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ABSTRACT: Neural stem cells (NSCs) are special types of cells with the potential for self-renewal and multi-

directional differentiation. NSCs are regulated by multiple pathways and pathway related transcription factors 

during the process of proliferation and differentiation. Numerous studies have shown that the compound 

medicinal preparations, single herbs, and herb extracts in traditional Chinese medicine (TCM) have specific 

roles in regulating the proliferation and differentiation of NSCs. In this study, we investigate the markers of 

NSCs in various stages of differentiation, the related pathways regulating the proliferation and differentiation, 

and the corresponding transcription factors in the pathways. We also review the influence of TCM on NSC 

proliferation and differentiation, to facilitate the development of TCM in neural regeneration and 

neurodegenerative diseases. 
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Both embryonic and adult neural stem cells (NSCs) are 

widely distributed in the nervous system. Embryonic 

NSCs are widely distributed in the brain, while adult 

NSCs are mainly distributed in the subventricular zone 

(SVZ) of the lateral ventricle wall and the subgranular 

zone (SGZ) of the hippocampus dentate gyrus [1, 2]. 

NSCs go through different stages of neural progenitor 

cells (NSPCs), neural precursor cells (NPCs), and 

neuroblasts in the process of proliferation and 

differentiation into neural cell lineage [3-7]. In the 

research on NSCs, their identification and differentiation 

in these stages are related to whether they can be 

accurately induced, differentiated, and migrated. The 

corresponding markers of NSCs at different stages have 

been identified and confirmed, and are summarized in this 

study. 

NSCs can differentiate into different types of neural 

cells under specific conditions, which can provide new 

methods of cerebral injury repair and neurological disease 

treatment. Numerous studies have shown that NSCs have 

a therapeutic effect on nervous system injuries and 

degenerative diseases such as Alzheimer’s disease (AD), 

Parkinson's disease (PD), spinal injury, amyotrophic 

lateral sclerosis (ALS), vascular dementia, cerebral 

hemorrhage, and Huntington’s disease [8-17]. However, 

the differences between animal models and human 

diseases mean that the clinical application of stem cell 

therapy is still some way off. 

Traditional Chinese medicine (TCM) has the general 

advantages of multi-targets, multi-levels, and multi-paths 

[18-21]. It can regulate NSC proliferation and 

differentiation by changing the microenvironment of 
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NSCs and indirectly regulating endogenous and 

exogenous factors. Studies have shown that single herbs, 

herb extracts/Chinese herbal monomers and compounds, 

and Chinese medicinal preparations have, to some extent, 

a role in regulating NSC proliferation and differentiation 

[22-27]. 

 

 
Table 1.  Markers of stem cell proliferation and differentiation in different stages. 

 

Marker Property 
Affected 

cell type 
Function Refs. 

Hopx 
atypical homeodomain 

only protein 
NSCs 

regulates hippocampal neurogenesis by modulating Notch 

signaling 
[33] 

Hes3 
basic helix–loop– helix 

gene 
NSCs 

promote the proliferation of NSCs  

maintain the undifferentiated state of NSCs 
[34, 35] 

TRIP6 zyxin family proteins NSCs promote the self-renewal and proliferation of NSCs [36] 

CycE cyclin NSCs regulate neurogenesis in the adult hippocampus [37] 

JAM-C surface protein NSCs maintain the pluripotency of NSCs [38] 

PtdGlc lipid NSCs identify, isolate, and differentiate NSCs [39] 

CD9 transmembrane protein NSPCs 
have an impact on the cell adhesion, migration, proliferation 

and differentiation  
[40, 41] 

CD15 transmembrane protein NSPCs 
promote the survival of NSCs;  

promote the differentiation of NSCs into oligodendroglia 
[40, 42] 

CD81 transmembrane protein NSPCs control the cell migration [40, 43] 

S100β 
acid calcium binding 

protein 
NSPCs regulate the proliferation of NSCs [44] 

CD133 transmembrane protein NPCs 
promote the expansion of NSCs in vitro and its degree of 

specialization 
[45, 46] 

CD24 transmembrane protein NPCs 
play an important role in self-renewal;  

maintain NSCs 

[45, 47, 

48] 

Pax2 paired box gene NPCs regulate the migration and proliferation of nerve cells [49] 

NG2 
transmembrane 

proteoglycan 
NPCs regulate the migration of the oligodendrocyte precursor cells [50, 51] 

Nestin 

intermediate filaments 

protein cytoskeletal 

protein 

NSCs and 

NSPCs 

be a marker for proliferating or migrating cells; 

participate in cytoskeleton formation;  

remodel cells along with other structural proteins;  

[52-55] 

Musashi1 RNA- binding protein 
NSCs and 

NSPCs 

determine the fate of stem cells;  

maintain the undifferentiated state of NSCs or NSPCs;  
[56-61] 

Tub-II cytoskeleton protein 
NSCs and 

NSPCs 
reflect the structural changes in the development of the brain [62, 63] 

SOX2 
high-mobility group 

proteins 

NSCs and 

NSPCs 

play a role in self-renewal and maintenance of NSCs;  

prevent the apoptosis of NSCs. 

[56, 64, 

65] 

SOX1 
high-mobility group 

proteins 

NSCs and 

NSPCs 
promote the self-renewal of NSCs [66-68] 

Sp8 zinc finger protein 
NSCs and 

NSPCs 
maintain the undifferentiated state of NSCs [69, 70] 

S100A6i 
low-molecular-weight 

calcium-binding proteins 

NSCs and 

NPCs 

promote the neurogenesis in the hippocampus; 

play an important role in the differentiation and maturation 

of astrocytes 

[71] 

Prox1 
homeobox transcription 

factor 
neuroblasts 

play an important role in regulating the proliferation and 

differentiation of NSCs;  

maintain the intermediate progenitor cells 

[72, 73] 

Cyc D1 cyclin neuroblasts 
promote the proliferation of NSCs;  

inhibit their differentiation 

[74, 75, 

204] 

 DCX 
microtubule-associated 

protein 
neuroblasts regulate the migration of neural cells [76, 77] 

 

The table lists the markers of NSCs proliferation and differentiation, the property of the markers, the cell type they affect, and their function in NSC 
proliferation and differentiation: Tub-II, tubulin beta II; SOX2, sex-determining region Y-box2; SOX1, sex-determining region Y-box1; Sp8, specificity 

protein 8; PAX2, paired box protein 2; Hopx , homeodomain only protein X; Hes3, hairy and enhancer of split 3; TRIP6, thyroid receptor-interacting 

protein 6; CycE, cyclinE;JAM-C, junctional adhesion molecule-C; PtdGlc, phosphatidylglucoside; S100β, S100 calcium-binding protein B; NG2, Neuron 
glia antigen 2; Cyc D1, Cyclin D1; Prox1, prospero homeobox protein 1; DCX, doublecortin; NSCs, neural stem cells; NSPCs, neural progenitor cells; 

NPCs, neural precursor cells. 
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In this article, we discuss the regulation of NSC 

proliferation and differentiation by the relevant pathways 

and the target genes corresponding to the pathways, and 

review the effects of TCM on the proliferation and 

differentiation of NSCs, to further develop the study of 

NSC proliferation and differentiation by TCM. 

