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Abstract: Hand gesture recognition and hand pose estimation are two closely correlated tasks. In this
paper, we propose a deep-learning based approach which jointly learns an intermediate level shared
feature for these two tasks, so that the hand gesture recognition task can be benefited from the hand
pose estimation task. In the training process, a semi-supervised training scheme is designed to solve
the problem of lacking proper annotation. Our approach detects the foreground hand, recognizes
the hand gesture, and estimates the corresponding 3D hand pose simultaneously. To evaluate the
hand gesture recognition performance of the state-of-the-arts, we propose a challenging hand gesture
recognition dataset collected in unconstrained environments. Experimental results show that, the
gesture recognition accuracy of ours is significantly boosted by leveraging the knowledge learned
from the hand pose estimation task.

Keywords: hand gesture recognition; hand pose estimation; joint learning; shared feature

1. Introduction

People interact with each other using hand gestures in everyday life. Hand gesture
recognition is an important research topic which has a wide range of applications, such
as robotics, human-computer interaction, assistant driving, and so on. Gestures can
be classified into two categories: static gesture [1–4] (which is commonly referred to
as “gesture” for short, and in sign languages it is also referred to as “handshape”) and
action [5–7] (i.e., “dynamic gesture”, and in some papers it is also referred to as “gesture”
for short). Different from action recognition which requires video devices or continuous
image sequences as input, static gesture recognition requires only a single image as input,
thus it can be conveniently and flexibly applied in many scenarios. Furthermore, static
gestures are basic components of actions, and static gesture recognition can serve as a key
component embedded in action recognition applications. In this work, we focus on the
static hand gesture recognition [1–4]. And the word “gesture” denotes static gesture by
default for convenient in the following text.

Hand gesture recognition [1,4] and hand pose estimation [6,8,9] are two closely corre-
lated tasks. A specific hand gesture is commonly associated with a specific hand pose. The
hand gesture recognition task focuses on classifying an input image to a gesture category,
while the hand pose estimation task explicitly recovers more information, such as positions
of finger joints, view point, rotation, scale, and so on. As the hand gesture recognition
performance can be affected by the factors related to hand pose, the hand pose information
recovered from the input image will be helpful to improve the hand gesture recognition
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task. However, most of the methods address these two tasks separately, and thus the
relationship between the hand gesture and the hand pose are not fully explored. Some
methods [2,10,11] recognize the hand gesture directly based on the result of hand pose
estimation, but inaccurate hand pose leads to false gesture classification, and the hand
gesture recognition performance will be bounded by the upper-limit of the hand pose
estimation accuracy.

In this paper, we propose a deep-learning based approach which effectively transfers
the hand pose estimation knowledge to the hand gesture recognition task by joint learning
an intermediate level shared feature. The shared feature contains not only the information
for classifying hand gesture, but also the extra information for predicting hand pose (i.e.,
relative hand pose, rotation, translation, and scale), which helps improve the gesture
recognition accuracy. In our approach, the hand gesture recognition task is not directly
based on the hand pose estimation result, but is based on the intermediate level shared
feature which contains the information of both the two tasks. The hand gesture can be
correctly classified even from images with inaccurate hand pose estimation.

To jointly train a shared feature for both the gesture recognition and the pose esti-
mation tasks is not easy, and the difficulty primarily lies in lack of proper annotation. In
the standard joint learning process, both the hand pose and hand gesture annotations are
required. However, existing datasets focus on either hand gesture recognition or hand
pose estimation, and it is difficult to find a dataset which contains both these two types of
annotations.

To tackle this problem, a semi-supervised training scheme is designed to extract the
shared feature from hand images with only hand gesture annotation or hand pose anno-
tation. In this manner, the hand pose estimation knowledge learned from the hand pose
estimation dataset can be transferred to the hand gesture recognition task. Furthermore,
an image reconstruction task is introduced to further benefit the semi-supervised training
process. The image reconstruction task encodes the input image to a low dimensional latent
code and then reconstruct the image from the code. With this task, the training process can
be further benefited from hand images with even no annotation.

