoethyl-
benzene (TBP), 1,3-bis(tribromomethyl)benzene (bTBP), and 1,3,5-tris(tribromomethyl)
benzene (tTBP), and they converted tribromomethyl functional groups (Csp3) to form C–C
triple bonds (Csp) as structural motifs of dimeric structures, such as wires or 2D networks
of GYs grown on a Au(111) surface [78].

In 2020, Xu et al. created on-surface graphyne nanowires through dehalogenative
homocoupling reactions via the stepwise activation of two different types of C–Br bonds
(involving Csp3–Br and Csp2–Br) in a 1-bromo-4-(tribromomethyl)benzene (BTBMB) com-
pound on both Au(111) and Ag(110) surfaces [79]. Sun et al. also reported the successful for-
mation of dimer structures with acetylenic linkers (wires and networks) via the on-surface
C–Br activation of alkenyl carbon atoms [80]. Two-dimensional networks with acetylenic
linkages were obtained after the homocoupling reaction of 1,3,5-tris(bromoethynyl)benzene
(tBEP). In the first step, the precursor was deposited on a Au(111) surface at room tem-
perature and was slightly heated up to 320 K. As a result, organometallic networks were
obtained. The further increase in temperature up to ∼450 K led to the release of gold
atoms and the formation of the final product. Figure 7 shows STM studies of this reaction.
Considering the published results, the Ag(111) surface seems to be the most effective
substrate for Glaser coupling because it causes a smaller number of side reactions [81]
than Au(111) plates, for which the cyclization of the terminal alkyne to the benzene ring
is common [82–84]. When used as a substrate, a Cu(111) surface presented low activity
towards “on-surface” Glaser coupling. This stands in contrast to wet coupling reactions for
which Cu ions show very high catalytic activity, and Cu is regarded as the most effective
catalyst for such reactions [85].
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GDY before and after heat treatment at 450 K (b,c). Detailed STM pictures of the C–Au–C frame-
work (d), the mixture of C–Au–C networks and GDY fragments (e), and the GDY layer (f). The 
modeled structures of all considered networks are superimposed on the STM micrographs. Repro-
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2.5. “On-Surface” Synthesis by Chemical Vapor Deposition  

Figure 7. Schematic representation of the growth of the organometallic framework after the deposi-
tion of tribromophenyl on Au(111) surface (from RT to 320 K) and the formation of GDY after heat
treatment at 450 K (a). Scanning tunneling microscopy micrograph revealing the creation of GDY
before and after heat treatment at 450 K (b,c). Detailed STM pictures of the C–Au–C framework
(d), the mixture of C–Au–C networks and GDY fragments (e), and the GDY layer (f). The modeled
structures of all considered networks are superimposed on the STM micrographs. Reproduced with
permission [80]. Copyright 2016, American Chemical Society.

2.5. “On-Surface” Synthesis by Chemical Vapor Deposition

Another synthesis strategy based on the covalent coupling of organic monomers oc-
curring at the metal surface, so-called “on-surface” synthesis, is chemical vapor deposition
(CVD).

Furthermore, the CVD method is recognized as one of the most promising routes
for the creation of novel 2D materials. This approach relies on the transfer of vapors of
monomers to reaction chambers and their embedding and coupling on the surface of a
preheated metallic substrate. However, this method has severe limitations. As the reaction
is conducted on a metal substrate without any additional catalysts, the reaction stops when
the surface is fully covered with GY monolayer films (Figure 8) [86]. It has been statistically
shown that silver seems to be the most efficient substrate for carrying out such reactions.
In contrast to other investigated metallic substrates (such as Au and Cu), silver was found
to ensure the lowest proportion of side reactions [86].
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2.6. Wet Chemical Synthesis

Since the first successful fabrication of γ-GDY through a liquid/solid interfacial
reaction on Cu foil as a catalytic substrate for an acceleration coupling reaction in an
organic solvent, directed efforts have been carried out to prepare graphyne derivatives.
Homo-coupling and cross-coupling reactions of hexaethynylbenzene (HEB) as an efficient
precursor have been realized as operational pathways for the preparation of graphyne
analogs (fragments, oligomers, or infinite structures) and have recently attracted immense
attention. These methodologies employ metal salts (copper salts: Cu(I), Cu(II), or Pd(II)) in
a homogenous conditions or on a surface template, e.g., Cu foil or other arbitrary surfaces
such as graphene, Au, and 3D foam (which may have catalytic properties) to assist in a
heterogeneous reaction [41].

2.6.1. Developments of Coupling Reactions (All Reactants in Solution Phase)

The coupling reaction for the synthesis of graphyne analogs proposed by Moroni et al.
combined dibromoaryls (I) and 1,4-diethynylaryls (II) in the presence of PdCl2, Cu(OAc)2,
and triphenylphosphine (PPh)3 in a triethylamine/THF mixture (Figure 9A), where R1,
R2, R3, and R4 could be the same or different (H, NO2, alkyl ether, alkyl thioether, or alkyl
ester). Homopolymers or copolymers with phenyl, thienyl, anthryl, or stilbene groups
as aryl units were synthesized [87]. Despite this progress in synthetic methods, extended
structures of GYs are still unachievable.

The combined Negishi and Sonogashira cross-coupling reactions for the formula-
tions of various kinds of substituted hexaethynylbenzenes from chloroiodobenzenes put
researchers on a fast track towards the fabrication of GYs [88,89]. In 2007, Jiang et al.
obtained poly(aryleneethynylene) networks with highly developed porous structures. To
do so, they applied a Pd-supported Sonogashira-Hagihara reaction, which had previ-
ously been employed to synthesize different polymeric compounds such as polymers
and ligands for coordination-polymer synthesis, wires, and shape-persistent macrocy-
cles [90]. In 2010, Dowson et al. showed that porous properties (BET surface area and
pore volume) are strictly controlled by the kind of solvent used as the environment of
the reaction [91]. Toluene, tetrahydrofuran (THF), N-dimethylformamide (DMF), and
1,4-dioxane were tested for these reactions. Authors showed that DMF is the most proper
solvent, as its received nanostructures are characterized by the highest BET surface areas
(up to 1260 m2/g) [91,92]. In homogenous coupling reactions, materials chemists prepared
oligomers and macromolecules, but infinite structures are still elusive.

After 2010, remarkable progress in GY preparation was achieved. The synthesis of
poly(aryleneethynylene)s (PAEs) using Pd and Mo/W was thoroughly investigated by
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Bunz in 2010 [93]. Wu et al. utilized commercially available tris(t-butoxy)(2,2-dimeth
ylpropylidyne)-tungsten(VI) as the catalyst in the synthesis of hydrogen-substituted gra-
phyne (H-GY), as shown in Figure 9B [94]. Ding et al. prepared γ-graphyne in a homoge-
nous ultrasound-driven reaction of hexabromobenzene (PhBr6) and calcium carbide (CaC2)
in an inert atmosphere without a metal catalyst [95]. Wen et al. prepared new N-doped
graphyne analogs (Figure 9C) in the reaction of nucleophilic substitution (SNAr) of cya-
nuric chloride and para-dilithium aromatic reagents. The process was carried out under
mild conditions in a diglyme or bis(2-methoxyethyl) ether (solvents with high boiling
points) solution. That designed reaction allowed them to obtain N-GYs on a gram scale [96].
The development of GDY synthesis was a breakthrough in the preparation of different
morphologies such as films, nanowires, nanotube arrays, nanoribbons, nanosheets, and
nanowalls of GYs with versatile properties, as well as reductions in the dimensionality [97].

Graphdiyne nanoribbons (GDYNRs) comprise a class of 1D GDY materials that
stresses well-defined edges and nanometer size [97]. There have already been numer-
ous theoretical efforts regarding GDYNRs seeking connections between their structures
and properties. The results of this research are discussed in Section 3.2.3. A bottom-up
chemical formulation could provide structurally uniform and well-defined nanostructures
of GDYNRs. It is, however, necessary to perform the selective stepwise coupling of ethynyl
groups during the synthesis procedure. Zhou et al. proposed a two-step method of in-
termolecular polymerization followed by the intramolecular cross-coupling of acetylenic
moieties, as seen in Figure 9D (red fragment). First, the polymerization of the ethynyl units
in the central part of the monomer ensures one-dimensional growth (Figure 9D, red frag-
ment). Secondly, the intramolecular reaction of ethynyl groups on the established facing
side chains and the bulky groups (such as the 3,5-di-tert-butylbenzyl group) on the outer
side occurs. The latter works to sterically hinder intermolecular coupling. This strategy was
applied to build GDYNRs nanostructures (Figure 9D, blue fragment) made of rhomboid
units with benzene as junctions and butadiyne as linkers for the first time. The structures
showed a well-defined width of ~4 nm and a length of hundreds of nanometers [97].