 

 
 

Table 2. The main transcription factors and associated signaling pathways in NSC proliferation and differentiation. 

TFs 
Protein 

family 
Pathway 

In vivo 

or in 

vitro 

Effect on NSCs 
Affected 

cell type 

Location of 

expression 
Refs. 

Hes1 bHLH Notch 

In vivo 

and in 

vitro 

Play a role in maintenance of NSCs; 

Inhibit the differentiation of NSCs into 

neurons; Have an effect on the 

maintenance and self-renewal of NSPCs 

NSCs and 

NSPCs 
SVZ, SGZ [81-87] 

Hes5 bHLH Notch In vitro promote the proliferation of NSCs 
NSCs and 

NSPCs 
SVZ [88-90] 

Mash1 bHLH Notch 

In vivo 

and in 

vitro 

Promote the differentiation of NPCs 
NSPCs 

and NPCs 
SVZ, SGZ [91-96] 

NeuroD bHLH Notch 

In vivo 

and in 

vitro 

Determine the fate and differentiation of 

cells; Determine the survival of neurons 

NSPCs 

and NPCs 

SGZ, SVZ, 

VZ 
[97-102] 

zfp488 ZFP Notch In vivo 
Promote the differentiation of NSCs into 

the oligodendrocytes 

NSCs and 

NSPCs 
SVZ 

[103, 

104] 

Ngn1 bHLH Notch In vivo 

Promote neurogenesis; 

Play a specific role in the maintenance of 

NSPCs; Promote the differentiation of 

NPCs in vivo 

NSPCs 

and NPCs 
SVZ 

[105, 

106] 

Ngn2 bHLH Notch 

In vivo 

and in 

vitro 

Play a regulatory role in neurogenesis; 

Control the balance of the maintenance 

and differentiation of NSPCs 

NSPCs VZ, SVZ 
[107, 

108] 

Fezf2 ZFP Notch 

In vivo 

and in 

vitro 

Has a role in the maintenance and 

differentiation of NSCs 

NSCs, 

NSPCs 

and NPCs 

SVZ, VZ 
[109, 

110] 

Hey1 bHLH Notch In vivo Play a role in the maintenance of NSCs NPCs VZ, SVZ [111-113] 

Gsx2 HOM Notch In vivo 

Reduce the ability of NSCs to proliferate 

and self-renew;  

Reduce the transformation of NSCs into 

neurons and glial cells 

NSCs and 

NSPCs 
SVZ, VZ [114-116] 

Pax6 HOM Wnt 

In vivo 

and in 

vitro 

Control the balance of the maintenance 

and differentiation of NSCs; 

Play an important role in maintenance, 

self-renewal and multi-directional 

differentiation of NSCs 

NSCs and 

NSPCs 

SVZ, OB, 

SGZ, VZ 
[121-126] 

Emx2 HOM Wnt 

In vivo 

and in 

vitro 

Control the proliferation and migration of 

NPC 

NSCs and 

NPCs 
SVZ, VZ [127-129] 

Dix2 HOM Wnt 

In vivo 

and in 

vitro 

Promote the neurogenesis and 

proliferation 
NPCs SVZ, OB 

[130, 

131] 

Pax3 HOM Wnt 

In vivo 

and in 

vitro 

Regulate the differentiation of NSCs; 

Determine the fate of cells; Maintain the 

undifferentiated state of NSCs. 

NSPCs VZ [132-137] 

Oct4 POU Wnt 

In vivo 

and in 

vitro 

Play an important role in the maintenance 

of the pluripotency of NSCs;  

Promote the proliferation and self-renewal 

of NSCs  

NSCs SVZ [138-140] 

Prox1 HOM Wnt 

In vivo 

and in 

vitro 

Promote the proliferation of NSCs; 

Play an important role in the maintenance 

of intermediate progenitor cells 

NSPCs SGZ 
[141, 

142] 

Nkx2.2 HOM Shh In vivo 
Promote the differentiation of 

oligodendrocytes 

NSPCs 

and NPCs 
SVZ, OB [152-156] 
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Gli-1 ZFP Shh 

In vivo 

and in 

vitro 

Promote the proliferation of NPCs NPCs SVZ, SGZ [158-162] 

Sox2 HMG BMP 

In vivo 

and in 

vitro 

Play a role in self-renewal and 

maintenance of NSCs;  

Prevent the apoptosis of NSCs 

NPCs and 

NSCs 

SVZ, SGZ, 

VZ 
[167-172] 

 Olig2 bHLH BMP 

In vivo 

and in 

vitro 

Induce the differentiation of NSCs into 

oligodendrocytes;  

Promote the maturation of the 

differentiated cells. 

NSPCs SVZ [173-175] 

The table lists the main transcription factors and associated signaling pathways in NSC proliferation and differentiation, the protein family the 

transcription factors belong to, the cell type, they influence and their effect on NSCs proliferation and differentiation, and the main location of their 

expression. Hes1, hairy, and enhancer of split 1; Hes5, hairy and enhancer of split 5; Mash1, achaete-scute homolog 1; NeuroD, neurogenic 

differentiation factor-6; zfp488zinc finger protein 488; Ngn1,Neurogenin1; Ngn2, Neurogenin2; Fezf2, forebrain embryonic zinc finger 2; Gsx2, GS 

Homeobox 2; Hey1, hairy/enhancer-of-split related with YRPW motif protein 1; Pax6, paired box protein 6; Pax3, paired box protein 3; Emx2, empty 

spiracles homeobox 2; Dix2, distal-less homeobox 2; oct4, octamer-binding transcription factor 4; Olig2, oligodendrocyte lineage transcription factor 

2; Nkx2.2,NK2 homeobox 2;Gli-1, glioma associated oncogene-1; bHLH, basic helix-loop-helix; HOM, homedomain; HMG, high mobility group; 

PC, Polycomb; ZFP, zinc finger proteins; BMP, bone morphogenetic protein; Shh, sonic hedgehog; SVZ, subventricular zone; SGZ, dentate gyrus 

subgranular zone; VZ, ventricular zone; OB, olfactory bulb. 

