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Co-occurrence of Local Anisotropic 
Gradient Orientations (CoLlAGe): A 
new radiomics descriptor
Prateek Prasanna*, Pallavi Tiwari* & Anant Madabhushi

In this paper, we introduce a new radiomic descriptor, Co-occurrence of Local Anisotropic Gradient 
Orientations (CoLlAGe) for capturing subtle differences between benign and pathologic phenotypes 
which may be visually indistinguishable on routine anatomic imaging. CoLlAGe seeks to capture and 
exploit local anisotropic differences in voxel-level gradient orientations to distinguish similar appearing 
phenotypes. CoLlAGe involves assigning every image voxel an entropy value associated with the 
co-occurrence matrix of gradient orientations computed around every voxel. The hypothesis behind 
CoLlAGe is that benign and pathologic phenotypes even though they may appear similar on anatomic 
imaging, will differ in their local entropy patterns, in turn reflecting subtle local differences in tissue 
microarchitecture. We demonstrate CoLlAGe’s utility in three clinically challenging classification 
problems: distinguishing (1) radiation necrosis, a benign yet confounding effect of radiation treatment, 
from recurrent tumors on T1-w MRI in 42 brain tumor patients, (2) different molecular sub-types of 
breast cancer on DCE-MRI in 65 studies and (3) non-small cell lung cancer (adenocarcinomas) from 
benign fungal infection (granulomas) on 120 non-contrast CT studies. For each of these classification 
problems, CoLlAGE in conjunction with a random forest classifier outperformed state of the art radiomic 
descriptors (Haralick, Gabor, Histogram of Gradient Orientations).

There are several instances where benign and malignant pathologies might appear very similar on radiographic 
imaging. One such example is radiation necrosis (RN) (a relatively benign effect of radiation treatment) and 
recurrent brain tumors (rBT), which are visually almost indistinguishable on conventional MRI1; even though 
both RN and rBT have distinct cellular and architectural arrangements when examined on a pathology slide 
under a microscope. Another example is triple negative (TN) breast cancer (highly aggressive) and fibroadeno-
mas (FA) (benign tumor) with similar morphologic appearances on MRI2. Similarly, fungal infections known as 
granulomas look strikingly similar to non-small cell lung cancers (adenocarcinomas) on routine non-contrast 
CT imaging. There is hence a need for identifying non-invasive markers that can reliably distinguish such sim-
ilar appearing pathologies on routine imaging for early diagnosis as well as treatment evaluation. Identification 
of these imaging biomarkers could potentially obviate the need for unnecessary surgical interventions, as well 
as exposure to unnecessary radiation, for disease confirmation. “Radiomics”3–5, an emerging field in medical 
image analysis, refers to the quantitative extraction of shape, histogram, and/or texture-based features from radi-
ographic images to distinguish disease phenotypes that are not visually appreciable on imaging. Two popular 
radiomic features are Haralick6 and Gabor steerable filters7. Haralick features capture gray-level co-occurrence 
patterns8,9, where a matrix of co-occurring gray-level pairs in the image is constructed, from which second-order 
statistical texture features can be calculated. Haralick texture analysis is relatively popular in medical image analy-
sis as it allows for capturing variations in gray-level image characteristics via second order intensity statistics (e.g. 
angular second moment, contrast, and difference entropy). However, Haralick features may fail to capture varia-
tions in subtly different sub-structures that may be morphologically different but may have identical co-occurring 
gray-level intensities. Figure 1(b) and (f) show one such example of two similar appearing texture patterns, where 
the corresponding Haralick energy feature (shown in Fig. 1(c) and (g)) for both the patterns was found to be 
identical.

Gabor filters7 are modeled to mimic the way human visual system deciphers object appearances10. A Gabor filter 
can be defined as the modulation of a complex sinusoidal by a Gaussian function and is controlled by scale (t) and 
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orientation (λ) parameters. Gabor features can be extracted as a response to convolution of an image with distinct 
Gabor filters obtained by varying each of the associated parameters (t, λ) across the filter bank. However, Gabor filters 
capture a global response for an image at a specific value of (t, λ), and may not capture local variations in orientations 
on a per-pixel basis within local neighborhoods, which may be an important attribute when computing differences 
across similar-appearing micro-textures. Figure 1(d) and (h) show a representative example of similar feature responses 
obtained for a Gabor filter at t =​ 2, and λ =​ π/4 for the two texture patterns shown in Fig. 1(b) and (f) respectively.