2.6.2. Two-Phase Methods (Interfacial Synthesis Utilizing Two Immiscible Liquids)

Atomic, ionic, or molecular compounds may be successfully applied as starting
materials to the direct, bottom–up synthesis of ultrathin GDY nanostructures with in-plane
periodicity. In 2017, Sakamoto et al. strived to create graphdiyne at the interface between
two immiscible fluids (Figure 10A,B) [98].

The upper aqueous phase held copper (II) acetate and pyridine, which catalyzed
ethynyl homocoupling (Eglinton coupling). The lower dichloromethane phase contained
the HEB monomer. The continuous catalytic reaction for 24 h under an inert atmosphere at
room temperature resulted in the development of a layered GDY (thickness: 24 nm; domain
size: >25 µm). In 2019, Song et al. described the liquid/liquid interfacial formulation as
a comprehensive way to obtain GYs via a reaction between terminal ethynyl groups and
an aryl halide. The reactions catalyzed by PdCl2(PPh3)2 and CuI resulted in various
forms of GY nanostructures, including hydrogen-substituted graphyne (H-GY), methyl-
substituted graphyne (Me-GY), and fluorinated graphyne (F-GY) [99]. H-GY is a framework
consisting of duplicated sections of benzene rings joined by ethynyl linkers at all meta
sites. Likewise, the repeating units of Me-GY (or F-GY) are 1,3,5-trimethylbenzene (or
1,3,5-trifluorobenzene) rings attached to benzene rings within acetylene bridges. Two-
dimensional N-graphdiyne sheets were recently prepared via reactions conducted at the
interfaces (Figure 10D,E) [100]. Nitrogen heterocycles (triazine and pyrazine) bearing
terminal ethynyl groups were polymerized through Glaser coupling reactions at interfaces.
This procedure was expanded to the synthesis of S-doped graphdiyne (TTF-GDY) structures
comprising tetrathiafulvalene fractions (Figure 10C) and has this potential to be applied as
a robust route for the synthesis of a wide range of heteroatom-rich graphyne-like structures
in the future [101].



Nanomaterials 2021, 11, 2268 13 of 39
Nanomaterials 2021, 11, 2268 13 of 40 
 

 

 
Figure 9. Homogenous coupling reactions in the preparation of graphyne derivatives (A). Syn-
thetic scheme of the graphyne (B) and N-doped graphyne-like nanostructures (C). Redrawn 
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bons by copper(I) chloride, TMEDA, and acetone/tetrahydrofuran at RT (i); tetra-n-butylammo-
nium fluoride and THF at RT (ii); intramolecular coupling reaction of blue fragments by Cu(OAc)2 
and pyridine, H2O, and CH2Cl2 at RT (iii); R = triisopropylsilyl; TMEDA: N,N,N′,N′-tetrameth-
ylethane-1,2-diamine; RT: room temperature. Redrawn [63,64]. 
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Figure 9. Homogenous coupling reactions in the preparation of graphyne derivatives (A). Synthetic
scheme of the graphyne (B) and N-doped graphyne-like nanostructures (C). Redrawn [87,94]. (D) In-
termolecular Glaser-Hay cross-coupling reactions of red fragments for GDY nanoribbons by copper(I)
chloride, TMEDA, and acetone/tetrahydrofuran at RT (i); tetra-n-butylammonium fluoride and THF
at RT (ii); intramolecular coupling reaction of blue fragments by Cu(OAc)2 and pyridine, H2O, and
CH2Cl2 at RT (iii); R = triisopropylsilyl; TMEDA: N,N,N′,N′-tetramethylethane-1,2-diamine; RT:
room temperature. Redrawn [63,64].
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Figure 10. Homocoupling reaction in interlayer between two phases: (A) liquid/liquid and
gas/liquid (B) in the preparation of sulfur-rich graphdiyne (C) and N-graphdiyne (D,E). Re-
drawn [100,101].

2.6.3. Developments of Heterogeneous Coupling Reactions at Liquid/Solid Interfaces on
Diverse Substrates

In liquid/solid interface reactions, substrates such as copper foil, plate, foam, and
walls have been applied to bring reactants together and speed up the reaction proce-
dure [102,103]. The first γ-GDY was prepared through the heterogeneous homo-coupling
reaction of hexaethynylbenzene on copper foil, playing double roles of catalyst and sub-
strate (Figure 11A) [28]. It was reported that both the oligomer evaporation process and
the kinetics of the coupling reaction were strictly controlled by temperature [104,105]. Fur-
thermore, the factors determining the structural properties of the obtained nanostructures
were found to be catalyst distribution and monomer concentration. The formation of
γ-GDY nanowalls via the Glaser-Hay reaction was successfully carried out in the pres-
ence of N,N,N’,N’-tetramethylethylenediamine (TMEDA) due to its ease in complexing
copper ions. The copper envelope catalysis strategy was employed for the synthesis of
γ-GDY nanowalls on various substrates, including one-dimensional Si nanowires; two-
dimensional Au, Ni, and W foils; quartz; 3D stainless steel mesh; and 3D graphene foam
(GY), as seen in Figure 11B [106]. For this purpose, these were the chosen substrates used
in this method, and the target substrates were wrapped in a Cu-based envelope.
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Figure 11. Proposed reaction process of GDY nanowall formation on Cu foil (A); envelope strategy for preparation GDY
nanowalls on arbitrary substrates (B). Redrawn [35,106]; Glaser homocoupling reaction on Cu foil (liquid/solid method)
(C). Redrawn [107–112]; boron-graphdiyne (B-GDY) preparation through homocoupling reaction on Cu foil (solid/liquid
method) (D). Redrawn [113].
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Well-defined films of triazine-based graphdiyne (TA-GDY), aminated-graphdiyne
(NH2-GDY), β-GDY, H-GY, Cl-GDY, and F-GDY were prepared through Glaser homo-
coupling reactions on Cu foil (Figure 11C) [107–112]. 2,4,6-triethynyl-1,3,5-triazine, 2,4,6-
triethynylaniline, tetraethynylethene (TEE), 1,3,5-triethynylbenzene, 1,3,5-trichloro-2,4,6-
triethynylbenzene, and 1,3,5-triethynyl-2,4,6-trifluorobenzene were the respective starting
compounds (prepared from the deprotection of trimethylsilyl group by tetra-butyl am-
monium fluoride (TBAF) from corresponding silylated substrates) and were applied in
homocoupling reactions to prepare extended GYs on Cu foil. The resulting films were
peeled off from the Cu foil by a FeCl3-saturated solution and then rinsed with H2O, acetone,
DMF, and ethanol. Wang et al. prepared boron-doped graphdiyne (B-GDY) through the
aforementioned synthetic procedure, which was recognized to be an effective technique
to prepare 2D carbonaceous nanostructures with strictly controlled and well-organized
chemical structures (Figure 11D) [113]. In contrast to the copper foil, the copper nanowires
(CuNWs) worked as templates and delivered more reactive sites for developing γ-GDY
structures [114,115]. As a result, high-quality nanostructures with well-developed surface
areas were obtained. For instance, the thin films of graphdiyne (average thickness: ap-
proximately 1.9 nm) were obtained on CuNWs (100 nm in diameter) [114]. In the end,
polymeric films were isolated by washing a crude product in a mixture of hydrochloric
acid and FeCl3.

