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Abstract: The assembled camshaft has obvious advantages in material optimization and flexible
manufacturing. As the most important surface modification technique, the heat treatment process is
utilized in this work to promote the desired compressive residual stress on the near-surface of the
100Cr6 steel assembled cam. The Johnson-Mehl-Avrami equation and Koistinen-Marbuger law are
integrated into the ABAQUS software via user subroutines to simulate the evolution of diffusional
transformation and diffusionless transformation, respectively. The linear mixture law is used for
describing the coupled thermomechanical and metallurgical behaviors in the quenching of steel
cam. The influences of various quenchants and the probable maximum phase volume fractions on
surface residual stress or hardness are analyzed. Results show that a greater amount of martensite
volume fraction and a slower martensitic transformation rate are beneficial for the compressive stress
retention. Compared with the conventional quenching oil, the fast oil quenched cam surface has
higher final compressive stress and hardness.

Keywords: assembled cam; 100Cr6 steel; quenching; phase transformation; compressive stress retention

1. Introduction

In the traditional automobile industry, the power performance and fuel economy of
vehicle are greatly affected by the engine performance. As one of the key components
in automobile engine, the camshaft is used to control the continuous open and close of
valves or fuel injection pumps for the normal working of the engine [1]. Therefore, both
the kinematic and dynamic characteristics have been widely taken into consideration in
the design and optimization of the complex cam profiles to meet the overall engine perfor-
mance [2–4]. In early stages, the conventional integral camshaft was mainly manufactured
by casting or forging with a limited choice of material and processing. For satisfying the
new requirement of manufacturing accuracy, the assembled camshaft by the interference
fit has been gradually adopted in the vehicle engine due to its tremendous advantages in
material selection and flexible design and manufacturing [5]. On the other hand, due to
the working conditions with cyclic stresses and impact loads, the failure behaviors such as
wear and crack occur frequently on the cam surface. Different types of materials and heat
treatment processes have been introduced for improving the strength and wear resistance
of the cam. For example, 100Cr6 is a typical surface-hardened steel widely used in the
assembled camshaft of engine parts with a radial knurling connection for its excellent wear
resistance and high hardness after martensite surface hardening. Since the microstructural
phase in the steel changes at specific heating or cooling rates within a certain holding time,
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the thermal stress and structural stress are generally introduced in the sample simultane-
ously during martensite surface hardening [6,7]. Finally, the coupled temperature, phase
transformation, and stress problem turn out to be remarkable to control the distortion and
residual stress on the cam surface.

In fact, three major processing techniques including heat treatment, press fitting, and
grinding are generally involved during the production of an assembled camshaft. As a
consequence, it has become a commonplace that cracks are prone to initiate at the cam
surface, especially around the transition region for a typical cam profile composed of three
sections, i.e., the base circle section, the buffer section, and the working section. In order
to improve the surface integrity of the component, the mechanisms of the above three
major processing techniques have attracted much attention by researchers. Zhang et al. [8]
investigated the joint mechanism of assembled camshaft and predicted the connection
strength for a radial knurling connection. Shah et al. [9] investigated the grinding induced
phase transformation and residual stresses of AISI 52100 steel. Madopothula et al. [10]
studied the effect of rapid quenching on the white layer formation mechanism in grinding
of AISI 52100 steel. Hunkel et al. [11] utilized the dilatometer to study the tempering
effects of athermal martensite on the strain development behavior during quenching and
reheating of 52100 steel. Three tempering stages including the time-dependent formation
of transition carbides, the loss of tetragonality triggered by transition carbides, and the
retained austenite transformation caused by austenite stabilization were analyzed in de-
tail. Sidoroff-Coicaud et al. [12] experimentally investigated the dimensional stability of
52100 steel under different heat treatment conditions. It was shown that both the retained
austenite volume fraction and the location of carbon after quenching could lead to an
expansion in service. Li et al. [13] carried out orthogonal and single-factor experiments to
investigate the residual stresses during the heat treatment and grinding processes of GCr15
steel cam. Results showed that the priority of the influence factors on the compressive
residual stresses was grinding speed, quenching power, and tempering temperature in
sequence. In addition, an extremely high temperature is likely to generate in the grinding
zone during material removal. Therefore, the solid-state phase transformations may hap-
pen again due to the second quenching. It is remarkable that several surface cracks are
found to be initiated before press fitting. Therefore, the heat treatment is always taken as
the most important processing to balance the residual stress and the mechanical properties
during the assembled camshaft production.