Other popular radiomic features include histogram of gradient orientations (HOG)11. HOG yields a global 
patch-based signature by computing histogram distribution of orientations obtained from computing differ-
ences in image intensities in X and Y directions on a per pixel basis. A variant of HOG, called co-occurrence 
of histogram of gradient orientations (Co-HOG) was recently presented by Watanabe et al.12 and Pang et al.13 
for pedestrian detection. Co-HOG is a multiple-gradient-orientation-based feature descriptor. Its computation 
yields a high dimensional feature vector that combines neighbor gradient orientations to quantify shape-based 
appearances in regions of interest. However, the Co-HOG approach in refs 12–14 (a) does not capture localized 
intensity-dependent variations across neighboring orientations, and (b) is susceptible to “curse of dimensionality” 
(due to a high dimensional feature space).

Recently, Lee et al.15 developed a novel quantitative feature called cell orientation entropy (CoRE) to cap-
ture differences in orientation of nuclei with respect to the neighboring nuclei across different pathologies, and 
demonstrated differences in nuclear orientations across aggressive and benign conditions in the context of pros-
tate cancer. If such pathologic differences are indeed reflected at the radiologic level (even though these differ-
ences may not be visually discernible), it begs the question whether a radiomic descriptor could be developed to 
capture the histologic anisotropy across different pathologies at the radiologic scale.

In this work, we present a new radiomic descriptor, Co-occurrence of Local Anisotropic Gradient Orientations 
(CoLlAGe), to capture anisotropic tensor gradient differences across similar appearing pathologies in an image. 
The rationale behind CoLlAGe, is that even though overall the global textural patterns or even the filter responses 
at a majority of pixel locations might be similar between two differing pathological conditions (e.g. RN versus rBT, 
FA versus TN breast cancer or adenocarcinomas versus granulomas), the organization and co-occurrences of local 
tensor gradients may differ across classes and will be relatively consistent within a class. CoLlAGe seeks to capture 
these local anisotropic differences in micro-structures by measuring entropy (a mathematical construct to measure 
disorder) of co-occurrences of pixel/voxel-level gradient orientations computed within a local neighborhood. The 
rationale being that the distribution of entropy of localized gradient field within a lesion will be high for aggressive 
disease conditions, potentially manifesting their inherent disorder and high heterogeneity appreciable at a cellular 
scale, as compared to benign pathologies which have a more coherent micro-architecture. An example of CoLlAGe 
is shown in Fig. 1(e) and (i) to distinguish two synthetic checkerboard images with similar-appearing patterns. 
CoLlAGe was found to capture localized variations in gradients on a per-pixel basis (reflected by high CoLlAGe 
values) across the two patterns, differences that were not appreciable on Haralick and Gabor feature representations.

The rest of the paper is organized as follows. The algorithm of CoLlAGe is detailed in the Methodology sec-
tion, followed by the experimental setup to demonstrate the utility of CoLlAGe in the context of three problems 
involving brain tumors, breast cancer, and lung cancer. Subsequently we present and discuss the results followed 
by the concluding remarks.

Methodology of CoLlAGe
In the following subsections, we describe the detailed mathematical formulation of our CoLlAGe strategy, both in 
2-dimensions (2D) and in 3-dimensions (3D). A preliminary implementation of 2D CoLlAGe was previously pre-
sented in ref. 16. Figure 2 shows the workflow of CoLlAGe in 2D, while the 3D implementation is shown in Fig. 3.