Most of the methods recognize static hand gestures in simple constrained environ-
ments, (e.g., indoor, simple background, single person or single hand per image, etc.).
However, the real life environments are complex and unconstrained. As can be seen in
Figure 1, in an unconstrained scene, there may exist many disturbing factors, such as clut-
tered environments, unrelated people, background hands, and so on. In order to evaluate
the hand gesture recognition performance of the state-of-the-arts in real life, we propose a
challenging hand gesture recognition dataset in which the images are collected in cluttered
environments, and the number of hands per image is up to eight. The dataset contains
both foreground hands (which are performing specific gestures) and background hands.

Figure 1. The proposed approach detects hands, recognizes the foreground hand gesture, and
estimates the hand pose simultaneously. The red boxes denote the detected background hands, the
green box denotes the detected foreground hand which is performing a gesture, the label attached to
green box denotes the recognized gesture, and the right figure zoom in on the corresponding hand
pose estimation result.
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It is noted that some works [7,12] also jointly learn the relationship between gesture
and pose, but these works are either focus on actions (dynamic gestures) [7], or human
body activity [12]. In [7], the actions (dynamic gestures) is recognized by utilizing temporal
hand pose feature which requires video clips (or continuous image sequences) as input.
Whereas our approach focuses on static hand gesture recognition, and the shared feature is
extracted from a single color image.

In summary, the main contributions of our work are three-fold:

• We propose a hand gesture recognition approach by joint learning a shared feature for
gesture recognition and pose estimation. The proposed approach effectively transfers
the hand pose estimation knowledge to the hand gesture recognition task.

• We design a semi-supervised training scheme to jointly learn the shared feature from
hand related datasets. The hand gesture recognition task can be benefited from hand
images without hand gesture label, or even without any label.

• We propose a challenging hand gesture recognition dataset collected in complex
unconstrained environments for evaluation purpose. Experimental results show that,
the proposed approach outperforms that of the compared methods by a large margin.

The rest of the paper is organized as follows—the related works about hand gesture
recognition, hand pose estimation, and hand detection are reviewed in Section 2. Details
of the proposed method are illustrated in Section 3. The proposed CUG-Hand dataset
is introduced in Section 4, and then the experimental results on CUG-Hand and LaRED
datasets are presented in Section 5. The dataset and the related code will be released on
https://github.com/waterai12/CUG-Hand-Gesture.

2. Related Work

Hand gestures can be recognized from different data sources, such as images [1,4],
video clips [5], wearable sensors [13,14], and so on. In this paper, we focus on hand gesture
recognition from a single color image, as color image can be conveniently accessed and
managed with very low cost. Traditional hand gesture recognition methods primarily
utilize hand crafted low-level features, such as SIFT [15,16], image moments [17], Gabor
filters [18], and so on. In recent years, deep-learning based methods have significantly
boosted the gesture recognition performance. In [17], the gesture is recognized by com-
bining traditional low-level feature and Convolutional Neural Network (CNN) high-level
feature. In [19], deep features are extracted from point clouds for SVM classification. In [20]
stacked denoising auto-encoders are used to classify gesture category of hand. In [3], the
hand gestures are detected and classified by a soft attention mechanism. In [4], a deep
CNN-based end-to-end system is proposed to detect hand and recognize the hand gesture.
Different from previous works, we train a deep shared feature by exploring the relationship
between hand gesture recognition and hand pose estimation.

Hand pose estimation is a task closely related to hand gesture recognition. In the last
few years, hand pose estimation from single images [2,6,8,9,21,22] has become a research
hotspot. In [23], the hand pose is estimated from monocular color image by 3D hand model
fitting. In [9], the 3D hand prior is implicitly learned from a deep CNN network. In [24], an
image-to-image translation model is used to generate realistic hand pose data. In [25,26],
the hand pose is estimated by exploring the latent space learned by generative model.
In [21], the Graph Convolutional Neural Network is used to reconstruct the 3D hand pose
and shape. In [22], the hand pose is estimated by structured region ensemble network.
However, most previous works study the hand gesture recognition and the hand pose
estimation tasks separately, and the relationship between the two is not fully investigated.