3. Electronic Properties
3.1. Dirac Cone

A Dirac cone is a distinctive feature in an electronic arrangement in which the energy
levels of the valence and conduction bands meet at one specific point in the first Brillouin
zone (named Dirac points), hence setting the Fermi level; the band structure in its vicinity
resembles a double cone with linear dispersion [116]. The presence of a Dirac cone renders
a given material “the zero-gap semiconductor” rather than metal and results in several
unusual features such as ballistic electronic transport and enormous thermal conductivity.
The occurrence of Dirac cones in graphene, predicted by Wallace in 1947 and experimentally
demonstrated by Novoselov et al. in 2005, has sparked unceasing research in recent
years [117,118]. Some efforts have been directed towards exploring the possibility of
the occurrence of the Dirac cones in GYs. The presence of Dirac cones in α-graphyne,
β-graphyne, and γ-graphyne-n with hexagonal symmetry structures was demonstrated.
Recently, Vines et al. discovered that 6,6,12-GY, with rectangular symmetry, has two
self-doped non-equivalent and distorted Dirac cones [119,120]. These results shed new
light on the electronic properties of GY-like materials and suggest that rigorous hexagonal
symmetry is not a feature that determines the appearance of cones in these materials.

3.2. Electronic Band Structure

The electronic band structures of diverse GYs and GDYs have been investigated
using theoretical methods, particularly density functional theory (DFT). Local density
approximation (LDA) and the generalized gradient approximation (GGA) have been
widely applied to study the structural, mechanical, electronic, and magnetic properties of
GYs. Nevertheless, the underestimation of the band gap levels still is one of the critical
problems of LDA and GGA. Hybrid Heyd-Scuseria-Ernzerhof-type functionals (HSE) have
improved total energy evaluation by admixing the nonlocal Hartree-Fock exchange. They
also lead to more realistic band gaps than LDA or GGA functionals. However, those
conducted calculations generate significantly higher computational costs. To describe the
van der Waals force in vdW-optPBE layered compounds, some extent of correction leads
to improved results. Next, we review theoretical studies on GYs and compare diverse
calculated parameters with the aforementioned theoretical approaches.



Nanomaterials 2021, 11, 2268 16 of 39

3.2.1. The Electronic Band Structure of GYs

The optimized geometry and electronic structures of diverse GY materials (graphyne,
graphdiyne, graphyne-3, and graphyne-4) were computed by applying the full-potential
linear combination of atomic orbitals (LCAO) approach by Narita et al. in 1998 [121].
The unit cell of all considered GY derivatives was similar to graphyne and is shown as
a parallelogram in Figure 12. This unit cell was found to contain 12 carbons, the a and b
lattice vectors were found to be equal (a = b), and the angle between them was found to be
γ = 120◦. The Brillouin zone of the investigated material was an equilateral hexagon. As
a result of geometry optimization, all bond angles are either 120◦ or 180◦ in graphyne-n.
The lattice parameters of graphyne-n structures (n = 1, 2, 3, and 4) are 6.86, 9.44, 12.02, and
14.6 Å, respectively, and binding energies are 7.95, 7.78, 7.70, and 7.66 eV, respectively. It
turned out that the reported hexagon presents a bond length almost equal to those found
for graphite. Moreover, it is a bit longer than the bond that extends outside a hexagon. The
bridges between hexagons are not formed by cumulenic linkers =C=C=; rather, they are
formed by ethynyl ones (–C≡C–). The presence of conjugated multiple bonds is a typical
feature of graphyne and its derivatives.

The indirect band gap is the separation between the conduction band minimum
(CBmin) and the valence band maximum (VBmax) within an electronic band structure,
whereas the direct band gap denotes the smallest of gaps at one particular point in the
Brillouin zone [122]. Chen et al. studied the band structures of optimized α-, β- and γ-GY
structures (Figure 12A) [123]. They showed that all investigated materials were direct
semiconductors. In the case of α-graphyne, the conduction band minimum meets the
valence band maximum at K-point in the Brillouin zone (Figure 12Ba) and symmetric Dirac
cones are formed. In the case of β- and γ-GY, the energy bands coincide at M-points in the
Brillouin zone (Figure 12Bb,c) and show quasi-Dirac cone structures, albeit with a slightly
open band gap. The values of band gaps were found to be equal to 0 eV (α-GY), 0.028 eV
(β-GY), and 0.447 eV (γ-GY) when applying the generalized gradient approximation of
the Perdew–Burke–Ernzerhof (GGA-PBE) method (Figure 12Ba–c). Moreover, γ-GDY is a
direct semiconductor with a Dirac point at the zone center (Γ point of the first Brillouin
zone).

The estimated band gaps of graphyne-like families (monolayer, bilayer, multilayer,
nanotubes, and nanoribbons) with and without strain by different functionals are com-
piled in Table 2. A wide range of band gap levels were found for γ-GY [121–129] and
γ-GDY [42,106,121,125–127,130–134] (0.447–2.23 eV for γ-GY and 0.44–1.21 eV for γ-GDY),
which is strictly related to the applied calculation functionals, as reviewed in Table 2.

The manipulation of the band structure of GYs has been attempted through strate-
gies including strain tuning, structural engineering (the fabrication of GYs with different
dimensions), doping, and the application of external electric fields. The obtained results
suggest that GYs are valuable materials for nanoelectronic and optoelectronic devices
or sensors. For example, strained graphyne-n was obtained by applying different types
of strain, including homogeneous biaxial (H-strain in both the x and y directions) and
uniaxial strains (x-direction A-strain and y-direction Z-strain), as was reported by Li et al.
in 2013 (Figure 13a) [127]. For the H-strain case, hexagonal symmetry was preserved after
the strain (Figure 13b). The A-strain deformation was found to be in the direction of the
propagation of the ethynyl linkers, while the Z-strain described deformation perpendicular
to the acetylenic linkers with bent hexagonal symmetry (Figure 13c,d). Unlike graphene,
which exhibits a band gap insensitivity to applied strain, GYs have shown band gap mod-
ulations under different straining approaches. Comprehensive studies have proven that
homogeneous tensile stress expands the band gap of GYs, whereas uniaxial tensile and
compressive strains lead to band gap decreases (Figure 13e). Direct band gaps at either the
M or S point of the Brillouin zone have been observed for both graphyne and graphyne-3
subjected to different tensile strains. In contrast, graphyne-4 and graphdiyne have been
shown to display a direct band gap established at the Γ point, whatever the nature of the
implemented strain [122,127]. Subsequent studies by Qui et al. confirmed the effect of
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biaxial tensile stress in increasing the gap of γ-GDY within the range of 0.47–1.39 eV, while
uniaxial tensile strain was found to decrease the band gap to approximately zero at the
PW91 level [134].
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Figure 12. Illustration of graphyne-n structures. The red parallelogram shows the unit cell of GYs. The Brillouin zone is
shown in the upper-right, and various acetylenic linkers are shown in the bottom-right (A); (B) band gaps (Eg) and density
of states (DOS) of α-graphyne (a), β-graphyne (b), and γ-graphyne (c). s and p describe the partial densities of states of
the s and p orbitals in carbon atoms, respectively. The sum of both elements gives a value of the total density of states.
Reproduced with permission [123]. Copyright 2018, MDPI.
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Table 2. Calculated band gaps of GYs based on different summarized methods.

Name/Percentage of
Acetylenic Linkages %

Band
Gap/Method [Ref.] Name Band

Gap/Method [Ref.]