Figure 1.  Comparison of different feature representations for two similar-appearing toy images. (a) A 
synthetic checkerboard image. Two 3 ×​ 3 patches (P1, P2) obtained from the checkerboard image are shown 
in (b) and (f) respectively such that P2 =​ ~(P1). The corresponding feature representations for P1 and P2 are 
shown in (c) and (g) for Haralick entropy, (d) and (h) for Gabor (t =​ 4, λ =​ 22.5), and (e) and (i) for CoLlAGe 
respectively.
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Notation.  An MRI image scene   is defined as  = C f( , ) where   is a spatial grid C of locations c ∈​ C, in a 
2-dimensional, 2, or a 3-dimensional space, 3. Each such spatial location, c ∈​ C (in 2 or 3) is associated with 
an intensity value f(c). A local neighborhood of   pixels/voxels is defined within a window W, while the 
co-occurrence matrix computed from within W is denoted as . The entropy map is given as  , and the final 
CoLlAGe feature vector is denoted as F. For the sake of clarity, the notations used for computation of 2D CoLlAGe 
are denoted with superscript 2D, while the notations for computation of 3D CoLlAGe are denoted with super-
script 3D. The common notations, operators and acronyms employed in this paper are listed in Table 1.

Methodology.  Computation of 2D CoLlAGe (Algortithm 1) for every c ∈​ C involves the following main 
steps,

1.	 Calculation of gradient magnitudes for every pixel: For every c ∈​ C, gradients along the X and Y 
directions are computed as, ∇ = +∂

∂
∂
∂

ˆ ˆf c i j( ) f c
X

f c
Y

( ) ( ) . Here, ∂
∂
f c

X
( )  and ∂

∂
f c

Y
( )  are the gradient magnitudes 

along the X and the Y axes respectively, denoted by ∂​ fX (c) and ∂​ fY (c).
2.	 Computing local dominant orientations via singular value decomposition (SVD): A  ×  window 

W centered around every c ∈​ C is selected to compute the localized gradient field. We then compute ∂​ fX (ck) 
and ∂​ fY (ck), ∈ …k {1, 2, , }2 . The vector gradient matrix 

��
  associated with every c is given by 

 = ∂ ∂
�� � �� � ��

f c f c[ ( ) ( )]X k Y k , where ∂ ∂
� �� � ��

f c f c[ ( ) ( )]X k Y k , ∈ …k {1, 2, , }2  is the matrix of gradient vectors in 
the X and Y directions for every ck given by a  × 22  matrix,

Figure 2.  Overview of 2-dimensional CoLlAGe and overall workflow. The first module involves computing 
gradient orientations on a per-pixel basis within the lesion. In the second module, dominant direction for every 
pixel is computed within a ×   neighborhood via singular value decomposition. A co-occurrence matrix of 
orientations and subsequently the associated entropy of each pixel is calculated in the third module. A 
histogram of entropy values is then aggregated for every pixel in the fourth module and used for classification in 
the fifth module to distinguish similar appearing pathological conditions.
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The most significant orientation for each pixel ck within ×   gradient field is obtained by performing 
singular value decomposition (SVD) of 

��
. The dominant principal components in X and Y directions are 

obtained from SVD as rk
X and rk

Y  for every ∈ …k {1, 2, , }2 . The most significant orientation for every ck 
is then calculated as θ =
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3.	 Calculation of second-order statistics for most significant orientations: The objects of interest for 
calculating CoLlAGe features are the co-occurring directions given by discretization of the dominant 
orientation θ c( )D

k
2  for every pixel c, such that θ ω= ×
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, where ω is a discretization factor. 

An N ×​ N co-occurrence matrix θ D2
  subsequently captures pairs of orientations (p, q) between pixels  

(cj, ck) which co-occur in the neighborhood  i, such that,
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°N 360  is the number of discrete angular bins. Entropy measure, θ c( )

D2
  is then computed from 

every co-occurrence matrix on every c as,
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4.	 A histogram of  θ
D2
 is computed by aggregating θ c( )k

D2
 , ∈ … | |k C{1, , }, where |·| is the cardinality of set 

Figure 3.  Workflow for extracting 3D CoLlAGe features. Note that unlike 2D features, two dominant 
directions (θ3D, φ3D) are computed for 3D CoLlAGe associated with each c ∈​ C, which provide complimentary 
information about the degree of disorder of the principal gradient orientations in (X, Y) and (X, Y, Z) directions.
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C. The entropy histogram is divided into bin size v, optimized on the training set via grid search 
optimization.