Compared with the traditional practical experience method, the numerical simulation
has been developed as a useful tool to predict the thermomechanical and metallurgical
behaviors caused by the heat treatment for about 60 years [14]. Li et al. [15] discussed the
testing and data required to model the phase transformation kinetics for the heat treatment
of steel parts. Denis et al. [16,17] presented a mathematical model for the calculation of
phase transformations in steels during rapid heating and cooling based on the Johnson-
Mehl-Avrami law, as well as the additivity rule with consideration of local carbon content
and austenite grain size. Houghton et al. [18] conducted a series of heat treatment experi-
ments in 52100 steel and the Avrami equation was adopted to determine the isothermal
kinetics of the austenite to bainite transformation. Esfahani et al. [19] proposed a coupling
phase transformation numerical model to investigate the microstructure evolution and
residual stress in quenched steel. The stress state and hardness affected by ferrite forma-
tion and pearlite phase transformation have been analyzed. Simsir [20] used the stressed
dilatometry technique to determine the transformation induced plasticity (TRIP) parameter
of 52100 steel and investigated the effect of applied stress on phase transformations. Yaak-
oubi et al. [21,22] developed the user subroutines via the ABAQUS software to analyze
the metallurgical and mechanical behaviors of steels in the heat treatment such as phase
fractions, hardness, and stress genesis. Lingamanaik et al. [23] combined the heat treatment
software DANTE with ABAQUS to promote favourable compressive residual stresses in
steel by altering the quenching parameters such as heat transfer coefficients, quenching
duration, and quenching locations.
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The aim of this paper is to investigate the evolution of phase transformations and
stress in the quenched engine cam manufactured by the hardened steel 100Cr6. The
Johnson-Mehl-Avrami equation and Koistinen-Marbuger law are integrated into ABAQUS
through user subroutines to predict the diffusional transformation and diffusionless trans-
formation, respectively. The effects of different quenchants and the probable maximum
phase volume fractions on phase transformations are analyzed in order to promote the
desired compressive residual stress on the near-surface of the assembled cam.

2. Materials and Methods

In the heat treatment process, the complicated interactions among the heat transfer,
phase transformation, and mechanical behavior affect the mechanical properties signifi-
cantly. To perform the quantitative prediction of phase fractions and residual stress during
numerical simulation for the heat treatment of assembled cam, the thermodynamics theory
and phase transformation kinetics theory are summarized as follows.

2.1. Thermal Modeling

The temperature distribution over the thickness of the assembled cam can be obtained
by solving the heat conduction problem, as described in Equation (1) [14].

cρ
∂T
∂t

= div(λgradT) +
.
q (1)

where c is the specific heat, ρ is the density, T is the temperature, λ is the thermal conduc-
tivity,

.
q is the rate of latent heat caused by phase change, and both div and grad represent

the divergence and gradient operator, respectively.
According to the additivity rule, the rate of latent heat is expressed as Equation (2) [16].

.
q =

5

∑
k=1

∆Hk
d fk(r, t)

dt
(2)

where ∆Hk represents the enthalpy change when the phase transforms into the constituent
k, fk is the phase fraction of the constituent k (k = l austenite, k = 2 ferrite, k = 3 pearlite,
k = 4 bainite, k = 5 martensite).

With the third boundary condition in Equation (3) [14], the temperature can be calculated.

−λ
∂T
∂n

∣∣∣∣
S
= h

(
T − Tf

)
(3)

where h is the convection heat transfer coefficient between the cam and quenchant, Tf is
the final temperature of the cam surface. According to Wang [24] and Lee [25] et al., the
convection coefficients for different quenching media can be successfully calculated by
the inverse algorithm using the measured temperatures of quenched steel. They pointed
out that the temperature dependent convection coefficient was mainly determined by the
inherent cooling characteristic of the material, especially the latent heat generated by phase
transformation.