1. The stages and related markers of NSC 

proliferation and differentiation 

 

NSCs go through different stages of NSPCs, NPCs, and 

neuroblasts in the process of proliferation and 

differentiation into mature neural cells [28-32]. NSCs can 

express specific molecular markers in the proliferation 

and differentiation stages. These markers have the 

function of selectively binding to signal molecules and are 

involved in the expression of cell signaling. In addition, 

transcription factors and cell adhesion molecules are 

significant for the differentiation of NSCs. The Nestin, 

Musashi1, sex-determining region Y-box2 (SOX2), 

Prox1, and CD family proteins are the most common 

markers. 

 An increasing number of novel markers have also 

been used to identify NSCs. These include homeodomain-

only protein X (Hopx) [33], hairy and enhancer of split 3 

(Hes3) [34, 35], thyroid receptor-interacting protein 6 

(TRIP6) [36], Cyclin E (CycE) [37], junctional adhesion 

molecule-C (JAM-C) [38], and phosphatidylglucoside 

(PtdGlc) [39], which are mainly expressed in NSCs and 

can be used as characteristic markers. The expression of 

CD9 [40, 41], CD15 [40, 42], CD81 [40, 43], and S100 

calcium-binding protein B (S100β) [44] are commonly 

expressed in NSPCs. The same CD family members 

CD133 [45, 46] and CD24 [45, 47, 48], paired box protein 

2 (Pax2) [49] of the paired box gene family, and 

transmembrane proteoglycan (NG2) [50, 51] are mainly 

expressed in NPCs. Nestin [52-56], Musashi1 [56-61], 

cytoskeleton protein (Tub-II ) [62, 63], sex-determining 

region Y-box2 (SOX2) [56, 64, 65], sex-determining 

region Y-box1 (SOX1) [66-68], specificity protein 8 (Sp8) 

[69, 70], and low-molecular-weight calcium-binding 
proteins (S100A6i ) [71] are expressed in both NSCs and 

NSPCs, while prospero homeobox protein 1 (Prox1) [72, 

73], Cyclin D1 (CycD1) [74, 75], and doublecortin (DCX) 

[76, 77] are expressed in the neuroblast. The properties of 

the related markers, the stage of the labeled cells, and the 

function of the markers are summarized in Table 1. 

 

2. Signaling pathways and major transcription factors 

involved in NSC proliferation and differentiation  

Multiple signaling pathways regulate the process of NSCs 

proliferating and differentiating into mature neurons. 

These pathways determine the fate of NSCs by regulating 

the expression and activity of different transcription 

factors, and many pathways are involved. The Notch, Wnt, 

bone morphogenetic protein (BMP), and sonic hedgehog 

(shh) signal pathways have been most studied. 

Downstream of the signal pathway are usually target 

genes that can be used as transcription factors to regulate 

the process of proliferation, differentiation, and migration 

of NSCs, and different signaling pathways and 

transcription factors can act synergistically to regulate this 

process. These are summarized in Table 2. 

2.1 The Notch signaling pathway 

The Notch gene was originally found by Morgan and 

colleagues in drosophila in 1917 [78]. The partial deletion 

of this gene function was found to lead to a gap in the wing 

edge of drosophila. The Notch signaling pathway is a 

highly conserved pathway, which is widespread in 

invertebrates and mammals, and it determines the fate of 

cells by precisely regulating cells growth, differentiation, 

and apoptosis [79]. Numerous studies have shown that the 

Notch signaling pathway plays an important role in the 

proliferation and differentiation of NSCs, particularly for 

maintaining an undifferentiated state and the ability for 

self-renewal [80]. The common target genes of the 

pathway are the hairy and enhancer of split 1 (Hes1), hairy 



Qin W., et al                                                                                               Effect of Chinese medicine on neural stem cells 

Aging and Disease • Volume 8, Number 6, December 2017                                                                             796 

 

and enhancer of split (Hes5), achaete-scute homolog 1 

(Mash1), neurogenic differentiation factor-6 (NeuroD), 

zinc finger protein 488 (zfp488), Neurogenin1 (Ngn1), 

Neurogenin2 (Ngn2), forebrain embryonic zinc finger 2 

(Fezf2), GS Homeobox 2 (Gsx2), hairy/enhancer-of-split 

related with YRPW motif protein 1 (Hey1), etc. These 

transcription factors play an important role in the 

regulation of NSCs proliferation and differentiation. Hes1, 

Hes5, Mash1, NeuroD, zfp488, Ngn1, Ngn2, and Hey1, 

are members of the basic helix-loop-helix (bHLH) gene 

family, which can play a role in the regulation of NSCs in 
vivo and in vitro. Hes1 is mainly expressed in the SVZ. It 

can maintain the state of NSCs, inhibit their 

differentiation into neurons, and also have an effect on the 

maintenance and self-renewal of NSPCs [81-87]. Hes5 

can promote the proliferation of NSCs, which is mainly 

expressed in SVZ [88-90]. Mash1 is a target gene of the 

Notch signaling pathway, which can be expressed in SVZ 

and SGZ during neurogenesis. Mash1 is also a 

determinant for the differentiation and maturation of 

neural in vivo and in vitro. Studies have shown that Mash1 

promote the differentiation of NSPCs and NPCs [91-96]. 