To explore the relationship between gesture and pose, many researchers conduct
the human body gesture/action recognition directly based on the body pose estimation
result [27–30], as the human body pose can be reliably estimated from input images [28].
Some research works also recognize the hand gesture/action based on the hand pose
estimation results. For example, Lie group manifold theory [6], SPD manifold learn-
ing [31], Random Forest [2], and LSTM network [10,32] are used to recognize the hand

https://github.com/waterai12/CUG-Hand-Gesture
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gesture/action based on the hand pose estimation results. However, the bottleneck of these
works lies in the performance of the hand pose estimation. Comparing to the body, the
hand is much smaller and be with more complex articulations. The pose estimation of the
hand is not as reliable as that of the body, and existing works [33–38] are normally applied
in near range scenario. In practice, accurate hand pose produces accurate gesture classifi-
cation, and inaccurate hand pose leads to false gesture classification. If the hand gesture
is recognized directly based on the hand pose estimation result, the gesture recognition
accuracy will be bounded by the upper-limit of the pose estimation accuracy.

Instead of directly using the pose estimation result for recognition, some researchers
jointly train the action recognition and the pose estimation tasks. In [39], the action
recognition and body pose estimation are learned jointly in a multitask framework. In [40],
a hierarchical structure model is used to combine action recognition and pose estimation
tasks. In [7], hand action recognition and hand pose estimation are collaboratively learned
by exploring the temporal pose feature with multi-order. Different from previous works
which focus on action (dynamic gesture) recognition from continuous image sequences,
our approach focuses on hand gesture recognition from a single image where the temporal
information is unavailable. Besides, the previous works primarily utilize datasets with both
action and pose annotations [41], but there exists no dataset containing both static hand
gesture and hand pose annotations. To overcome the problem of lacking proper annotation,
a semi-supervised joint learning scheme is proposed to effectively learn a shared feature
for these two tasks.

Existing hand gesture recognition methods are normally evaluated in constrained
environments [42,43] (e.g., simple background, single hand per image, or cropped hand
image patches). Some research works [3,4] increase the complexity of the scene in some
extent, but still there is only single person/hand per image. In real-life scenario, there may
exist many unrelated people and many background hands which make the foreground
hand detection difficult. Therefore, it is necessary to detect hand for gesture recognition.
In [44], skin color is used for hand detection. In [45], hand is detected by a Support Vector
Machine (SVM) classifier based on HOG feature. In [46], the deep and shallow layers are
combined for hand detection. In [47,48], hand detection and hand orientation prediction is
learned jointly. In [49], hand appearance reconstruction is employed to make the detection
model more accurate. In this work, we not only detect hands, but also distinguish the
foreground hand which is performing a gesture from the background hands. Furthermore,
we proposed a challenging hand gesture recognition dataset captured in unconstrained
environment, and the dataset can be used to evaluate the performance of the state-of-the-
art.

3. Methods

The proposed approach aims at hand gesture recognition from single color images
in complex unconstrained environment. It takes a single color image as input, detects the
foreground hand, recognizes the gesture of the foreground hand, and estimates the 3D
hand pose simultaneously. The output of the approach is the 2D location (bounding box),
gesture category, and 3D pose of the detected foreground hand. As can be seen in Figure 2,
the proposed approach contains 5 modules: (1) foreground hand detection, (2) shared
feature extraction, (3) hand gesture recognition, (4) hand pose estimation, and (5) hand
image reconstruction. The network can be trained by a semi-supervised learning scheme
when the hand pose annotation or the hand gesture annotation is unavailable. Details of
the approach will be addressed as follows.
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Figure 2. The framework of the proposed approach.