2.2. Metallurgical Modeling

In the quenching of 100Cr6 steel, two kinds of transformations may occur depending
on the underlying mechanism. One is called diffusional transformation such as ferritic,
pearlitic, and bainitic transformations. The other is called diffusionless transformation,
such as martensitic transformation. The phase transformation kinetics must be known to
calculate the phase fractions, in order that the interactions among the temperature, stress,
and phase transformation can be established through the additivity rule associated with
phase fractions.
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For diffusional transformation, the Johnson-Mehl-Avrami formula, as shown in
Equation (4) [14], is utilized to describe the nucleation and growth of a new phase.

fk = f max
k

(
1 − e−bktnk

)
(4)

where f max
k is the maximum phase fraction of phase k, bk and nk are temperature dependent

phase transformation kinetics parameters, which can be obtained from the time temperature
transformation (TTT) curves during isothermal transformation.

Additionally, the martensitic transformation is usually considered to be time indepen-
dent. The Koistinen-Marburger relation given in Equation (5) [14] is introduced to describe
the progress of diffusionless transformation.

fm = f max
m

[
1 − e−γ(Ms−T)

]
(5)

where f max
m denotes the maximum volume fraction of martensite, which can be obtained

from the continuous cooling transformation (CCT) diagram, Ms is the start temperature
of martensitic transformation, γ is a constant with its value close to 0.011 K−1 for most of
the steels.

2.3. Mechanical Modeling

During the heat treatment, a material undergoes thermal loading and microstructure
development. To be able to describe the mechanical response, the classical plasticity flow
rule associated with von Mises yield criterion and isotropic hardening is used for stress
calculation. The total strain increment dεij can be decomposed into different individual
strain increments, as shown in Equation (6) [21].

dεij = dεe
ij + dε

p
ij + dεth

ij + dεtr
ij + dε

pt
ij (6)

where dεe
ij is the elastic strain increment related to the stress increment by the Hooke’s law,

dε
p
ij is the plastic strain increment calculated by combining the classical plasticity theory

with the associated hardening rules, dεth
ij is the thermal strain increment depending on the

temperature and the expansion of the different phases, dεtr
ij is the phase transformation

strain increment related to the volumetric expansion of phase transformation, dε
pt
ij is the

transformation induced plasticity strain increment, which can be expressed as a function of
the deviatoric stress.

The thermal strain and transformation strain are phase dependent and calculated as
Equations (7) and (8) [16], respectively.

dεth
ij =

5

∑
k=1

fkαk(T)dT (7)

dεtr
ij =

5

∑
k=2

fkdε∆V
k (8)

where αk is the thermal expansion coefficient related to the constituent k, ε∆V
k is the volu-

metric expansion when the austenite transforms into the constituent k.
According to Rohde et al. [14], the temperature dependent thermal expansion α∗(T)

can be expressed as a function of the original density ρ0 and the density ρ at the present

temperature (α∗(T) =
[(

ρ0
ρ

) 1
3 − 1

]
1
T ). In addition, the thermal and transformation strain

given in Equations (7) and (8) can be combined as εth
ij + εtr

ij = Tα∗(T) when using a stan-
dard FEM program. For convenience, the latent heat, thermal expansion coefficients, and
volumetric expansions caused by the phase transformation during the heat treatment of
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100Cr6 steel are supposed to be temperature independent. In addition, they are summa-
rized in Table 1 based on the means of dilatometric tests under various temperatures,
performed by Denis et al. [16,17] and Yaakoubi et al. [21]. It is remarkable that the coupled
thermomechanical and metallurgical behaviors of steel have been successfully predicted
by Denis et al. [16] and Yaakoubi et al. [20], based on the given mean thermal expansion
coefficients for multiphase materials.

Table 1. Phase transformation latent heat of heat-treated 100Cr6 [16,17,21].

Latent Heat
(mJ/mm3)

Austenite to ferrite 3.05 × 10−4

Austenite to pearlite 4.4 × 10−4

Austenite to bainite 4.4 × 10−4

Austenite to martensite 6.48 × 10−4

Original structure to austenite −3.05 × 10−4

Thermal Expansion
Coefficient of

Different Phases
(1/K)

Austenite 22 × 10−6

Ferrite 16.14 × 10−6

Pearlite 15.3 × 10−6

Bainite 14 × 10−6

Martensite 11.5 × 10−6

Original phase 15 × 10−6

Volumetric Expansion

Austenite to ferrite 2.17 × 10−3

Austenite to pearlite 4.81× 10−3

Austenite to bainite 5 × 10−3

Austenite to martensite 7.5 × 10−3

Original structure to austenite −3 × 10−3

2.4. Finite Element Simulation Modeling

The numerical simulation for the heat treatment of the hollow assembled cam is
performed using the commercial finite element software ABAQUS. A brief description with
reference to the establishment of the geometry, thermo-mechanical properties, constraints
and loading conditions for heat treatment finite element simulation is presented as follows.