γ-GY

0.447/PBE
0.448/PBE-D

0.45/PBE
1.2/MNDO

0.52/FP-LCAO
0.47/PBE

2.23/B3LYP
0.46/PBE
0.46/PBE

0.96/HSE06
0.94 HSE06

0.474
0.454/PBE

[122]
[122]
[124]
[33]

[121]
[125]
[125]
[126]
[127]
[128]
[127]
[128]
[129]

γ-GDY

0.5/PBE
0.44/LDA
1.10/GW

0.53/FP-LCAO
1.22/HSE06

0.46/PBE
0.52/PBE

1.18/B3LYP
0.89/HSE06
0.47/PW91
0.9/HSE06

1.21/HSE06
0.485/PBE

[130]
[131]
[131]
[121]
[132]
[133]
[125]
[125]
[127]
[134]
[134]
[106]
[129]

β-GY 0.028/PBE
0.04/PBE-D

[122]
[122] α-GY 0/PBE

0.005/PBE-D
[122]
[122]

6,6,12-GY 0/PBE [135] a Graphyne-3
0.6 at M/FP-LCAO

0.56/PBE
0.566/PBE

[121] b

[127]
[129]

Graphyne-4
0.59/FP-LCAO

0.54/PBE
0.542/PBE

[121] c

[127]
[129]

Bulk-GY 0–0.5/FP-LSDA [136] d

Bulk-GDY 0.05–0.74/HSE06 [137] d Trilayer GDYs 0.18–0.33/PW91
0.9/HSE06

[138] d

[106]

Bilayer GDYs 0.14–0.35/PW91
0.99/HSE06

[138] e

[106] (2,0)-AGDYNT (6.42 Å) 0.95/PBE [139]

(2,2)-ZGDYNT (10.25 Å) 0.65/PBE [139] (3,0)-AGDYNT (9.08 Å) 0.65/PBE [139]

(3,3)-ZGDYNT (15.56 Å) 0.55/PBE [139] (4,0)-AGDYNT (12.04 Å) 0.55/PBE [139]

(4,4)-ZGDYNT (20.81 Å) 0.5/PBE [139] AGYNRs (10–45 Å) 1.25–0.59/LDA [140]

AGDYNRs (12–62 Å) 0.97–0.54/LDA [140] ZGYNRs (14–38 Å) 1.65–0.73/LDA [140]

ZGYNRs (12–30 Å) 1.32–0.75/LDA [140] AGNRs (20 Å) 0.5/LDA [141]

AGYNRs (20 Å) 0.8/LDA [140] ZGDYNRs (19.2–28.6 Å) 1.205–0.895/PBE [133]

AGDYNRs (12.5–20.7 Å) 0.954–0.817/PBE [133] GY (−2 to +10%
A-strain) 0.87–1.47

0.4–0.17/PBE
0.87–0.56/HSE06 [127]

GY (−2 to +10%
H-strain)

0.4–0.88/PBE
0.87–1.47/HSE06

[127]
[127]

GDY (−2 to +10%
H-strain)

0.41–0.94/PBE
0.8–1.53/HSE06

[127]
[127]

GY (−2 to +10%
Z-strain)

0.37–0.3/PBE
0.83–0.71/HSE06

[127]
[127]

GDY (−2 to +10%
Z-strain)

0.39–0.21/PBE
0.78–0.56/HSE06

[127]
[127]

GDY (−2 to +10%
A-strain)

0.39–0.31/PBE
0.78–0.69/HSE06

[127]
[127]

AGDYNRs
(various n of
nanoribbon)

0.04–0.69/VASP [142]

α-GYs (0–10% H-strain) 0/PBE [123]
AGDYNRs

(various n of
nanoribbon)

0.01–
0.69/OpenMX [142]

β-GYs (0–10% H-strain) 0.028–1.469/PBE [123] ZGDYNRs (28.6 Å) 0.895/PBE [133]

γ-GYs (0–10% H-strain) 0.447–0.865/PBE [123] Graphene/0 0 [143]
a Lattice constant of a = 9.44 Å and b = 6.90 Å; b lattice constants of a = 12.02 Å; c lattice constants of a = 14.6 Å; d AAA configuration
presents metallic band structure; e AA stacked structure shows also metallic behavior.
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3.2.2. The Electronic Structure of GDYs

Heteroatom doping is an effective method to alter the band structure of graphyne-
like structures. The effect of the functionalization of sp-carbon atoms in γ-GDY on band
structure was thoroughly investigated by Koo et al. in 2014 [130]. The hydrogenation of
acetylenic linkers increased the band gap from 0.49 to a maximum of 5.11 eV, while fluori-
nation increased the band gap up to 4.5 eV. Figure 14A–C illustrate different configurations
for monolayered N-graphdiyne holding different numbers of C and N atoms varying from
24 to 42 entitled C18N6, C24N4, and C36N6, respectively, as reported by Singh in 2019 [144].
A hexagonal lattice was observed for C18N6 (a = 16.04 Å) and C36N6 (a = 18.66 Å), while
C24N4 presented a rectangular unit cell (a = 15.97 Å; b = 9.67 Å). All considered crystals dis-
played semiconducting performance, with band gaps of 2.20 eV (C18N6), 0.50 eV (C24N4),
and 1.10 eV (C36N6) [144].

The high-temperature treatment of carbonaceous materials is a conventional method of
heteroatom doping. Until now, nitrogen-, sulfur-, and phosphorous-doped GDY derivatives
have been prepared by this technique [65–69,145,146]. Chen et al. constructed X-doped
graphdiynes by replacing a carbon atom (named C1, C2, and C3) (Figure 14Da) in GDY with
heteroatom X, where X = B, N, P, and S. As a consequence, five models for N- (N1, N2, N3,
pdN, and NH2), three models for each B- (B1, B2, and B3), P- (as P1, P2, and P3), and S- (S1,
S2, and S3) doped GDY were constructed. The pdN and NH2 models represent the GDY
structures doped with pyridinic nitrogen (Figure 14Db) and amino-derived functionalities
(Figure 14Dc), respectively. The carbon atoms were divided into three classes that were
labeled C1, C2, and C3 according to the arrangement of the structure. Additionally, nine
adsorption sites, as indicated by red dots, were investigated in discussed studies.

The doping of pristine GDY with diverse elements (B, N, P, or S) has been found to
result in a decrease in the band gap for all analyzed models when using spin-polarized DFT
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computations and PBE functionals [146]. When the concentration of the dopant was about
1.4 at%, N- and P-doped GDYs were found to be metallic, while doping with boron and
sulfur was found to reduce the band gap of starting GDYs from 0.46 to 0.16 and 0.28 eV,
respectively. The further decrease in the band gaps was induced by an increase in dopant
concentration. B-doped GDYs were found to become metallic after adding 5.6 at% of boron,
whereas the band gap of S-doped GDYs decreased to 0.09 eV (Model S3). The planar
structure of GDY after doping with B or N atoms was found to be preserved. Due to larger
atomic radii of P and S atoms, the out-of-plane distortion of planarity, except for P3 and S3
models, was observed. In terms of the cohesive energies, N, P, and S elements were found
to prefer the X2 position, while boron favored the X1 position.

In 2019, Yang et al. theoretically studied the changes in electronic properties caused by
the adsorption of H2 and O2 atoms on GDY [147]. As Figure 14E shows, there were
nine possible sites for their adsorption: three top sites (T1, T2, and T3), two hollow
sites (H1 and H2), and four bridge sites. It was shown that the most stable adsorption
positions are those located at T2 and H2. The adsorption of atoms on the GDY surface is
related to the generation of distinguished high adsorption energies (GDY/H = 3.73 eV;
GDY/O = 7.53). The latter meant that strong chemical interactions occurred between the
adsorbed atoms and the surface. When H atoms were adsorbed, an inadequate 0.1 eV
reduction in the band gap was observed. On the contrary, the adsorption of oxygen led to
a higher band gap (an increase of 0.2 eV). Furthermore, the introduction of oxygen species
to the structure resulted in weak magnetism because of the broken spin degeneration.
With the advancement of research with single-layer GYs, researchers have turned their
attention to other geometric shapes such as one-dimensional graphyne family members
(e.g., nanoribbons and nanotubes) and three-dimensional ones represented by few-layer
systems with different stacking arrangements.
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3.2.3. The Electronic Band Structure of GY Nanoribbons

A nanoribbon (NR), as a 1D derivative of infinite GY sheets, is an example of tuning
a band gap by changing the geometry of 2D monolayer GYs. Armchair (AGYNRs) and
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zig-zag (ZGYNRs) graphyne nanoribbons (differing in widths) were obtained by cutting
through a graphyne (or graphdiyne) film along the x and y directions terminated to a
benzene ring or acetylene group [140,142]. Gao et al. investigated nanoribbons with
benzene rings at their edges. Figure 15 shows AGYNR and ZGYNR arrangements, where
n is the number of recurring segments. In contrast to AGYNRs, the n number in ZGYNRs
can vary by a half-integer (n + 1/2).
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The band gap of the nanoribbon decreased as the width increased because the ribbon
tended to revert to a two-dimensional structure; in such a case, the expected band gap
of the ribbon was 0.5 eV. The results confirmed that all considered nanoribbons showed
semiconductive features, where band gaps were controlled by the widths and the nature of
the edge. With the DFT-LDA method, the calculated energy gaps of AGYNR graphyne-
based nanoribbons were in the range of 0.59–1.25 eV, while ZGYNRs showed band gaps
ranging from 0.75 to 1.32 eV. In the case of graphdiyne nanoribbons (GDYNRs), the energy
gaps were in ranges of 0.54–0.97 eV and 0.73–1.65 eV for armchair (AGDYNRs) and
zig-zag (ZGYDNRs) configurations, respectively. The effects of the edge arrangement
(AGDYNTs and/or ZGYDNRs) of graphdiyne nanotubes (GDYNTs) on band structure
were investigated in detail by Shohany et al. [139]. All GDYNTs under investigation
exhibited semiconducting behavior, with a fundamental band gap ranging from 0.65 to 0.5
for AGDYNTs and from 0.95 to 0.55 for ZGDYNTs, as summarized in Table 2.