NeuroD, a member of the bHLH gene family, can 

determine the fate and differentiation of cells. It is mainly 

expressed in SGZ, which regulate neurogenesis in vivo 

and in vitro [97-102]. zfp488 promotes the differentiation 

of NSCs into oligodendrocytes [103, 104]. Ngn1 and 

Ngn2 are the other two bHLH family genes, and Ngn1 can 

promote neurogenesis and the differentiation of NPCs in 

vivo. It also plays a specific role in the maintenance of 

NSPCs [105, 106]. Ngn2 can be expressed in SVZ and the 

ventricular zone (VZ) during neurogenesis, and plays a 

regulatory role in neurogenesis in vivo and in vitro. Ngn2 

also controls the balance between the maintenance and 

differentiation of NSPCs [107, 108]. Fezf2 is a zinc finger 

transcription factor, and research has shown that it can 

promote the differentiation of NSCs in SVZ. It also 

influences the maintenance of NSCs [109, 110]. Hey1 has 

a maintenance effect on NSCs, which is mainly expressed 

in VZ and SVZ [111-113]. Gsx2 is a homeodomain 

transcription factor, which is mainly expressed in SVZ. 

Gsx2 plays an important role in the inhibition of 

neurogenesis. For example, Gsx2 can reduce the 

proliferation and self-renewal of NSCs, and inhibit the 

differentiation of NSCs into neurons and glial cells. Thus, 

the NSCs and NSPCs can be maintained in a static and 

undifferentiated state [114-116]. 

2.2 Wnt signaling pathway 

The Wnt signaling pathway is named after its promoter 

protein Wnt, which is synthesized by the wingless gene of 

the African drosophila and the proto-oncogene Int1 of the 

mouse. The four main Wnt signal pathways are the 

canonical Wnt/β-catenin pathway, the Wnt/polarity 

pathway, the Wnt/Ca2+ pathway, and the intracellular 

pathways that regulate spindle orientation and asymmetric 

cell division [117]. Of these, the canonical Wnt/β-catenin 

signaling pathway is important in regulating the 

proliferation and differentiation of NSCs [118-120]. The 

target genes regulated by the Wnt signaling pathway are 

paired box protein 6 (Pax6), paired box protein 3 (Pax3), 

empty spiracles homeobox 2 (Emx2), distal-less 

homeobox 2 (Dix2), Octamer-binding transcription factor 

4 (Oct4), Prox1, etc. Pax6, Emx2, Dix2, Pax3, and Prox1 

belong to the zinc finger transcription factor. Pax6 

regulates the proliferation and differentiation of NSCs in 

vivo and in vitro. Studies have shown that Pax6 can be 

expressed in both SVZ and OB, and can control the 

balance between the self-renewal and differentiation of 

NSCs, and is important in their maintenance, self-renewal, 

and multi-directional differentiation [121-126]. Emx2 is a 

target gene regulated by the Wnt signaling pathway, 

which regulates neurogenesis in vivo and in vitro. Emx2 

mainly affects NPCs through controlling the migration 

and differentiation of NPCs [127-129]. Dix2 is expressed 

in SVZ and OB, and regulates the proliferation of NPCs 

in SVZ [130, 131]. Pax3 is a DNA-binding protein, 

mainly expressed in VZ, and plays a role in the 

maintenance of NSPCs. The overexpression of Pax3 can 

inhibit the differentiation of NSCs. But if it is inhibited, it 

will promote their differentiation [132-137]. Oct4 belongs 

to the POU protein family, and can be expressed in vivo 

and in vitro. Oct4 is important in the maintenance of 

pluripotent stem cells, and promotes the proliferation and 

self-renewal of NSCs [138-140]. Prospero homeobox 

protein 1 (Prox1) plays an important role in the 

maintenance of NSPCs and regulates the differentiation of 

NSCs in SGZ [141, 142]. 

2.3 Shh signaling pathway 

The hedgehog gene was first found in Drosophila in 1980, 

and has three homologous genes: sonic hedgehog (Shh), 

Indian hedgehog (Ihh), and desert hedgehog (Dhh). They 

encode Shh, Ihh, and Dhh proteins, respectively [143-

145]. The Sonic hedgehog is an important developmental 

regulatory factor produced by the notochord during 

embryonic development [146]. Shh is important in 

regulating the migration, survival, and proliferation of 

NSCs [147-149]. The Shh signaling pathway can regulate 

the self-renewal of NSCs by increasing their symmetrical 

division [150, 151]. NK2 homeobox 2 (Nkx2.2) is an 

important transcription factor involved in the regulation 

of the Shh pathway. Nkx2.2 can be expressed in both SVZ 

and OB, and can promote the differentiation of 

oligodendrocytes and inhibit their self-renewal ability 

[152-157]. Glioma-associated oncogene-1 (Gli-1) is a 
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member of the ZFP protein family and a target gene of the 

Shh pathway, which can be expressed in vivo and in vitro 

and promote the proliferation of NPCs [158-162]. 

 

 
 

Table 3. Effects of single herb and compound Chinese medicinal preparations on NSC proliferation and differentiation. 

 

Classification TCM 
Affected 

cell type 
Effect on NSCs Main mechanisms 

In vivo or in 

vitro 
Refs. 

Compound 

Chinese 
medicinal 

preparations 

BuyangHuanwu 

Decoction 

NSCs and 

NSPCs 

Promote the proliferation 

and differentiation of 
NSCs and NSPCs 

Decrease the content of 
Ca2+ in the cells, and 

increase the expression 

of NF and GFAP. 

In vivo and in 

vitro 

[177-

179] 

Jiawei Sini San NPCs 

Promote the proliferation 

of NPCs and inhibit 

apoptosis 

The expression of 

nestin, beta-tubulin-III, 

and fibrillary acidic 

protein glial were 

significantly increased 

In vitro [180] 

Shengyu decoction 
NSCs and 
NSPCs 

Promote the proliferation 

of NSCs/NSPCs and their 
differentiation into 

neurons 

Increase the expression 
of TN-C, GDNF, 

NCAM, and NGF, and 

inhibits the expression 
of Nogo-A 

In vivo [181] 

FuzhiSan NSPCs 

Promote the proliferation 

of NSPCs; Improve the 
survival rate of newborn 

cells 

Promote the 

neurogenesis in 

hippocampus 

In vivo [182] 

XiehuoBushenDecocfion NSCs 
Promote the survival and 
differentiation of NSCs 

Enhance the expression 
of IL-4 mRNA, and 

down-regulate the 

expression of IFN-gama 
mRNA 

In vivo and in 
vitro 

[27] 

 PMC-12 NSPCs 

Promote the proliferation 

of NSPCs in the 
hippocampus;  

Improve the survival rate 

of newborn nerve cells 

Increased levels of 
BDNF, p-CREB and 

synaptophysin 

In vivo [183] 