3.1. Foreground Hand Detection

Taking a single color image as input, we detect all hand instances and distinguish
the foreground hand instances from the background hand instances. We use FPN [50] as
backbone for foreground hand detection. FPN takes the activations of the last 4 stages
of ResNet as input, and generates the multi-level feature maps. And then, the Region
Proposal Network (RPN) takes the multi-level feature maps as input, and generates a set of
region proposals. On each pixel of the feature maps, K region proposals are parameterized
relative to K reference anchors. Following [51], we use three scales and three aspect ratios,
yielding K = 9, and we adopt parameterizations of region proposal as follows:{

tx = x−xa
wa

, ty = y−ya
ha

, tw = log w
wa

, th = log h
ha

t∗x = x∗−xa
wa

, t∗y = y∗−ya
ha

, t∗w = log w∗
wa

, t∗h = log h∗
ha

,
, (1)

where x, y denote the two coordinates of the box center, and w and h denote width and
height of the box. Variables x∗, xa and x are for the region proposal box, anchor box,
and ground truth box respectively (likewise for y, w, h). A ROI pooling layer extracts
feature for each region proposal. And then, the foreground hand prediction step predicts
whether the proposals are foreground or background hands, and it further refines the
region proposals. After foreground hand prediction, another ROI pooling layer crops the
hand image corresponding to the region proposal from the original color image.

The objective function of foreground hand detection is defined as follows:

Ldetection = Lrpn + L f hp, (2)

where Lrpn is the loss of RPN, and L f hp is the loss of foreground hand prediction.

Lrpn =
1

Ncls
∑

i
Lcls(pi, p∗i ) +

1
Nreg

∑
i

piLreg(ti, t∗i ). (3)

Here, i is the index of an anchor, pi is the ground-truth label of whether anchor i
is a hand, and p∗i is the predicted probability. ti is the ground-truth vector representing
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the 4 parameterized coordinates defined in Equation (1), and t∗i is the corresponding
prediction. The classification loss Lcls is log loss over two classes (hand vs. non-hand). The
regression loss Lreg is smooth L1 function defined in [52]. The term piLreg means that the
regression loss is activated only for positive anchors (pi = 1) and is disabled otherwise
(pi = 0). The loss L f hp is defined similar to Lrpn, and their difference is that the Lcls of
Lrpn considers two-class classification (hand/non-hand), while the Lcls of L f hd considers
three-class classification (foreground-hand/background-hand/non-hand).

3.2. Shared Feature Extraction

We use a lightweight CNN network [53] as a backbone for shared feature extraction.
The network is efficient and accurate, and it is suitable to be adopted into embedded
systems such as mobile phone. Following [53], the shared feature extraction network is
constructed using basic units named inverted residual block. The intermediate expansion
layer in the block uses lightweight depth-wise convolutions.

The foreground hand image patch is resized to a uniform size, and then it is fed
into the network for shared feature extraction. The shape of input hand image patch is
256× 256× 3, in which 256× 256 denotes the image size and 3 denotes the number of
input channels (color image has 3 channels). The data passes through a series of inverted
residual blocks, and the output is of shape 8× 8× 1280, in which 1280 denotes the number
of output channels. An average pooling layer is used to map the output of the network
to a shared feature of dimensional 1280. Similar to VAE [54], we generate a latent code
with Gaussian distribution. The shared feature is fed to a conv1× 1 layer to estimate the
parameters of the Gaussian distribution of the latent code, that is, the mean µ and the
logarithmic standard deviation σ. And then, a sample g is calculated using µ, σ and a
standard Gaussian distributed noise Φ as follows:

g = µ +
eσ

2
×Φ. (4)

The mean µ will be used for hand gesture recognition and hand pose estimation, and
µ, σ, g will be used for image reconstruction. These tasks will be explained in the following
three subsections.

3.3. Hand Gesture Recognition

We adopt a series of fully connected layers to classify the hand gesture category
by using the shared feature. The 1280 dimensional shared feature is converted to the
128 dimensional latent code through a conv1× 1. And then the mean µ of the latent code
is converted to a 512 dimensional hidden code through a fully connected layer. After
the ReLU activation, the 512 dimensional hidden code is converted to a C dimensional
vector X = [x1, x2, ..., xc]T ∈ R1×C, where C denotes the number of categories in the gesture
recognition dataset. And then, so f tmax function is applied on this vector to calculate
the score of each gesture category. The gesture with the maximum score is taken as the
classification result.

The loss function of hand gesture recognition is defined as the cross entropy between
the predicted gesture and the ground truth:

Lgesture(X, class) = − log

(
eXclass

∑C
i=1 eXi

)
= −Xclass + log

(
C

∑
i=1

eXi

)
, (5)

where class ∈ (1, 2, ..., C) represents the gesture category index, and Xclass represents the
score of the predicted gesture with the category index of class.