Kang et al. reported that an intersecting electric field could provoke the giant Stark ef-
fect in one-dimensional nanostructures, leading to a diminished or even disappeared band
gap [148]. In comparison with other band gap modification approaches, the experimental
control of an electric field seems to be a much easier way to play with GYs’ band gaps. The
effect of an electric field on the band structures of GDYNRs and the band gap decreased as
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the electric field strength increased due to the strong localization of band-edge states. The
band gap decreasing rate was found to be linearly dependent on the ribbon width.

3.2.4. The Electronic Band Structure of Bulky GYs and GDYs

It was shown that 3D graphynes, thanks to the different stack arrangements, could
be considered to be both as semiconductors and metals. In 2000, Narita et al. applied the
first-principle calculations using a full-potential linear combination of the atomic orbitals
method and local-spin-density approximation (LSDA) to optimize the geometry and inves-
tigate the electronic properties of one AAA stacking arrangement structure represented as
α and three ABA configurations denoted as β1, β2, and β3 of three-dimensional graphyne
(Figure 16a) [136].
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could be observed, consequently leading to the overlapping of conduction and valence 
bands in α and β3. The optimized plane lattice constant (a) and bond lengths were nearly 
the same as in 2D graphyne The calculated interlayer distance (d) of graphyne (~3.3 Å) 
was longer than that of graphite (3.17 Å). However, the greater core/core repulsion be-
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Figure 16. ABA stacking arrangements of 3D graphyne. The A and B sheets are represented by grey
and pink structures (a). Redrawn [136]. (b) Optimized arrangements of double-layer GDY labeled
AB(β1) and AB(β2) (red top layer and grey bottom layer, respectively); (c) three potential forms of
the trilayer GDYs: ABA(γ1), ABC(γ2), and ABC(γ3) arrangements (blue top layer, red middle layer,
and grey bottom layer). Redrawn [138]. (d) AB-1, AB-2, and AB-3 represent structures of bulk GDY.
Red arrows show the directions of the in-plane shift of two sheets in the cell. Redrawn [108].

In Table 3, it was shown that interactions occurring between orbitals 2pπ in α and β3
were greater than those appearing in β1 and β2. As a result, a large split of the π orbitals
could be observed, consequently leading to the overlapping of conduction and valence
bands in α and β3. The optimized plane lattice constant (a) and bond lengths were nearly
the same as in 2D graphyne. The calculated interlayer distance (d) of graphyne (~3.3 Å) was
longer than that of graphite (3.17 Å). However, the greater core/core repulsion between
neighboring sheets in α and β3 resulted in lower binding energies compared with those
found for β1 and β2. Furthermore, the obtained values were approximately 90% of the
binding energy of graphite (8.867 eV/atom). This may suggest that graphyne is metastable
while it is formulated. In contrast, the more stable nanostructures of β1 and β2 exhibited



Nanomaterials 2021, 11, 2268 23 of 39

semiconducting properties. The band gap of β1 was equal to 0.19 eV at the M and L points,
whereas the energy gap of β2 was 0.50 eV at the L point. Thus, three-dimensional graphyne
was assumed to have layered β1 and β2 organizations and semiconductive features with
appropriate energy gaps.

Table 3. Optimized lattice constant, interlayer distance, binding energies, and band gap for 2D and 3D graphyne and
graphite a.

Lattic Constant (Å) Interlayer Distance (Å) Binding Energy (eV/atom) Band Gap [Ref.]

α 6.86 3.51 7.948 0 [136]

β1 6.86 3.27 7.963 0.19 [136]

β2 6.86 3.28 7.962 0.5 [136]

β3 6.86 3.34 7.957 0 [136]

2D GY 6.86 - 7.951 0.52 [121]

graphite 2.46 3.17 8.867 0 [136]
a Using the projector-augmented wave method and the PBE functional.

In 2012, Zheng et al. conducted PW91 calculations and showed that the most stable bi-
layer and trilayer GDYs had their hexagonal rings arranged in the AB (direct Eg = 0.35 eV)
and ABA (indirect Eg = 0.33 eV) configurations, respectively [138]. The decline in en-
ergy gaps, compared with monolayer species (0.46 eV), was caused by the occurrence
of interlayer interactions. The application of an external electric field has been shown
to be an effective technique to control the electronic and optical properties of few-layer
graphyne-like materials. The two most stable arrangements for bilayer GDY (AB(β1) and
AB(β2), owning band gaps of 0.35 and 0.14 eV, respectively) are depicted in Figure 16b.
The stable trilayer configurations labeled ABA(γ1), ABC(γ3), and ABC(γ2) were found
to present band gaps as high as 0.32, 0.33, and 0.18 eV, respectively (Figure 16c). The less
stable AA and AAA configurations of GDY exhibited metallic properties.

In 2013, Nagase et al. employed a vdW-optPBE functional to investigate the relation-
ships between the optical and electronic features of bulky GDY nanomaterials and their
configurations. The obtained results were next compared with the results obtained using
Heyd-Scuseria-Ernzerhof (HSE06) and LDA functionals [137]. They found that the AA
configuration presented the lowest structural stability, accompanied by three AB configura-
tions with energy gaps equal to 0.05, 0.74, and 0.35 eV, respectively. The investigations of
Leenaerts et al. on the two-layer α-GY revealed that its band structure was qualitatively
different from its single-layer derivative and was affected by the stacking modes of the
two layers [149]. The AB staking arrangements exhibited a zero-gap feature similar to
the AB configuration of bilayer graphene. It was shown again that electronic properties
may be controlled by an applied electric field. The fluorinated GDY exhibited direct semi-
conductive behavior, with band gaps equal to 2.17 (AB stack-1) and 2.30 eV (AB stack-2),
which were more than that of pristine GDY (~0.46 eV) (Figure 16d) [108]. Furthermore,
the theoretically estimated band gap of the AB stack-1 configuration was consistent with
the experimental value. The experimentally determined band gap of randomly fluori-
nated triazine-based graphyne by XeF2, reported by Szczurek et al., ranged from 3.12 to
3.34 eV and grew with increasing fluorine concentration [150]. An increase in the band gap
upon the fluorination of acetylenic bridges is consistent with the decoupling of benzenic
chromophores. Multilayer boron-graphdiyne (B-GDY) was comprehensively studied by
Li et al. [113]. The calculated band gap energy of the monolayer showed that B-GDY was a
direct band gap semiconductor at the Γ point with a value of 1.2 eV, which corresponded
well to the experimentally derived band gap (1.1 eV) of the synthetic compound.
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3.3. Electronic Transport

The carrier mobility of different forms of GYs and GDys was theoretically predicted
by Chen et al. In their experiments, the Boltzmann transport equation coupled with
the deformation potential theory was applied to a-GY, b-GY, 6,6,12-GY, and GDY, and
graphene was used as a reference. The obtained results revealed that almost all GYs and
GDYs showed charge mobility values lower by one order of magnitude than graphene.
6,6,12-GY was an exception and presented a higher charge mobility (in the a direction) of
around 25% for holes and 37% for electrons than the charge mobility found for graphene.
Furthermore 6,6,12-GY presented a tremendous anisotropy of charge mobility along the a
and b axes. The high carrier mobility of 6,6,12-graphyne might be explained by weaker
electron–phonon coupling energy and longer relaxation times. Moreover, the rectangular
arrangement of the 6,6,12-graphyne framework might cause the anisotropy of charge
mobility in the structure [135].