Single herb 

Salvia miltiorrhiza Bge NSCs 

Promote the 

differentiation of induced 

multifunctional NSCs 
into neurons in vitro; 

Promote the survival, 

collection and 
differentiation of NSCs 

derived from 

multifunctional stem cell 

Increase the expression 

of nestin and 

MAP2 

In vivo and in 
vitro 

[22] 

Sambucus williamsii 

Hance 
NSCs 

Promotethe 

differentiationof NSCs 
into neurons 

Up-regulate the 

expression of Tuj1 and 

nestin genes, and down-
regulate the expression 

of Oct4 and Sox2 genes 

In vitro [184] 

Scutellariacalensis 
Georgi, 

Phellodendronchinense 

Schneid, 
Ligusticumwallichii 

Franch 

NSCs and 

NPCs 

Promote the proliferation 

of NSCs and NPCs 

Modulate HPA axis and 

increase the content of 

corticosterone 

In vivo and in 

vitro 
[23] 

 

The table lists effects of single herb and compound Chinese medicinal preparations on the NSC proliferation and differentiation, and underlying 
mechanism, and the cell type they affected; PMC-12, polygonummultiflorum Thunberg complex composition-12; Tuj1, tubulin-1; MAP2, microtubule-

associated protein 2; HPA, hypothalamus-pituitary-adrenal; NF, neurofilament; GFAP, glial fibrillary acidic protein; TN-C, Tenascin-C; GDNF, glial cell 

line-derived neurotrophic factor; NVAM, neural cell adhesion molecule; NGF, Nerve growth factor; BDNF, brain derived neurotrophic factor; p-CREB, 
phosphorylated cAMP-response element binding protein. 
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Table 4. Effects of active components of Chinese herbs on NSC proliferation and differentiation. 

Effective 

components 

of Chinese 

herbs 

Origin 

Categories 

of Chinese 

herbs 

Affected 

cell type 
Effects 

Underlying 

mechanisms 

In vivo 

or in 

vitro 

 

Refs. 

 
Ginsenoside 

Rg1 

Panax ginseng C. A. 

Mey 

Tonifying Qi 

herbs 

NSCs 
and 

NSPCs 

Promote the 
differentiation of 

NSCs and NSPCs 

Increase the expression 

of SOX-2 and decrease 

the expression of IL-1β, 
IL-6 and TNF-α; 

Enhance the role of anti-

inflammatory and 
antioxidant 

In vivo 
[186, 

187] 

 
Ginsenoside 

Rd 

Panax ginseng C. A. 

Mey 

Tonifying Qi 

herbs 
NSCs 

Promote the 

proliferation of NSCs 

Regulate the expression 

of neurotrophic factor 3 
and activate the 

expression of iNOS and 

NMDA receptors 

In vivo 
and in 

vitro 

[188] 

Oleanolic 
acid 

Ligustrum lucidum Ait 
Tonifying 
Yin herbs 

NSCs 

and 

NPCs 

Promote the self-

renewal and 

differentiation of 
NSCs; Promote the 

neurogenesis in 

hippocampus 

Increase the expression 

of tubulin and the ratio 

of tubulin /DAPI 

In vivo 

and in 

vitro 

[24] 

Stilbene 
glucoside 

 

Fallopia multiflora 

(Thunb.) Harald 

Tonifying 

blood herbs 
NSCs 

Promote the self-

renewal and 

differentiation of 
NSCs 

Increase the expression 
of tubulin and the ratio 

of tubulin /DAPI 

In vitro [24] 

Resveratrol Fructus Mori 
Tonifying 
Yin herbs 

NSCs 

Promote the survival 

and proliferation of 

NSCs 

Up-regulate the 

expression of Ptch-1, 
Smo, Gli-1 protein and 

RNA 

In vitro 
[25, 
158] 

 (+)-
Cholesten-3-

one 

Chinemys reevesii 

(Gray) 

Tonifying 

Yin herbs 
NSCs 

Induce NSCs into 
dopaminergic 

neurons 

Activate BMP signal; 
Improve the expression 

of TH and BMPR-IB 

In vitro [189] 

Psoralen Psoralea corylifolia L. 
Tonifying 

kidney herbs 
NSCs 

Increase the 
expression of GFAP 

protein in NSCs in 

vitro 

Increase the expression 

of GFAP protein 
In vitro [190] 

Icariin 
Epimediumgrandiflorum 

Morr 

Tonifying 

kidney herbs 
NSCs 

Promote the self-

renewal and 

differentiation of 
NSCs 

Mediate the related 
kinase signal 

transduction pathways 

In vitro [191] 

Salvianolic 

acid B 
Salvia miltiorrhiza Bge 

Huoxuehuayu 

herbs 

NSCs 

and 
NSPCs 

Maintain the self-

renewal of 

NSCs/NSPCs 
Promote the 

proliferation of NSCs 

Regulate PI3K/Akt 

signaling pathway; 
Improve the expression 

of tau mRNA; Down-

regulate the expression 
of mRNA GFAP 

In vivo 

and in 
vitro 

[192, 

193] 

TMP 
Ligusticum wallichii 
Franch 

Huoxuehuayu 
herbs 

NSCs 

Promote the 

proliferation and 
differentiation of 

NSCs 

Increase the 

phosphorylation of 
erk1/2; Reduce the 

phosphorylation of p38 

In vitro 
[194, 
195] 

PNS 
Panax Notoginseng 

(Burk.) F.H. Chen 

Huoxuehuayu 

herbs 
NSCs 

Promote the self-

renewal, 

proliferation, and 

differentiation of 

NSCs 

Improve the expression 

of tuj-1, vimentin, and 

nestin mRNA 

In vitro [196] 

Bilobalide 

 
Ginkgo biloba 

Huoxuehuayu 

herbs 
NSCs 

Promote the 

proliferation of NSCs 

Increase the 
phosphorylation of 

CREB and the level of 

the neurotrophic factor 

In vivo [197] 

Berberine 

 
Coptis chinensis Franch 

Qingrejiedu 

herbs 
NSCs 

Inhibit cell cycle 

arrest  

Promote the survival 
and differentiation of 

NSCs 

Improve the activity of 

cell viability-dependent 
NMDA 

In vivo 

and in 
vitro 

[198] 
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Baicalein 
Scutellaria baicalensis 