3.4. Hand Pose Estimation

The hand pose is defined by the set of 3D joint coordinates {Pi = (xi, yi, zi)} with
i = 1 · · · J, in which J = 21 denotes the number of hand joints. As the hand size is
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unknown, to estimate the absolute 3D hand pose from single color image is an ill-posed
problem. Following the previous work [9], we estimate the relative 3D hand pose {Prel

i =

(xrel
i , yrel

i , zrel
i )}. The length of the first bone of the middle finger of {Prel

i } is normalized to
a uniform size of 1, and the origin of hand is defined as the root of the middle finger. Let
pi = (ui, vi) denote the 2D projection of Prel

i in image patch. The projection of the 3D hand
joint to 2D image is defined as

pi = Π
(

R · Prel
i

)
· s + t, (6)

where Π(·) denotes the 2D projection function. We adopt the orthogonal projection function
in this study. R ∈ SO(3) denotes the 3D rotation of the hand. s ∈ R and t ∈ R2 denote
the scale and the 2D in-plane translation respectively. We define the view parameter
V = (R, s, t). The rotation R is parameterized as Euler angles of 3D, and therefore the view
parameter V is of 6D.

The mean µ of the latent code generated by the shared feature is fed into the hand
pose estimation network to estimate the relative 3D hand pose and the view parameter.
The hand pose estimation network contains two fully connected layers, and the activation
function is ReLU. The number of neurons in the first hidden layer is 256, and that of the
second hidden layer is 128. Two linear layers convert the output of the second hidden layer
to the relative 3D hand pose and the view parameter respectively. The loss function of
hand pose estimation is defined as follows:

Lpose = Lrel + Lview =
J

∑
i=1
‖ ˆPrel

i − Prel
i ‖2

2 + ‖ V̂ − V ‖2
2, (7)

where Lrel denotes the loss of the relative 3D hand pose estimation, Lview denotes the loss
of the view parameter estimation, Prel

i and ˆPrel
i denote the ground-truth and the estimation

of the relative 3D hand pose, V and V̂ denote the ground-truth and the estimation of the
view parameter.

3.5. Hand Image Reconstruction

Hand image reconstruction [49] is employed as an auxiliary task to improve the
generalization ability of the network. Following the idea of VAE, the hand image recon-
struction module reconstructs the hand image using the sample g which is calculated using
Equation (4). The same as [49], we apply a series of deconvolutional layers to reconstruct
the hand image. The loss function of hand image reconstruction is defined as follows:

Lrecons =‖ Irecons − Irel ‖1 +
1
2
(uTu + sum(eσ − σ− 1)), (8)

where the first term is the L1 distance between the original hand image and the recon-
structed hand image, and the second term is the KL distance between the latent code
probability distribution and the standard Gaussian distribution.

3.6. Semi-Supervised Learning

The total loss function of the training process is defined as follows:

L = λ1Ldetection + λ2Lgesture + λ3Lrel + λ4Lview + λ5Lrecons, (9)

where the terms Ldetection, Lgesture, Lrel , Lview and Lrecons have been described before, and
λi (i = 1 · · · 5) are the balancing weights whose values can be set to 1 or 0. The term
Ldetection requires 2D hand location annotation, the term Lgesture requires the gesture cate-
gory annotation, the term Lrel requires the relative hand pose estimation annotation, term
Lview requires the full hand pose annotation, and the term Lrecons requires no annotation.
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Existing datasets contain either hand gesture recognition annotation or hand pose
estimation annotation, and it is difficult to find a dataset which contains all the annotations
mentioned above. To tackle the problem of lacking annotation, we adopt a semi-supervised
learning scheme. For datasets with different annotations, the balancing weights λi will be
switched on or off accordingly. Specifically, for the images with detection annotation, the
weight λ1 is set to 1, otherwise 0. For the images with gesture category annotation, the
weight λ2 is set to 1, otherwise 0. As a specific hand gesture is associated with a specific
relative hand pose, the weight λ3 is set to 1 when the gesture annotation is available. For
the images with hand pose annotation, the weights λ3 and λ4 are set to 1, otherwise 0. The
weight λ5 is always set to 1, because the hand image reconstruction requires no annotation.