The profile of the assembled cam in this paper is designed to be symmetrical, as shown
in Figure 1a. The thickness of the cam is hz = 8 mm. During the heat treatment, the material
on all the cam surfaces can expand and contract freely except the bearing surface. For
the convenience of calculation, a three-dimensional axisymmetric finite element model
is established to analyze the heat treating process of the cam based on the symmetry in
mechanics and shape, as given in Figure 1b. The symmetric surface is restrained with
symmetric constraints on the X-axis. The freedom degree along the axial direction Uz of
the bottom surface and the freedom degree along the Y-axis of a point Q are restrained, as
well. The thermal loading presented in Figure 2 is applied on the cam profile surface to
simulate the heating process. Four different heat transfer coefficients referring to Wang [24]
are defined at the free surface of the cam to investigate the heat exchange by convection
between the specimen and quenchant, as shown in Figure 3. The element type C3D8RT
and the element shape Hex are used in the coupled thermal and mechanical model analysis.
In addition, a long enough cooling time of 1200 s is recommended to acquire a precise
phase volume fraction. Moreover, the residual stress at the end of quenching as the finish
temperature of martensitic transformation is supposed to be around room temperature.
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The phase dependent expansion, heat generation, and plastic parameters of the heat-
treated 100Cr6 steel are defined through the user subroutines UEXPAN (User subroutine to
define incremental thermal expansion), HETVAL (Internal heat generation), and UHARD
(Define hardening parameters), respectively. In addition, the field variables associated
with the evolution of material properties are defined by the user subroutine USDFLD
(User defined field) and stored in solution-dependent state variables via Depvar. The
transformation temperatures for the 100Cr6 steel are Ac1 = 75 ◦C, Ac3 = 860 ◦C, Ps = 700 ◦C,
Bs = 500 ◦C, Ms = 170 ◦C, and Mf = 30 ◦C. It is worth mentioning that the linear mixture
law is used for evaluating the thermal and mechanical properties of multiphase material.
Although the temperature dependent mechanical and thermal properties for the 52100 steel
have been given by Shah et al. [9], some of the material properties are supposed to be
phase and temperature independent in the numerical simulation for convenience, as
shown in Table 2. Moreover, the chemical constituents of 100Cr6 steel, presented in
Table 3, are submitted to the thermodynamic software JMatPro 7.0, in order that the
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isothermal transformation and continuous cooling transformation diagrams of the material,
as presented in Figure 4, can be easily generated.
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Table 2. Some material properties of 100Cr6 steel.

Density
(kg/m3)

Young’s Modulus
(GPa) Poisson’s Ratio Conductivity

(W/m/K)
Specific Heat

(J/kg/K)

7.83 × 103 212 0.269 30 700

Table 3. Chemical composition of 100Cr6 steel.

Element Fe C Si Mn Cr

Mass (%) 96.91 0.99 0.25 0.35 1.5
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2.5. Experiment

The cam used in our study is provided by Daemyung Precision Machinery (Zhangjia-
gang) Co., Ltd., Zhangjiagang, China. The primary processing techniques of cam blank are
forging, spheroidizing annealing, and shot-blasting. The forging is carried out based on
the use of a Hatebur AMP 20 machine made by Hatebur Swiss Precision AG from Brugg,
Switzerland. The temperature and time for bright spheroidizing annealing are 785 ◦C and
16 h, respectively. After annealing, the cam is processed by shot-blasting for 35 min. Based
on the provided cam blank, the cam sample is then surface hardened by the high frequency
induction quenching equipment. The electrical power, supply frequency, and heating time
are set as 108 kW, 28 kHz, and 1.98 s, respectively. The heated part is rapidly cooled by
the quenching oil provided in Table 4. The heat treatment oil classification adopted in
this paper refers to the Petrochemical Industry Standard of the People’s Republic of China
(SH/T 0564-93). The residual stress and retained austenite content tests are carried out on
the X3000 G2/G2R stress measuring instrument from Stresstech Oy, Jyväskylä, Finland.
The details about XRD measurements are summarized as follows: Material-Ferrite, miller
indices—(211), 2θ angle—156.4◦, Tube type—Cr, Exposure time—10.0 s, No. of tilts—4,
and the tilt angle from −45 to 45◦. In addition, the HR-150A Rockwell hardness and
Vickers hardness tester provided by Laizhou Huayin Testing Instrument Co., Ltd. (Yantai,
China) are used for determining the surface hardness and hardened layer thickness of the
heat-treated cam.