Georgi 

Qingrejiedu 

herbs 

NSCs 
and 

NPCs 

Promote the 

differentiation of 

NPCs into neurons;  

Inhibit the apoptosis 
and promote the 

proliferation of NSCs 

Increase the expression 
of presynaptic protein, 

synapsin I, and PSD95 

In vivo 
[199, 

200] 

Baicalin 
Scutellaria baicalensis 

Georgi 

Qingrejiedu 

herbs 

NSCs 

and 
NSPCs 

Determine the fate of 
NSCs; Promote the 

differentiation of 

NSCs and NSPCs 

Reduce the expression 
of p-STAT3 and Hes1; 

Increase the expression 

of NeuroD1 and Mash1; 
Regulate the 

expressionof p-stat3 and 

bHLH protein family 

In vivo 

and in 
vitro 

[201, 

202] 

Paeoniflorin 
Paeonia lactiflora Pall, 

Paeonia suffruticosa 

Qingrejiedu 

herbs 

NSCs 
and 

NSPCs 

Promote the 

proliferation of nerve 

cells and inhibit the 
apoptosis of cells 

Activate the PI3k/Akt-1 

signaling pathway 
In vitro [203] 

 

The table lists the effects of active components of Chinese herbs on NSC proliferation and differentiation and the related mechanism, the cell type they 

affected, the Chinese herbs the components are extracted from, and the categories of Chinese herbs, including tonifying “Qi” herbs, blood herbs, “Yin” 

herbs, “Yang” herbs, and HuoXueHuayu herbs and Qingrejiedu herbs; PNS, panax notoginseng saponins; TMP, tramethylpyrazine; TNF-a, tumor necrosis 

factor a; iNOS, inducible nitric oxide synthase; NMDA, N-methyl-D-aspartic acid receptor; TH, tyrosine hydroxylase; BMPR-I, bone morphogenetic 

protein receptor IB; Patched1; Smo, Smoothened; PSD95, postsynaptic density proteins 95. 

2.4 BMP signaling pathway 

 

Bone morphogenetic protein (BMP) is a type of acidic 

peptide, and members of the transforming growth factor β 

(TGF-β) superfamily [163, 164]. BMP is an intercellular 

signal protein, and is important in the regulation of 

proliferation, differentiation, and apoptosis of NSCs [165, 

166]. The sex-determining region Y-box2 (Sox2) and 

oligodendrocyte lineage transcription factor 2 (Olig2) are 

two target genes of the BMP pathway. Sox2 is a high-

mobility group box transcription factor gene that can be 

expressed in the NSCs of SVZ and SGZ, and can also be 

expressed in the NPCs of VZ. Sox2 can regulate the self-

renewal of NSCs and NPCs and prevent the apoptosis of 

NSCs [167-172]. Olig2 is a helix-loop-helix-transcription 

factor, mainly expressed in SVZ, and can promote the 

proliferation of NSPCs, induces the differentiation of 

NSCs into oligodendrocytes in vitro, and promotes the 

maturation of differentiated cells [173-175]. 

3 Effects of TCM on NSCs proliferation and 

differentiation 

Numerous studies have shown that TCM has a regulatory 

effect on NSC proliferation and differentiation. TCM can 

improve the microenvironment, promote neurogenesis, 

repair nerve damage, and provide new treatments for 

cerebral injury and neurodegenerative diseases, such as 

Alzheimer's disease (AD), Parkinson's disease (PD), and 

strokes [176]. Here, we review the effects and underlying 

mechanisms of Chinese medicinal compouds, single 

herbs, and herb extract/the Chinese herbal monomer on 
NSCs proliferation and differentiation. Summarized are 

shownin Tables 3 and 4. 

 

3.1 Effects of compound Chinese medicinal 

preparation on NSCs proliferation and differentiation 

Experimental studies have found that compound Chinese 

medicine preparation has an important regulatory role on 

NSCs proliferation and differentiation. The compound 

prescriptions mainly include Huoxue Huayu (promoting 

blood circulation and removing blood stasis) and 

tonifying kidney recipes, of which Buyang Huanwu 

Decoction is a classic TCM prescription. This can 

promote blood circulation and dredge the meridians, and 

thus often used for the treatment of cerebrovascular 

disease. Buyang Huanwu is composed of Astragalus 

membranaceus (Fisch.) Bge (120 g), Angelica sinensis 

(Oilv.), Diells (10 g), Paeonia lactiflora Pall (10 g), 

Ligusticumwallichii Franch (10 g), Carthamus tinctorius 

L (10 g), Semen Persicae (10 g) and Flos carthami (4.5 g). 

Recent research has demonstrated that Buyang Huanwu 

Decoction can promote the proliferation and 

differentiation of NSCs, and improve the expression of 

growth-associated protein-43 (GAP-43) [177]. It can also 

promote the differentiation of neuroepithelial stem cells 

into neurons and astrocytes [178], the growth of nerve 

cells and nerve fibers, and the growth and differentiation 

of NSPCs. Experimental results have demonstrated that 

the content of Ca2+significantly decreased and expression 

of neurofilament (NF) and glial fibrillary acidic protein 

(GFAP) significantly increased in the NSPCs treated with 

Buyang Huanwu Decoction [179].  

Jiaweisinisan consists of Stellaria dichotoma L. var. 
lanceolata Bge, Paeonia lactiflora Pall, Citrus reticulata 

Banco, Poncirus trifoliate (L.) Raf, Lycium barbarum L, 
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Gardenia jasminoides Ellis, Radix Rehmanniae, and 

Abalone. These are weighed according to the ratio of 

1:3:1:3:1:4:6, respectively. This Jiaweisinisan 

prescription can also promote the proliferation of 

hippocampal NPCs, and inhibit the apoptosis of glial cells 

and neurons differentiated from Hippocampal-NPCs 

[180].  

Shengyu decoction, a traditional Chinese medicine, 

has been used to treat diseases that involve a deficit in “qi” 

and “blood.” Modified Shengyu decoction (MSD) was 

designed to treat brain injury after head trauma, according 

to traditional Chinese medicine theories, and is based on 

the traditional Shengyu. Four additional herbs are in the 

MSD: Salvia mil-tiorrhiza Bunge, Commiphora myrrha 

(Nees) Engl., Acorus calamus L, and Curcuma aromatica 

Salisb. A study on the treatment of traumatic injury in rats 

using the Shengyu decoction showed that it could increase 

the expression of nerve growth factor (NGF), glial cell 

line-derived neurotrophic factor (GDNF), neural cell 

adhesion molecule (NCAM), and Tenascin-C (TN-C) in 

the cortex and hippocampus of rats. It can also inhibit the 

expression of Nogo-A and promote the proliferation of 

NSCs/NSPCs and their differentiation into neurons [181].  