4. CUG-Hand Dataset

The dataset contains 1757 color images, in which 1273 images are used for training,
and 484 images are used for testing. The resolution of the image is 1280× 720. The images
are collected from 27 distinct subjects. The number of subjects on a single image varies
from 1 to 7, which results in up to 8 hands per image. The dataset contains static ASL
hand gestures, and the number of classes is 24 (the dynamic ASL gestures j and z are not
included). In each image, there exist many background hands and a foreground hand
performing an ASL hand gesture. In the training images, there are 5024 background
hand instances and 1273 foreground hand instances. And in the testing images, there are
1485 background hand instances and 484 foreground hand instances. The area of the hand
bounding boxes varies from 238 to 73,062 pixel2. The CUG-Hand dataset provides the
bounding boxes of all hand instances, and the gesture category of the foreground hands.
The dataset does not have hand pose annotation.

5. Experiments
5.1. Experimental Setting

All the experiments are performed on a computer with a NVIDIA 1080Ti GPU. The
proposed approach is implemented with PyTorch [55]. The network is trained using an
Adam optimizer [56] with an initial learning rate of 1× 10−3. The learning rate is multiplied
by 0.1 every 10 epochs. The training process terminates after 20 epochs. The batch size is
32, and the input images are resized to a uniform resolution of 256× 256. As the existing
static hand gesture recognition datasets do not have hand pose annotation, we leverage
the hand pose estimation knowledge by using the STB hand pose estimation dataset [57].
The STB dataset contains about 18 k stereo images with a resolution of 640 × 480, and the
corresponding 3D hand pose annotations are provided.

5.2. Gesture Recognition on LaRED Dataset

The LaRED dataset [43] is a hand gesture recognition dataset. The dataset contains
27 basic gestures, and most of which are taken from American Sign Language. For each
basic gesture, there are three different orientations, which results in totally 81 classes.
Following the previous work [4], the metric AC is used to measure the hand gesture recog-
nition accuracy. AC is the ratio of the number of samples correctly classified by the classifier
to the total number of samples. The gesture recognition results of the compared methods
are shown in Table 1. As the LaRED dataset is collected in constrained environment, the
performance of the state-of-the-art on this dataset is approaching saturation. The AC of
Adam et al. is 97.25%, and the AC of Ours is further improved to 99.96%. The accuracy of
Ours is about 2.7 point higher than that of Adam et al.
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Table 1. Gesture recognition results on LaRED dataset.

Methods on LaRED Datasets AC(%)

SVM 73.86
DBN 74.90
SAE 86.57

Adam et al. 97.25
Ours 99.96

5.3. Gesture Recognition on CUG-Hand Dataset

We collect the hand image patches (each image patch contains a single hand) in
the CUG-Hand dataset, and recognize the gesture category of each image patch. In
the experiments, following methods are compared: (1) HOG+SVM [58]; (2) ResNet [59];
(3) Adam et al. [4]; (4) Baseline1, gesture recognition based on the hand pose estimation
result; (5) Baseline2, our approach without pose estimation and image reconstruction; (6)
Baseline3, our approach without pose estimation; (7) Baseline4, our approach without image
reconstruction; (8) Ours, our proposed approach.

The AC and the computational time per image of the compared methods are shown
in Table 2. In the table, the column “Use Pose” denotes whether to use the hand pose
estimation module. As the CUG-Hand dataset does not contain hand pose label, we learn
the hand pose estimation knowledge from the STB hand pose estimation dataset using the
semi-supervised learning scheme. And the column “Reconstruct” denotes whether to use
the image reconstruction module.

Table 2. Gesture recognition accuracy and efficiency of the compared methods. The column “Use
Pose” denotes whether to use the hand pose estimation module. The column “Reconstruct” denotes
whether to reconstruct the image reconstruction module.