Table 4. Technical parameters for quenching oil.

Model Viscosity at 40 ◦C
(mm2/s)

Viscosity at 100 ◦C
(mm2/s)

Flashing point
(◦C)

Freezing point
(◦C)

Conventional 15 4 231 −15

3. Results and Discussion
3.1. Effect of Convection Coefficients on Hoop Residual Stress

The cooling rate during quenching significantly influences the final microstructures
and mechanical properties of steel. The four quenchants with different convection co-
efficients, presented in Figure 3, are utilized to analyze the coupling effects among the
temperature, microstructure, and stress. Since the different temperature histories appear
on the complicated cam surface profile, a weak area with an unfavorable residual stress
state often occurs around the buffer section during induction hardening. Therefore, the
evolution of multi-physics field of the No. 27,737 element in the transition zone, as shown
in Figure 5a, is traced to better understand the interaction between the microstructure and
mechanical property. In the following, the hoop stress defined in the cylindrical coordinate
system O-RTZ will be analyzed based on the crack nucleation and propagation in the
production practice. Usually, the hoop stress is represented by the forces acting towards
the circumference perpendicular to the length of the cylinder.

The stress history and temperature history on the cam surface during the whole heat
treatment simulation process is shown in Figure 6. It can be seen that a large compressive
surface stress occurs at the start of the heating moment as the volume expansion on the
surface is suppressed by the inner layer. As the heat transfer continues, the compressive
stress is rapidly released. When the surface temperature is above the complete austenitizing
temperature, the tensile surface stress suddenly transforms into compressive stress and
gradually releases afterwards with the temperature and microstructure homogenization.
When the cooling step starts, the surface temperature drops sharply and the surface stress
transforms from compressive to tensile, due to the fact that the volume shrinkage is
restrained by the inner layer. As the temperature continues to drop, the volume expansion
occurs again due to the diffusive and non-diffusive transformations. As a result, the
structural stress plays a dominant role in the final surface stress state. The final compressive
residual stress on the cam surface around the buffer section is −63.3 MPa. In addition, the



Materials 2021, 14, 5912 9 of 18

predicted retained austenite content is around 3% at the end of the quenching process as
shown in Figure 5b.
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Figure 5. Multi-physics of the quenched cam (a) hoop stress and (b) retained austenite content.
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Figure 6. Stress history and temperature history on the specified element.

To verify the correctness of the finite element model, a series of surface residual stress
tests are performed by the experiment equipment. Since the heat treated sample has a
working allowance of 0.5 mm, a pre-etching is conducted before the stress test with the
corrosion depth around the working allowance. For each group of the cam sample, the
residual stress is measured twice for the consideration of equipment stability. Thirty sets of
residual stress test results and several sampling results of retained austenite contents are
listed in Table 5. The average stress value for the experimental test is −67.8 MPa and has a
good agreement with the simulation result. In addition, the predicted value of retained
austenite content in Figure 5b falls well in the interval of experimental results (2.9–6.6%).
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Table 5. Surface residual stress and retained austenite content test data.

Sample No. Etch Depth (mm)
Stress Test (MPa) Retained

Austenite Content Sample No. Etch Depth (mm)
Stress Test (MPa)