Fuzhisan is a traditional Chinese medicine 

prescription, composed mainly of four Chinese medicinal 

herbs: Panax ginseng C. A. Mey, Scutellaria baicalensis 

Georgi, Acorus gramineus Soland, and Glycyrrhiza 

uralensis Fisch. Experimental studies have shown that 

Fuzhisan can promote the proliferation of NSPCs and 

improve the survival rate of newborn cells [182]. 

Xiehuo Bushen Decoction consists of Rheum 

officinale baill, Paeonia suffruticosa Andr, Paeonia 

lactiflora Pall, Astragalus membranaceus (Fisch.) Bge, 

Cuscuta Lam, Viscum coloratum (Kom.), and Nakai. It 

can promote the survival and differentiation of NSCs 

transplanted into a brain after cerebral hemorrhage. The 

possible mechanism is that the Xiehuo Bushen Decoction 

can enhance the expression of interleukin 4 (IL-4) mRNA 

and down-regulate the expression of interferon-gamma 

(IFN-gama) mRNA [27]. 

Polygonummultiflorum Thunberg complex 

composition-12 (PMC-12), a mixture of four medicinal 

herbs, includes Polygonum multiflorum Thunb, Radix 

Polygalae, Rehmannia glutinosa, and Acorus gramineus 

Soland. PMC-12 was found to promote the proliferation 

of NSPCs in the hippocampus, increase the survival rate 

of newborn neurons, and encourage neurogenesis in the 

hippocampus [183].  

  Although compounds of Chinese medicine have 

been found to regulate the proliferation and differentiation 

of NSCs through experiments, it has not been determined 

whether one or a combination of the active ingredients 

influences the proliferation and differentiation of the 

NSCs, because of the complexity of the active ingredients 

of the compounds of Chinese medicine. Further 

experiments are therefore required to establish this. 

 

3.2 Effect of single herbs on NSCs proliferation and 

differentiation  

 

Extensive research has been conducted on Chinese herbs, 

such as those used for Huoxuehuayu and Qingrejiedu 

(clearing away heat and toxic material) in the study of 

NSC proliferation and differentiation. 

Salvia miltiorrhiza Bge is a common traditional 

Chinese herb for Huoxuehuayu. It has anti-oxidation and 

anti-inflammatory functions and is often used to treat 

nervous system diseases. Studies have shown that 

Danshen can increase the expression of the nestin 

significantly, promote the differentiation of induced 

multifunctional NSCs into neurons in vitro, and promote 

the survival and differentiation of NSCs derived from 

multifunctional stem cells [22]. Another commonly used 

herb for Huoxuehuayu, Sambucus williamsii Hance, was 

also shown in in vitro experiments to promote the 

proliferation of NSCs, but the study was conducted 

together with the herbs of Qingrejiedu [184].  

The herbal preparation composed of 

Scutellariacalensis Georgi, Phellodendron chinense 

Schneid, and Ligusticumwallichii Franch has been shown 

to promote the proliferation of NSCs in vitro. In vitro 

study shows that this herbal medicine can improve the 

symptoms of depression in mice models, which was 

mainly achieved through the machanism of increasing the 

content of corticosterone and promoting hippocampal 

precursor cell proliferation [23]. 

 Experiments also showed that the traditional 

Chinese herb Sambucus williamsii Hance can promote the 

differentiation of induced pluripotent stem cells (iPSCs) 

into neurons by up-regulating the expression of tubulin-1 

(Tuj1) and nestin, and down-regulating the expression of 

Oct4 and Sox2 [184].  

 

3.3 Effects of Chinese herbal monomer on NSCs 

proliferation and differentiation  

In recent years, numerous experiments have demonstrated 

that the extract of Chinese herbal monomer Plays a 

specific regulatory role in NSC proliferation and 

differentiation. The current research mainly focuses on the 

extraction of effective components from the Chinese 

tonifying herbs HuoxueHuayu and QingreJiedu (Fig.1). 
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Figure 1. Structures of Chinese herbal monomers 
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3.3.1 Monomers from Chinese herbs 

 

3.3.1.1 Tonifying Qi herbs  

 

Panax ginseng C. A. Mey is an herb used in TCM for 

tonifying “Qi”. Recent research has shown that it has roles 

in anti-anxiety, anti-depression, and cognitive function-

enhancing, among others. The numerous active 

ingredients in Panax ginseng C. A. Mey have the effect of 

nerve protection [185]. Ginsenoside Rg1 can promote the 

differentiation of NSCs into neurons and play a 

neuroprotective role by increasing the expression of SOX-

2 and decreasing the expression of interleukin 1β (IL-1β), 

interleukin 6 (IL-6), and TNF-a. The differentiation of 

NSCs can be promoted by cAMP protein kinase A (PKA) 

and PI3K-Akt signaling pathway [186, 187]. Ginsenoside 

Rd can promote the proliferation of NSCs by regulating 

the expression of neurotrophic factor 3 and activating the 

expression of inducible nitric oxide synthase (iNOS) and 

N-methyl-D-aspartic acid (NMDA) receptors [188]. 

 

3.3.1.2 Tonifying Yin herbs 

 

Oleanolic acid extracted from the “Yin”-tonifying 

Chinese herbal Ligustrum lucidum Ait and stilbene 

glycoside extracted from Fallopia multiflora (Thunb.) 

Harald have been found to promote the self-renewal and 

differentiation of NSCs in vitro. The relevant mechanism 

may be the increase of the expression of tubulin and the 

ratio of tubulin/DAPI [24].  

Resveratrol is a polyphenolic compound found in 

various plants, and is an effective component of the 

Chinese herb Fructus Mori. Experiments have established 

that it can promote the survival and proliferation of NSCs. 

In addition, the expression of Patched-1 (Ptch-1), 

Smoothened (Smo), Gli-1 protein, and RNA were all up-

regulated in resveratrol-treated NSCs [25, 158].  