In 2018, Nasri and Fotoohi theoretically investigated the electronic transport charac-
teristics of a device built on N-doped (right electrode) and boron-doped (left electrode)
α-armchair graphyne nanoribbons [151]. Four different devices differing in N and B substi-
tution sites (sp or sp2) were proposed (Figure 17A). The current–voltage characteristics of
the considered systems revealed effective non-linear behavior that led to the generation of
a p–n junctions, which, in turn, resulted in rectifying behavior. The rectification properties,
however, heavily depended on the deposition site of dopant atoms. The devices with
doping atoms substituted on sp2 sites (sp2–sp and sp2–sp2) showed a rectification ratio
of around ten times lower than those having doping atoms attached to sp sites (sp–sp
and sp–sp2) measured in the same bias region (Figure 17B). The rectifying behaviors of
the described devices may be associated with asymmetric electrode arrangements. The N
and B dopants caused crucial variations in electronic structures of α-graphynes, as they
generated new sub-bands in valence (VB) and conductive (CB) bands. Those sub-bands
seemed to ensure effective conduction and rectification in the described devices. This
finding was supported by measurements conducted on pristine α-graphyne nanoribbons.
The device built on the latter showed no rectification effect due to the symmetry of both
electrodes. The suitability of graphyne and its h-BN (hexagonal boron nitride) derivatives
(h-BNynes) to work as a field-effect transistor (FET) was theoretically investigated by Jhon
et al. in 2014 [152]. With the aid of non-equilibrium Green’s function combined with the
density functional theory (NEGF–DFT) method, they examined the electronic transport of
graphene–graphyne–graphene devices by varying graphyne size and carbon chain length.
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Figure 17. The scheme of devices built on an armchair graphyne nanoribbon (AGyNR) doped with
boron and nitrogen atoms (A). The I-V curves of doped devices confronted with a pristine system;
the inset figure shows the rectification ratio, RR (V), of all doped systems (B). Reproduced with
permission [151]. Copyright 2018, Elsevier. The schemes of STM devices designed for the investiga-
tion SMC of carbobenzene, hexabenzocoronene, and carbo-n-butadiene (DBA). The molecules were
attached via NH2 linkers to gold STM electrodes; TIPS: triisopropylsilyl (C). The single molecule
conductance (SMC) and gate potential (VG) relationship found for the carbo-benzene sample. In this
experiment trihexyl tetradecyl-phosphonium-bis(2,4,4-trimethylphenyl)phosphinate) was applied
as the electrochemical gating electrolyte and the bias voltage was constant (0.1 V); SCE: saturated
calomel electrode (D). Redrawn [153].

The concept of such constructed transistors was based on the outstanding electronic
mobility of graphene and non-zero band gap graphyne, along with structural/compositional
similarities between graphene and graphyne, being robustly connected between graphene
electrodes. DFT calculations revealed that both graphyne and h-BNyne-based thin-film
transistors (TFTs) showed good on/off ratios on the order of 102–103. Noteworthily, the
size of such transistors might be reduced to below 1 nm while maintaining good switching
features. Electronic orbital analysis disclosed that, contrary to h-BNynes, electrons in the
conduction and valence orbitals were considerably delocalized in graphyne TFTs. The latter
finding may suggest that graphyne TFTs could offer more facilitated electron mobilities
than h-BNynes.

Single molecule conductance (SMC) was experimentally and theoretically investi-
gated by Li et al. [153]. The measurements were performed using a scanning tunneling
microscope, where the α-graphyne unit was chemically attached to the Au electrode and
the STM tip. Amine (NH2) functionalities were used as an anchoring agent due to their
ability to create molecular joints with negligible conductance aberrations (Figure 17C).
The measurements conducted on α-graphyne and hexabenzocoronene representing the
graphene molecular unit revealed that the α-graphyne units showed much higher con-
ductance (106 nS, 1.9 nm) than the shorter units (1.4 nm), thus potentially being more
conductive than hexabenzocoronene (14 nS). This unusual behavior originated from the
electronic structure of both compounds. It turned out that the α-graphyne units had smaller
HOMO-LUMO gaps than the graphene molecular units, so the transmission through the
α-graphyne core was higher. The high molecular conductance of α-graphyne molecules
also came from their rigid and planar structure. The measurements revealed that carbo-
butadiene wires showed a single molecular conductance that was 40 times smaller than that
found for α-graphyne. The reason for this feature lies in the flexibility of the n-p-conjugated
DBA framework, capable of adopting diverse geometries. The transport properties of differ-
ent conformations of DBA molecules carried out with the NEGF-DFT model were strongly
influenced by the measure of the rotation angle around the –C–C=C–C– sites. The increase
in twist angle resulted in a higher HOMO-LUMO gap and thus a lower transmission
between them. Finally, it was shown that the α-graphyne-based device showed excellent
gating properties, understood as an increment of the SMC with increasing negativity of the
gating potential (Figure 17D). Furthermore, the on/off ratio found for α-graphyne had an
order of magnitude of ~15.
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3.4. Optoelectronic Properties

The optical features of N- and B-doped graphynes were theoretically studied by
Bhattacharya and Sarkar [154]. The investigated structures presented, similar to pris-
tine graphyne, optical anisotropy independent to the direction of applied electric field
(Figure 17A, first column). The authors found that below an energy of 0.4 eV, the optical
response was governed by the intra-band shift coming from free charges (Figure 18A,
second column). The analysis of the static dielectric tensors revealed that doped graphynes
showed a better electric conductivity and higher mobility of charges than pristine GY,
creating the opportunities for their application in optoelectronics. The spin-polarized
optoelectronic properties of α-graphyne were theoretically investigated by Yang et al.
using NEGF–DFT [155]. They showed that photocurrents were generated by irradiating
investigated devices with different light wavelengths (from UV to IR), and the polariza-
tion of the formed photocurrents strictly depended on the type of contact applied. Both
M1 and M2 devices (Figure 18B) produced spin-down photocurrents, whereas the M2
device could also generate spin-up ones (Figure 18C). It was revealed that photocurrents
might also be guided by reversing the electrodes’ magnetization. Generally speaking, two
spatially separated spin photocurrents appeared on the antiparallel polarized electrodes.
Functionalization is another approach to manage the optoelectronic characteristics of GY
and GDY nanostructures. Theoptoelectronic application of Gdy:ZnO nanocomposites was
experimentally investigated by Jin et al. [156] Their experiment involved measuring I–V
characteristics in the dark and under the influence of UV radiation. When the samples were
illuminated, an increase in current due to light absorption was observed. Chronoamperom-
etry was employed to record the rise/decay time of the current measured without and with
light irradiation. The obtained results revealed that the current changes strongly depended
on the photochemical character of investigated devices. The junction created between
the GDY and ZnO nanoparticles strongly enhanced the charge transfer between these
components and, consequently, the photoresponse. The GDY:ZnO/ZnO system manifested
an excellent optical response of 1260 A W−1, with a rise/decay time as short as 6.1/2.1 s.
The device built only on zinc oxide nanoparticles held a responsivity of 174 A W−1 and
a much more extended rise/decay time (32.1/28.7 s). Li et al. proposed deep UV pho-
todetectors (Figure 18D) based on TiO2:GDY nanocomposites [157]. The published results
proved that the considered composites were suitable as UV photodetectors, disclosing an
outstanding optical response of 76 mAW−1 and a rise/decay time of 3.5/2.7 s. The cited
examples show the promising and efficient properties of graphyne derivatives. Their high
charge mobility, on/off ratio, and photoresponse makes them prospective materials for
constructing nanoscale electronics and optoelectronics.

It is noteworthy that metal oxide dopants in GDY nanocomposites, the optoelectronic
amplifiers, do not seem to be mandatory additives. Zhang et al. constructed metal-
free, flexible photodetectors built on GDY:PET composites. Those built devices were
characterized by excellent mechanical, electronic, and optoelectronic properties. The
experimentally investigated responsivity and photocurrent reached outstanding values
of 1086.96 µA W−1 and 5.98 µA cm−2, respectively. Moreover, the considered composites
showed good photoresponses, even after undergoing 1000 bending and twisting cycles.
The recorded loss in photocurrent was 25.6% (bending force) and 35% (twisting force) [158].
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with permission [157]. Copyright 2020, Elsevier.