1st 2nd (%) 1st 2nd

1 0.47 −52.9 −56.6 - 16 0.55 −93.8 −84.7
2 0.55 −99.5 −102.8 3.7 17 0.53 −82.4 −74.3
3 0.5 −80.7 −72.7 4.9 18 0.47 −60.6 −54.9
4 0.51 −88.5 −93.1 - 19 0.49 −65.9 −65.4
5 0.47 −42.3 −34.7 6.6 20 0.51 −67.4 −78.5
6 0.56 −93.7 −89.9 - 21 0.55 −104.9 −97.1
7 0.57 −70.7 −66.6 3.8 22 0.58 −73.4 −78.5
8 0.48 −72.4 −53.5 5.7 23 0.51 −66.1 −57.1
9 0.51 −91.5 −91.6 6.5 24 0.5 −53.4 −65.4
10 0.51 −59.6 −76.3 4.1 25 0.51 −68.9 −65.1
11 0.54 −51.9 −56.9 - 26 0.55 −54.5 −62.6
12 0.56 −52 −53.6 2.9 27 0.56 −77.5 −80.3
13 0.51 −65.9 −58.5 - 28 0.47 −41.6 −56.9
14 0.54 −41.5 −50.6 - 29 0.5 −49 −59.5
15 0.54 −46.1 −45 - 30 0.59 −65.1 −67.7

In the following, the heating step will be neglected to improve the calculative efficiency
when analyzing the influences of different quenchants on mechanical properties. Firstly, the
stress histories during the heat treatment with and without the heating step on the specified
element are compared with each other, as shown in Figure 7. It implies that the stress state
tends to be compressive when the phase transformation suddenly happens during the
cooling step and has a gradual release, since the temperature and microstructure fields
become more uniform. The final surface residual stress without considering the heating
step is −1.7 MPa. In other words, the real compressive residual stress after quenching is
much higher than the predicted stress without considering the heating process.
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Figure 7. Stress history during quenching (a) with and (b) without considering the heating process.

The influence of different quenchants on the surface stress is shown in Figure 8. It
can be seen that the fast quenching oil has the maximum rising rate of surface tensile
stress at the beginning of the quenching process, due to the large heat exchange coefficient
gradient at high temperature zone. Conversely, the surface tensile stress of the hydrofluoric
acid HF180 quenched cam increases most slowly. As can be seen from Figure 3, the heat
transfer coefficient of the HF180 quenchant is very small at high temperature above 876 ◦C.
Specially, a default heat transfer coefficient corresponding to the sink temperature will be
used for calculation when the surface temperature is beyond the given temperature range
in Figure 3. Therefore, the stress does not rise rapidly until the temperature is lower than
876 ◦C, as shown in Figure 9a. Similarly, the surface stress for fast oil quenched cam in
Figure 9b rises rapidly when the temperature is lower than the maximum temperature
(778 ◦C) given in Figure 3. During the cooling process, the volume change caused by the
phase transformation and nonuniform temperature determines the stress history together.
The occurrence of martensitic transformation is beneficial to obtain a large compressive
surface stress. In addition, a slow change of heat exchange and phase transformation in the
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low temperature zone is highly suggested to keep the compressive stress in the final state.
As a result, the residual compressive stress for the fast quenching oil and polyvinyl alcohol
(PVA) solution are −81.4 MPa and −26.9 MPa, respectively. The final surface stress state
for the HF180 quenched cam is tensile with a value of 0.8 MPa. What is more, it can be
seen in Figure 10 that the residual stress for fast oil quenched cam shifts from compressive
to tensile along the depth direction. Therefore, the surface stress draws much attention
to study the compressive stress retention. The reason for a flat region of residual stress
profile below the surface layer in Figure 10 is mostly owing to the large thickness around
the buffer section.
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Figure 8. Surface stress of the specified element under various quenchants.
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Figure 9. Temperature and stress comparison between (a) HF180 and (b) fast oil quenching.