Methods Use Pose Reconstruct AC (%) Time Per Image (ms)

HOG+SVM × × 61.4 11.7
ResNet × × 85.7 51.7

Adam et al. × × 84.3 2.5
Baseline1

√
× 64.8 6.0

Baseline2 × × 86.6 4.7
Baseline3 ×

√
87.8 5.3

Baseline4
√

× 89.0 4.8
Ours

√ √
91.1 5.7

HOG+SVM is a classical gesture recognition method, and its AC is 61.4%. ResNet is
one of the most accurate image classification methods, and it outperforms the classical
HOG+SVM by 24.3 points with the deep convolutional feature. Adam et al. is one of the
most state-of-the-arts for hand gesture recognition, and it is accurate and efficient. The AC
of Adam et al. is slightly lower than ResNet, but its computational efficiency per image is
about 20 higher than that of ResNet. Overall, the experimental results show that, the AC of
Ours is significantly higher than that of the compared methods by a large margin, and the
computational time per image of Ours is also very efficient (5.7 ms per image, that is, about
175 frames per second).

Baseline1 denotes conducting the gesture recognition directly based on the hand pose
estimation result, and its AC is 64.8. As inaccurate hand pose estimation result leads to
false gesture classification, the AC of Baseline1 is much lower than that of other baselines. It
is better to jointly learn the relationship between the hand pose and the hand gesture using
intermediate level shared feature. The AC of Baseline2 is 86.6. Comparing to Baseline2, the
AC of Baseline3 is improved by 1.2 points with the image reconstruction module, and the AC
of Baseline4 is improved by 2.4 pints with the hand pose estimation module. Comparing to
Baseline3, the AC of Ours is improved by 3.3 points with the hand pose estimation module.
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The experimental results show that the hand pose estimation module significantly benefits
the gesture recognition task.

The ROC curves of the compared methods are shown in Figure 3. The true positive rate
is correlated with the false positive rate. The target is to achieve high true positive rate with
low false positive rate. In other words, the closer the ROC curve be to the top-left corner,
the better the ROC performance is. As can be seen in the figure, the ROC performance
of Ours is better than that of the compared methods. The gesture recognition confusion
matrix of Ours is shown in Figure 4. The x-axis denotes the predicted gesture category of
the sample, and the y-axis denotes the ground-truth of the sample. The higher probability
on the diagonal of the confusion matrix is, the more accurate the gesture recognition is.
As it can be seen, most of the gesture categories can be accurately classified, while some
gestures are more difficult to be recognized than the others. In the ASL alphabet, some
static hand gestures are very similar to other gestures, for example, “K”, “V”, “M”, “N”,
“S”, “T”. It is hard to distinguish these “difficult” gestures when the distance from the hand
to the camera is not near or the lightening condition is not well. For example, the gesture
“M” may be falsely classified as “N” by a rate of 0.15.

By leveraging the hand pose knowledge in the STB dataset, the proposed method can
predict the gesture as well as the 3D joints/skeletons of hand images in CUG-Hand dataset
which does not have hand pose annotation. The 3D hand pose estimation results of Ours
are visually shown in Figure 5. The 3D joints are projected onto the cropped image plane,
and the more tightly the skeletons align to the hand, the more accurate the estimated pose
is. As can be seen in Figure 5a, the predicted 3D skeletons can well align to the the hands
in image. And the failure cases are shown in Figure 5b.
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Figure 3. The ROC curve of the compared methods.
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Figure 5. Hand pose estimation results on CUG-Hand dataset.
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5.4. Gesture Detection on CUG-Hand Dataset

In complex unconstrained environments, there may exist multiple hands. We detect
all hand instances with different gesture categories in unconstrained environments. The
gesture detection accuracy is evaluated using the mAP metric defined in the object detection
field [51]. Firstly, we calculate the Average Precision (AP) of each class with an IOU
threshold of 0.5, and then the mean AP of all classes is defined as

mAP =
1
N

N

∑
i=1

APi, (10)

where N denotes the number of classes, i denotes the class index, and APi denotes the
AP of class i. In this study, N = 25, that is, 24 ASL hand gestures and background hand.
The following methods are compared: (1) FasterRCNN [51], one of the most widely used
object detection baselines in the computer vision community; (2) Adam et al. [4]; (3) Ours,
the proposed approach.