4. Magnetism of Pure and Doped Graphyne-Like Materials
4.1. Theoretically Investigated Magnetic Properties

Local defects and substituents in carbonaceous materials might provoke supercon-
ducting or ferromagnetic features that can even appear at ambient temperature. Until
now, magnetism in carbon has been experimentally revealed for (i) interacting radicals, (ii)
carbons with a mixed hybridization (sp2 + sp3), (iii) amorphous carbonaceous materials
doped with trivalent atoms (P, N, or B), (iv) diverse nanostructures (graphite, diamond,
and foams), and (v) fullerenes [159–162]. Apart from that, vicinity to metallic ferromagnets
or the contamination of transition metals (Fe, Cr, or V) has been shown to generate spin
polarization in carbon structures [159,160,162]. Localized magnetism and the zig-zag rib
of graphene nanoribbons or neighboring vacancies and dangling bonds in pure carbon
structure are representative of this concept. The theoretical considerations and fruitful syn-
thesis of monolayer graphyne have led to considerable interest in research on the magnetic
properties of pure or/and doped graphyne structures.

4.1.1. Metal-Doped GYs

The magnetic features found in materials with electrons occupying only s and p or-
bitals, rather than the traditional d or f ones, might be remarkably appealing to spintronic
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applications. However, the source of magnetism in pure carbonaceous materials is not
fully understood. In this section, we report works addressing the magnetic properties of
GYs. The effect of dopant distribution and functional groups on adjusting the electronic
or magnetic properties of GYs might lead to new promising electronic, optoelectronic,
and spintronic devices. The calculations revealed that unmodified γ-graphyne is a non-
magnetic semiconductor [128], while the adsorption of transition metal (TM) atoms might
drastically change the electronic structure of and add ferromagnetic features to GY nanos-
tructures [163,164]. In 2012, He et al. theoretically investigated (DFT + U) the electronic
structure and magnetism of GDY and GY doped with single 3d transition metals (V, Cr, Mn,
Fe, Co, and Ni) [164] The adsorption of metal atoms on the GDY and GY surfaces generated
charge transfer between metallic adatoms and polymeric sheets. Moreover, the adsorption
might generate electron redistribution in the s, p, and d orbitals of transition metal atoms.
Except for vanadium, the mentioned factors caused decreases in the magnetic moments
of adsorbed metals (Cr, Mn, Fe, and Co). Additionally, they were ranked as follows:
Cr > Mn > V > Fe > Co for TM-GDY and Cr > V > Mn > Fe > Co for TM-GY; see Figure 19A.
The energy of spin polarization (∆Espin), taken as the difference between the nonmagnetic
and magnetic states, was higher than 1.1 eV, suggesting the substantial stability of the
spin-polarized states of transition for metal-doped GDY and GY nanostructures.

In 2017, Lee et al. applied DFT calculations to investigate the doping efficiency of
the transition metals of 3d, 4d, and 5d groups deposited on a γ-GY surface [165]. For this
purpose, different high-symmetry adsorption sites such as top (T), bridge (B), and hollow
(H) were chosen, as depicted in Figure 19B. It was shown that adatoms typically occupy the
H1 sites over ethynyl rings of γ-graphyne (taking Fe (µB: ~2.08) as an example). The lower
atomic radii of Co (µB: ~1), Ni (µB: ~0), and Cu (µB: ~0), as well as Re (µB: ~1), caused
those dopant atoms to be preferably placed at the H3 sites of the acetylenic rings. Magnetic
moments of metals of the 4f group were found to be higher in comparison with 3d transition
metals, and lanthanides with sufficiently large atomic radii are good candidates to be
introduced in GY rings. Ren et al. used comprehensive first-principle calculations to study
the magnetic properties of β-GY doped with different rare-earth (RE) atoms (La, Ce, Pr, Nd,
Pm, Sm, and Eu) [166]. The β-GY was found to undergo a transition from semiconductor
to metal. The introduction of external atoms such as neodymium, promethium, samarium,
and europium (local magnetic moments in the range of 4.1–7.3) were able to translate into
higher values of magnetic moments for metal-graphyne complexes (>4.1 µB). As expected,
the carbon atoms neighboring dopant atoms were found to have a modest contribution to
generated magnetic moments. In 2014, Alaei et al. studied two zig-zag graphyne nanotubes
(ZGYNTs) and two armchair graphyne nanotubes (AGYNTs) doped with iron, cobalt, and
nickel [167]. It was shown that a 12-membered ring (12-C), a hollow site surrounded by
acetylenic linkers in GY, was the most preferable (the most stable) site for the deposition
of those metals. The adatoms nested in the plane of the ethynyl rings and formed bonds
with adjacent carbons. Complexes of Fe (µB: ~2.06) and Co (µB: ~1) with different GYNTs
were magnetic and showed many features typical of metals, semimetals, half semimetals,
and half-semiconductors [168]. Ni complexes (µB: ~0.01) were found to be nonmagnetic
semiconductors exhibiting energy gaps narrower than those found for starting nanotubes
(Figure 19A).

4.1.2. Non-Metal Doped GYs and GDYs

The electronic properties and magnetism of GYs can be also driven by applying
diverse non-metal doping agents. In 2014, Drogar et al. stated that widening the band
gap (~2 eV) and provoking a magnetic moment (~1 µB) of α-GY could be realized via the
simple hydrogenation reaction of the latter due to the cleavage of π-bonds and the creation
of unpaired electrons [169]. Subsequently, in 2018, Wang et al. studied the tuning of mono-
and bilayer GY features after the hydrogenation of different carbon atoms in GY [170].
Unlike the distribution of µB in TM-GY, in which the magnetism derives from the d- or
f-electrons, the unpaired 2p electrons essentially provide the magnetic moments at the
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non-hydrogenated carbons of GY. As indicated in Figure 19C, there are two sites (C1 (T) and
C2 (B)) on which hydrogenation can occur. Twelve hydrogen atoms are located at Ti sites in
the aromatic ring and the B1 sites in acetylenic linkers of GY nanosheets. It was observed
that the magnetic moment of the monolayer reached a maximal value (1.59 µB) for three
hydrogen atoms, whereas the magnetic moments progressively declined to 0 µB when the
number of hydrogen atoms varied from 4 to 6. These results suggest that the hydrogenation
of half C atoms (sp- or/and sp2-hybridized) may result in a maximal magnetic moment,
similarly to what was found for graphene [171]. Theoretical calculations of the total
magnetic moments of bilayers with different stacking arrangements yielded values larger
than 1.52 µB. DFT is the most frequently utilized computation method to investigate the
electronic properties and magnetism of single-layer graphdiyne (GDY) doped with non-
metallic elements, such as boron, nitrogen, oxygen, phosphorous, or sulfur [172]. The
position of dopant atoms has a profound impact on the relevant characteristics of GDYs.
Three possible places for doping are aromatic carbons (X-b) and two carbons in ethynyl
linkers (X-1 and X-2), depicted in Figure 19D. Considering the cohesion energies found
for the studied structures, one can conclude that boron and sulfur prefer to exchange
the sp2 aromatic carbons. In turn, the N, O, and P atoms favor substituting the carbons
in the ethynyl bridges. It was shown that nitrogen atoms deposited on both GDYs and
GY monolayers did not modify their magnetic properties, and all of them remained
nonmagnetic [154]. In contrast, GDY structures doped with B, O, P, or S (structures X-1
and X-2) deposited at acetylenic chains offered spin polarization and were magnetic (µB
varying from 0.31 to 1.26 depending on the type of dopant and applied functionals). The
deposition of these elements at the aromatic site did not alter magnetic features, and doped
GDYs were nonmagnetic.
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4.2. Experimentally Investigated Magnetic Properties

Following comprehensive theoretical studies on the magnetic properties of modified
GYs, efforts have been directed to experimentally explore and measure magnetism in
GYs [173]. In 2017, Huang et al. investigated the impact of N doping on the paramagnetic
properties of GDYs and demonstrated the crucial role of nitrogen atoms deposited on
the benzene ring in building the local magnetic moment [174]. Based on the M-H curves
(Figure 20A,B) measured for GDY and N-GDY at 2 K, the authors showed that N-GDY
and GDY presented low magnetization values of 0.96 and 0.51 emu/g, respectively. The
magnetization obtained for N-GDY containing 5.29% of N atoms was on the same level as
the value found for fluorinated RGO [175]. These results contradicted recent theoretical
findings, which claimed that N in a chain or ring is non-paramagnetic. As such, more
research is required to find the origination of paramagnetism [154,172].