The tortoiseshell cholesterol extracted from 

Chinemys reevesii (Gray), (+)-Cholesten-3-one, can 

induce NSCs into dopaminergic neurons through a bone 

morphogenetic protein (BMP) signal, thus providing a 

possible new treatment for PD [189]. 

 

3.3.1.3 Tonifying kidney herbs 

 

Psoralen is an effective component extracted from the 

Chinese herb (Psoralea corylifolia L.), and is 

representative of kidney-tonifying herbs. Psoralen has 

been found to increase the expression of glial fibrillary 

acidic protein (GFAP) in NSCs in vitro, thereby 

promoting the differentiation of NSCs into astrocytes 

[190]. Icariin, the extract of Epimediumgrandiflorum 

Morr, which is another well-known Chinese herb for 

kidney tonifying, can promote self-renewal and 

differentiation in NSCs. This can be mediated by the 

related kinase signal transduction pathways [191].  

 

3.3.2 Huoxuehuayu herbs 

 

Salvianolic acid B is the root and rhizome of Salvia 

miltiorrhiza Bge, a traditional Chinese herb of 

HuoXueHuaYu. It can maintain the self-renewal of NSCs/ 

progenitor cells and promote the proliferation of NSCs 

though the regulation of the PI3K/Akt signaling pathway 

[192]. It also promotes the growth of the synapses of 

NSCs and the differentiation of neurons [193]. 

Tamethylpyrazine extracted from Ligusticum 

wallichii Franch can promote the proliferation and 

differentiation of NSCs under the condition of hypoxia in 
vitro [194], and also promotes the differentiation of NSCs 

after cerebral ischemia [195]. 

Panax notoginseng saponins (PNS), which has the 

effect of Huoxuehuayu, simultaneously promotes the 

expression of nestin/BrdU, improves the expression of 

tubulin-1 (tuj1), vimentin, and Nestin mRNA, and 

promote the self-renewal, proliferation, and 

differentiation of NSCs [196].  

Bilobalide extracted from Ginkgo biloba can 

increase the phosphorylation of the Cyclic AMP response 

element binding protein (CREB) in NSCs and the level of 

the neurotrophic factor, and promote the proliferation of 

NSCs [197]. 

 

3.3.3 Qingrejiedu herbs 

 

Berberine is the main active ingredient of Coptis chinensis 

Franch, a traditional Chinese herb of Qingrejiedu. Studies 

show that it can inhibit cell cycle arrest and promote the 

survival and differentiation of NSCs [198]. Baicalein and 

baicalin are the two main active components of Scutellaria 

baicalensis Georgi, and baicalein can promote the 

differentiation of NPCs into neurons. The mechanism 

may be related to the increase of the expression of 

presynaptic protein, synapsin I and postsynaptic density 

proteins 95 (PSD95) [199]. Baicalein can also inhibit 

apoptosis and promote the differentiation of NSCs [200]. 

Baicalin, another extract, can determine the fate of NSCs, 

and promote neurogenesis [201]. It also can regulate the 

expression of phosphorylated signal transducer 

transcription3 (p-stat3) and bHLH family proteins, 

subsequently promoting the differentiation of 

NSCs/NSPCs [202]. 

Paeoniflorin is a natural compound extracted from 

the roots of the Chinese herbs Paeonia lactiflora Pall and 

Paeonia suffruticosa. It can promote the proliferation and 

survival of NSCs and precursor cells in vitro and inhibit 
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the apoptosis of cells. The mechanism may be related to 

down-regulation of the expression of inhibitor Κb (iκB), 

nuclear transcription factor-κB (NF-κB), and interleukin-

1β (IL-1β)[203]. 

As mentioned above, the natural compounds 

extracted from traditional Chinese medicine, which play a 

regulatory role in the proliferation and differentiation of 

NSCs, can be divided into the three categories of tonifying 

(for tonifying Qi, Yin, and kidney), Huoxuehuayu, and 

Qingrejiedu herbs. The effects of tonifying herbs on NSCs 

proliferation and differentiation have been studied most. 

In the theory of TCM, the nerve function damage is often 

due to kidney deficiency caused by the deficiency of the 

marrow-reservoir. These tonifying herbs are therefore 

often used for the treatment of nervous system diseases. 

In addition, kidney essence is also believed to be critical 

in maintaining a variety of life activities. The potential 

function of various organs can be stimulated through the 

method of tonifying the kidneys, which is interlinked with 

the method of promoting the proliferation and 

differentiation of NSCs to repair brain neurons in the 

treatment of brain damage and neurodegenerative 

diseases. In addition, the insufficient cerebral blood 

supply caused by cerebral arteriosclerosis or 

atherosclerotic plaque inflammatory response is also a 

common cause of nervous system diseases. Therefore, the 

heat detoxification practice of TCM is also often applied 

to treat nervous system diseases, including the clinical use 

of Huoxuehuayu and Qingrejiedu herbs. Experimental 

studies also demonstrate that Chinese herbs and their 

active ingredients can regulate the proliferation and 

differentiation of NSCs, which provides a broader space 

for discovering drugs that can regulate the proliferation 

and differentiation of NSCs. 

 

4. Summary and Perspectives 

 

NSCs pass through the different stages of NSPCs, NPCs, 

and neuroblasts in the process of proliferation and 

differentiation into neural cell lineage, and their 

corresponding markers are found at different stages. In the 

process of neurogenesis, and in NSC proliferation and 

differentiation, a variety of internal and external factors 

precisely regulate NSCs through different protein 

pathways. Studies have found that single herbs, herb 

extracts/Chinese herbal monomers, and compounds of 

Chinese medicine have a certain regulatory role on the 

proliferation and differentiation of NSCs. However, most 

of the current studies focus on single pathways. However, 

the regulation of the NSC proliferation and differentiation 

is involved in a complex signal network. In addition, NSC 

research into TCM lacks multi-targeted and multi-channel 

approaches, which is a systematic deficiency and thus 

they cannot fully explain the detailed mechanisms 

underlying regulating NSC by TCM. The effects of TCM 

promoting neurogenesis are still in the experimental stage, 

and may not be ready for the clinical application. In short, 

TCM should be played to its advantages, and in 

combination with modern medicine used to explore its 

potential in the regulation of neurogenesis to provide new 

possibilities for the treatment of brain damage and 

neurodegenerative diseases. 
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