The mAP of the compared methods are shown in Table 3. The hand gesture detec-
tion accuracy of Ours is the highest among that of the compared methods. The mAP of
FasterRCNN is 63.5, and that of Ours is 18.8 points higher than that of FasterRCNN. The
mAP of Ours is also 12.1 points higher than that of Adam et.al. The precision, recall, and F1
score of Ours are 87.5, 75, and 80.7 respectively, which are significantly higher than that of
FasterRCNN and Adam et al. The Precision Recall (PR) curves of the compared methods are
shown in Figure 6. The detection AP of Ours for each gesture category is shown in Table 4.
And the hand gesture detection and pose estimation results of Ours are visually presented
in Figure 7. By leveraging the hand pose estimation knowledge, the detection accuracy of
the proposed approach is significantly improved.

The hand detection task is correlated to the human body parts detection task. When
both hands and body parts annotations are available, exploring the relationship between
hands and body parts will be helpful to improve the hand detection precision. However,
existing hand gesture datasets normally contain hand annotation only, therefore our ap-
proach detects hands without explicitly exploring the information of other body parts. As
the hand detection does not rely on the body part detection, it can successfully work when
only hand appears (i.e., no other body part appears). Our hand detector inherits from our
previous works [49,60]. In [60] it is shown that, our hand detection scheme works better
than OpenPose [61] (a famous human body estimator which detects all body parts) in
terms of hand detection, because OpenPose cannot correctly detect hands when other body
parts do not appear. The relationship between hand detection and body parts detection is
an interesting topic, and we will consider to study this topic in our future work.

Table 3. The hand gesture detection mAP of the compared methods. The bold font means the best
score.

mAP (%) Precision (%) Recall (%) F1 Score (%)

FasterRCNN 63.5 53.3 72 61.3
Adam et al. 70.2 81.3 58 67.7

Ours 82.3 87.2 75 80.7



Sensors 2021, 21, 1007 13 of 17

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

FasterRCNN (mAP=62.2)
Adam et.al. (mAP=70.2)
Ours (mAP=82.3)

Figure 6. The Precision Recall (PR) curves of the compared methods.

Table 4. Detection Average Precision (AP) of Ours for each hand gesture category. “∅” denotes the
background hand.

Detection AP of Ours

A B C D E
93.2 94.1 94.1 76.2 69.9

F G H I K
100.0 72.1 66.7 92.6 80.8

L M N O P
75.4 64.7 69.8 69 66.5

Q R S T U
72.4 86.2 91.2 74.1 84.9

V W X Y ∅
89.6 94.1 97.6 100.0 90.0

(a) (b)

Figure 7. Cont.
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(c) (d)

(e) (f)

(g) (h)

Figure 7. Hand gesture detection and pose estimation results of Ours. The green boxes denote the detected foreground
hands, the green labels attached to the green boxes denote the recognized gesture, and the red boxes denote the detected
background hands. The 3D skeletons of foreground hands are projected on the 2D image plane.

6. Conclusions

We propose a hand gesture recognition approach by joint learning a shared feature
for hand gesture recognition and hand pose estimation tasks. To overcome the problem of
lacking annotation, the semi-supervised training scheme is used to benefit the hand gesture
recognition task from hand images without hand gesture annotation. The experimental
results show that, the proposed method effectively leverages the hand pose estimation
knowledge for hand gesture recognition, and the hand image reconstruction task further
improves performance. Comparing to Baseline1 which recognizes the gesture directly
based on the pose estimation result, the proposed approach significantly improves the
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accuracy by a large margin. Comparing to Baseline2, the hand pose estimation and the hand
image reconstruction tasks together improve the accuracy by 5.2%. Comparing to Baseline3,
the hand pose estimation task improves the accuracy by 3.8%. Comparing to Baseline4,
the hand image reconstruction task improves the accuracy by 2.4%. Furthermore, the
proposed approach can detect foreground hand, recognize the hand gesture, and estimate
the hand pose simultaneously in unconstrained environments. In the future, we plan to
study the dynamic hand gesture recognition, and also the interaction between hand and
object.
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