Nanomaterials 2021, 11, 2268 32 of 40 
 

 

 
Figure 20. M–H curves obtained at 4.2 K (A) and 2 K (B) for GDY and N-GDY. Obtained results 
were fitted to the Brillouin function with J = 1/2 (solid line) and J = 1 (dashed line) (B). Spin-re-
solved DOS of N-GDY films with nitrogen atoms deposited on the benzene ring in GDY. The up-
per panel (C,D) shows the paramagnetic S = ½ system, while the bottom one the antiferromagnetic 
one (E,F). Reproduced with permission [174]. Copyright 2017, Springer Nature. 

Further research aiming to discover the relationship between doped heteroatoms and 
magnetization in GY structures continued. In 2017, Zheng et al. [176] reported that, con-
trary to pyridinic-N, the vacancy, carbonyl, and hydroxyl functionalities of GDY contrib-
ute to the magnetic properties of thermally treated GDYs. Furthermore, DFT calculations 
indicated that the OH groups at the chain of the GDY layer are a considerable source of 
unpaired electrons and may favor antiferromagnetism in annealed GDY. Moreover, the 
annealing of GDY at 600 °C (GDY-600) may lead to complex magnetic properties, depend-
ing on the applied measurement temperatures. Paramagnetic characteristics could be no-
ticed below 50 K, and a hump seen in the range of 50–200 K demonstrated that both par-
amagnetic and antiferromagnetic phases coexist in the considered materials. 

In 2019, Huang et al. investigated the effect of sulfurization on the induction of fer-
romagnetic characteristics into GDYs. They found that S-doped GDY presented strong 
residual magnetization (>0.047 emu/g) at ambient temperatures. The investigated systems 
were characterized by the transition temperature being close to 460 K [177]. The local mag-
netic moment and electron interactions occurring between C and S atoms were found to 
be responsible for the appearance of the ordered internal ferromagnetism in the investi-
gated materials. The ferromagnetic behavior was also confirmed by magnetic hysteresis 
(M−H) loop measurements with different temperatures. In order to investigate the influ-
ence of sulfur doping on magnetic properties of GDY, temperature-dependent magnetic 

Figure 20. M-H curves obtained at 4.2 K (A) and 2 K (B) for GDY and N-GDY. Obtained results were fitted to the Brillouin
function with J = 1/2 (solid line) and J = 1 (dashed line) (B). Spin-resolved DOS of N-GDY films with nitrogen atoms
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The spin-polarized calculations proved that a distinct local magnetic moment (µB = 0.98)
originates from nanostructures with deposited asymmetric pyridinic nitrogen (Py-1N),
seen in Figure 20C,D. The structures bearing symmetric pyridinic nitrogen substitution
(Py-2N) or N atoms attached to ethynyl linkers appeared to be nonmagnetic (Figure 20E,F).
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Finally, the investigated systems did not show any ordered ferromagnetic or ferrimagnetic
properties.

Further research aiming to discover the relationship between doped heteroatoms and
magnetization in GY structures continued. In 2017, Zheng et al. [176] reported that, contrary
to pyridinic-N, the vacancy, carbonyl, and hydroxyl functionalities of GDY contribute to the
magnetic properties of thermally treated GDYs. Furthermore, DFT calculations indicated
that the OH groups at the chain of the GDY layer are a considerable source of unpaired
electrons and may favor antiferromagnetism in annealed GDY. Moreover, the annealing
of GDY at 600 ◦C (GDY-600) may lead to complex magnetic properties, depending on the
applied measurement temperatures. Paramagnetic characteristics could be noticed below
50 K, and a hump seen in the range of 50–200 K demonstrated that both paramagnetic and
antiferromagnetic phases coexist in the considered materials.

In 2019, Huang et al. investigated the effect of sulfurization on the induction of fer-
romagnetic characteristics into GDYs. They found that S-doped GDY presented strong
residual magnetization (>0.047 emu/g) at ambient temperatures. The investigated systems
were characterized by the transition temperature being close to 460 K [177]. The local mag-
netic moment and electron interactions occurring between C and S atoms were found to be
responsible for the appearance of the ordered internal ferromagnetism in the investigated
materials. The ferromagnetic behavior was also confirmed by magnetic hysteresis (M-H)
loop measurements with different temperatures. In order to investigate the influence of
sulfur doping on magnetic properties of GDY, temperature-dependent magnetic suscepti-
bility χ-T curves (the applied magnetic field H = 500 Oe) and magnetization M-H curves
for GDY350 and S-GDY by VSM were measured (Figure 21a–d) [177]. These findings are
very promising in terms of S-doped GDY suitability in magnetic storage devices.
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5. Mechanical Properties of Graphynes

Graphene with an intrinsic tensile strength of 130 GPa, and Young’s modulus equal to
1TPa is recognized as the strongest material ever tested [178]. Zhang et al. theoretically
investigated mechanical properties of different forms of GYs (α-, β-, γ-, and 6,6,12-GYs), as
well as graphene used as a reference [179]. The tensile stress (~125 GPa) and Young’s mod-
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ulus (0.99 TPa) obtained by molecular dynamic calculations confirmed the extraordinary
mechanical resistance of graphene. In contrast, all considered graphynes presented 50–70%
lower mechanical strength than graphene, whereas the decline of tensile stress and Young’s
modulus of graphynes was strictly related to an increasing amount of acetylenic linkage. A
similar dependence of elastic properties on the proportion of acetylenic bridges in α-, β-,
γ-graphynes was also observed by Hou et al. in 2014 [123]. Noteworthy, a deviation from
the hexagonal structure of graphene and graphynes, as it happens for 6,6,12-graphyne,
resulted in the appearance of anisotropy of mechanical properties measured along with x
(zig-zag) and y (armchair) directions [179,180]. The anisotropy in mechanical and electronic
properties makes 6,6,12-graphyne useful in diverse potential applications.5.

6. Conclusions and Outlook

Synthetic methods for the preparation of graphyne-like structures doped with het-
eroatoms and controllable size and dimensions were collected and summarized. Doping
(i.e., the replacement of carbon atoms or covalent bond formation with foreign atoms) meth-
ods such as heating and annealing techniques have crucial drawbacks in the preparation of
carbon materials; uncertainty in the values and position of heteroatoms, along with the
destruction of the intrinsic properties of pristine materials, are inevitable disadvantages.
To avoid the abovementioned flaws, engineering the surface of GYs to include desired
heteroatom is necessary. Different methodologies have been successfully applied with
high reproducibility to prepare a wide range of GYs with ordered structures in which
heteroatom occupy predictable positions on the surface. The adjustment of morphology
(such as 1D, 2D, and 3D) and composition (doping with N, P, F, S, Cl, H, O, B, etc.) are
influential approaches to modulate the band structures and (subsequently) electric, optical,
and magnetic properties of graphyne-like structures. The size- and composition-dependent
band structure, electronic transport, spin-polarized optoelectronic properties, or photosen-
sitivity, and appearing magnetic moment of these allotropes of carbon material have been
investigated. There is an understanding that research into the magnetic properties of carbon
materials is still in its infancy stage, and there is a substantial gap between calculations and
experimental findings. Though this topic needs many more firm, particularly experimental
discoveries, it is already clear that this type of material could be exploited in spintronics
technology. Benefiting from the high specific capacity, remarkable cycle performance, and
inflated adsorption capacity of ions and gases, GYs could also have a promising future for
applications in electrochemical energy storage such as batteries, capacitors, and hydrogen
fuel cells. Theoretical research has proved GY’s usefulness for not only understanding
but also predicting the structures and properties of new modified systems as well as for
preselecting those that most merit experimental study.
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