Based on the data in Figure 3, there is an obviously different trend of heat trans-
fer coefficient between the PVA solution and quenching oil below the start temperature
of martensitic transformation. However, the heat transfer coefficient for conventional
quenching oil and fast quenching oil are in the same temperature range and have the
unique peak value with various amplitudes around a certain temperature. The above
mentioned features of the heat transfer coefficient make it easy to investigate the different
evolution of phase transformations for the two quenching media. To better explain the
formation mechanism of residual compressive stress, the phase transformation evolution
under the conventional and the fast quenching oil are detailed, as compared with each
other in Figure 11. Compared with the verified finite element model in Figure 7a, the only
difference in Figure 11 is the negligence of heating process, which makes the prediction
of phase transformation evolution, provided in Figure 11, still credible. It can be clearly
seen that the stress tends to be compressive once a phase change occurs, and the maximum
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compressive stress usually happens at the start of martensitic transformation. Compared
with the conventional quenching oil, the maximum compressive stress and the maximum
martensite volume fraction of the fast oil quenched cam are larger. Moreover, though the
conventional oil quenched cam has a maximum compressive stress of −97.3 MPa, the final
residual stress is only −1.7 MPa due to the rapid stress relief caused by microstructure
homogenization. Therefore, a slow martensitic transformation rate is favorable to obtain
a quenching compressive stress eventually as, for example, the fast quenching oil shown
in Figure 11b. In addition, the time period for phase transformation is greatly affected
by the temperature history. It can be seen from Figure 12 that the surface temperature
dropping rate for fast quenching oil is larger than the conventional quenching oil in the
diffusional transformation period, while a smaller value in the diffusionless transformation
zone is achieved. Especially, the heat transfer coefficient for conventional quenching oil is
much lower than the fast quenching oil in the temperature range of perlite transformation
(500–700 ◦C), in order that a longer phase change time is available for a large amount of
perlite during conventional quenching oil of steel, as shown in Figure 11a. In addition,
Figure 12 shows that the buffer section of the assembled cam has a slower temperature
dropping than the base circle section. It is remarkable that the break region of temperature
history from 50 to 1100 s has been shown in Figure 12 for an easy comparison.
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Figure 10. Residual stress depth profile for fast oil quenching of assembled cam.
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Figure 11. Relationship between the phase transformation and hoop stress under (a) conventional and (b) fast quenching oil.
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Figure 12. Temperature history for the two oil quenching media.

The hardness contours for different oil quenched cams are shown in Figure 13. It can
be seen from Figure 13a,c that the final hardness of conventional oil quenched cam with and
without considering the heating process are 50.19–55.45 and 49.93–55.01 HRC, respectively.
The little difference between them indicates that the heating process can be ignored in
order to improve the computational efficiency for the current problem. The hardness
history in Figure 13b shows that the surface hardness increases gradually with the phase
transformation during the quenching process. Especially, the hardness increases rapidly
when the temperature is lower than the start temperature of martensitic transformation,
due to the formation of high hardness phase during the non-diffusive transformation.
Compared with the conventional oil quenched cam, the fast oil quenched cam in Figure 13d
has a higher hardness value of 60.85–62.64 HRC. Since the quenching part is generally
followed by a tempering process to obtain a good comprehensive mechanical property,
the hardness and brittleness will be further decreased. Therefore, the fast quenching oil is
recommended to ensure a good wearability with the hardness over 55 HRC. The surface
hardness and microhardness distribution on the heat-treated sample are experimentally
measured by the Rockwell and Vickers hardness tester for verification and the results are
given in Tables 6–8. The mean hardness after quenching and tempering are 63.23 and
60.36 HRC, respectively. In addition, the hardened layer thickness is around 2.0 mm. Both
the surface hardness and hardened layer thickness fall within the technical standard.

3.2. Effect of Different Maximum Phase Volume Fractions on Hoop Residual Stress

According to the continuous cooling transformation diagrams in Figure 4b, several
combinations of the probable maximum transformation fraction for each phase under
certain cooling rates are given to investigate the influence of phases on surface stress. It
can be seen from the surface stress history in Figure 14a that the residual compressive
stress cannot be obtained when the final microstructure after quenching is pearlite in the
majority ( f max

3 = 0.6671). With the decrease of both pearlite and bainite maximum volume
fractions, a larger maximum compressive stress can be obtained at the start of martensite
transformation (t = 39.714 s ). It means that a certain amount of martensite volume fraction
after quenching is the necessary condition for compressive surface stress. However, a
large maximum compressive stress is not necessary to keep a large final compressive stress
(t = 1200 s), as shown in Figure 14b,d.
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Figure 13. Hardness of the conventional (a–c) and fast (d) oil quenched cam with (a,b) and without (c,d) considering the
heating process.

Table 6. Surface hardness test data of the quenched sample.

Group 1 2 3 4 5 6 7 8 9 10

Hardness
(HRC) 62.8 63 62.9 63.4 63.5 62.9 63.7 63.5 63.1 63.5

Table 7. Surface hardness on the buffer section of the tempered cam measured by the Rockwell
hardness tester.

Sampling
Number 1 2 3 4 5 6 7 8 Standard

Hardness
(HRC) 61.3 61.4 60.9 61 60 59.8 58.8 59.7 54–61

Table 8. The microhardness distribution measured by the Vickers hardness tester.

Serial
Number

Thickness
(µm)

Microhardness
(HV)

Transform Values
(HRC)

Effective Hardened Layer Thickness
with Microhardness 520 HV1 (mm)

1 200 706.33 60.35

1.5–2.5

2 400 701.4 60.14
3 600 682.03 59.27
4 800 682.03 59.27
5 1000 698.95 60.04
6 1200 706.33 60.35
7 1400 691.54 59.71
8 1600 668.12 58.61
9 1800 656.85 58.08

10 2000 561.4 53.03
11 2200 412.44 42.7
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Figure 14. Stress history at various combinations of the probable maximum phase volume fraction. (a) f max
2 = 0,

f max
3 = 0.6671, f max

4 = 0.0598; (b) f max
2 = 1.2e−4, f max

3 = 0.2153, f max
4 = 0.0221; (c) f max

2 = 1.88e−4, f max
3 = 0.0865,

f max
4 = 0.0109; (d) f max

2 = 2.9e−4, f max
3 = 0.044, f max

4 = 0.0066.

To analyze the maximum compressive stress retention, the final microstructure dis-
tribution of the quenched cam for the two kinds of different pearlite maximum volume
fractions with f max

3 = 0.2153 and f max
3 = 0.044 are shown in Figure 15. During the simula-

tion, the probable maximum phase fractions are extracted from Figure 4b at specific cooling
rates. It can be seen from Figure 15a1,c1 that there is an obviously uneven distribution for
pearlite (SDV3) and martensite (SDV5) when the maximum pearlite volume equals 0.2153.
Since the same heat transfer coefficient curve has been used for the calculation, the major
reason for the uneven distribution of pearlite is owing to a high start temperature of bainite
(387 ◦C for f max

3 = 0.2153 and 200 ◦C for f max
3 = 0.044). In addition, the difference in

residual austenite distribution after diffusional transformation affects the uneven distribu-
tion of martensite. Conversely, the microstructure distribution of pearlite, bainite (SDV4),
and martensite for a maximum pearlite volume that equals 0.044 is all approximately
uniform, as presented in Figure 15a2–c2. Therefore, it can be predicted that the uneven
microstructure distribution during phase transformation is beneficial for compressive stress
retention. Usually, it is difficult to confirm the exact quenching media only according to
the cooling rate. Therefore, the residual stress and the final phase volume after quenching
under different combinations of probable maximum transformation fractions are hoped to
be verified in future work.
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3 = 0.044.

4. Conclusions

Based on the linear mixture law of the general multiphase material property, a cou-
pled thermomechanical and metallurgical model is successfully developed to calculate the
temperature fields, phase volume fractions, stress fields, and hardness in the quenching
of the 100Cr6 steel assembled cam via the ABAQUS user subroutines. The influences of
different quenchants and probable maximum phase volume fractions on the metallurgi-
cal and thermomechanical behaviors are analyzed to investigate the compressive stress
retention in the quenched steel. In addition, the experimental tests of surface stress and
hardness are carried out to verify the theoretical model. The main conclusions drawn from
this paper are summarized as follows:
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(1) During the quenching process, the stress tends to be compressive once a phase
transformation occurs. Then, the stress releases gradually due to the temperature and
microstructure uniformity.

(2) Compared with the thermal stress, the structural stress plays a dominant role in
the final surface stress state in the quenched cam. The predicted final compressive
residual stress on the cam surface around the buffer section is −63.3 MPa, which is
very close to the experimental result −67.8 MPa.

(3) Compared with the conventional quenching oil, the maximum compressive stress,
the maximum martensite volume fraction, and the surface hardness of the fast oil
quenched cam are larger. The better compressive stress retention of the fast oil
quenched cam is owing to the slower stress relief followed by microstructure homog-
enization. Therefore, a slower martensitic transformation rate is suggested to obtain a
quenching compressive stress eventually.

(4) The uneven distributions of microstructures such as pearlite and martensite are
beneficial for the compressive stress retention. In addition, a certain amount of
martensite volume fraction after quenching is necessary for the final compressive
surface stress.
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