A CoLlAGe feature vector, F2D can be obtained for every c ∈​ C which consists of the binned histogram values 
in the form of v ×​ 1 vectors.

Data: ROI volume 

Result: 2D CoLlAGe features, 

begin

    for each pixel ∈c , do

      Obtain gradients ∂​ fX (c) and ∂​ fY (c) along X- and Y- axes;

    end

    for each pixel ∈c , do

      Compute gradient vectors ∂
� ����

f c( )X k  and ∂
� ����

f c( )Y k  in ×   neighborhood; Obtain

      localized gradient vector matrix  = ∂ ∂
��� � ���� � ����

f c f c[ ( ) ( )]X k Y k ;

      Compute dominant orientation, θ(ck), ∈ …k {1, , }2  via SVD of 
���
 ;

    end

    Compute Co-occurrence matrix  from θ(x, y) using Equation 1;

    Compute c( )  from  as described in Equation 2;

    Obtain v ×​ 1 dimensional feature vector   from distribution of  ;

end

Algorithm 1: Computation of 2D CoLlAGe features

Data: ROI volume 

Result: 3D CoLlAGe features, ̂  and ∼

begin

    for each voxel ∈c , do

      Obtain gradients ∂​ fi (c) along i-axes, where ∂ = ∂
∂

f c( )i
f c

i
( ) , i ∈​ x, y, z

Continued

Symbol Description Symbol Description

 MRI scene βAcc Average accuracy

C Grid of MRI voxels c Spatial location of pixel/voxel of interest

f(c) MRI signal intensity at c ∇ Spatial derivative

∂​ fX (c) Gradient magnitude along X-axis ∂​ fY (c) Gradient magnitude along Y-axis

∂​ fZ (c) Gradient magnitude along Z-axis W Local neighborhood around central location

k Index of voxels/pixels of interest, k ∈​ 1, …​, |C| 
���

Vector gradient matrix

v Bin size ω Discretization factor

rk
a Principal component in 2, a ∈​ X, Y ψn(ck) Principal component in 3, n ∈​ X, Y, Z

θ2D Dominant orientation computed from rk
X , rk

Y θ3D Dominant orientation computed from ψX, ψY

φ3D Dominant orientation computed from ψX, ψY, ψZ  Window size dimensions (pixels/voxels)

N Window size for co-occurrence computation  Co-occurrence matrix neighborhood

θ D2 Co-occurrence matrix computed from θ2D θ D3 Co-occurrence matrix computed from θ3D

θ D2
 Entropy map computed from θ D2

 θ
D3

Entropy map computed from θ D3


φ D3 Co-occurrence matrix computed from φ3D  φ
D3

Entropy map computed from φ D3

F2D 2D CoLlAGe feature vector F3D 3D CoLlAGe feature vector

UH University Hospitals, Cleveland CCF Cleveland Clinic Foundation

UPenn University of Pennsylvania RN Radiation Necrosis

rBT Recurrent Brain Tumor TN Triple Negative

ER Estrogen Receptor HER2 Human Epidermal growth factor Receptor 2

FA Fibroadenoma RF Random Forest

PET Positron Emission Tomography CT Computed Tomography

FDG Fluorodeoxyglucose Gd Gadolinium

Table 1.   List of commonly used notations, symbols and acronyms in this paper.
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    end

    Define   × ×  neighborhood centered around ∈c 

    for each voxel ∈c , do

      Compute gradient vectors  in  neighborhood, i ∈​ (x, y, z),

      ∈ …k {1, , }3 , where ∂ = ∂ ∂ .. ∂f c f c f c f c( ) [ ( ) ( ) ( )]i i i i N
T

1 2 3

      Obtain localized gradient vector matrix = ∂ ∂ ∂
��� � ���� � ���� � ����

f c f c f c[ ( ) ( ) ( )]X k Y k Z k ;

      Compute dominant components ψ(ck11), ψ(ck12), and ψ(ck13), , by SVD of ;

      Obtain dominant directions θ(ck) and φ(ck), using Equations 3 and 4 respectively;

    end

    Compute co-occurrence matrix ̂ from θ(ck) and 
∼

 from φ(ck) using Equation 1;

    Compute ˆ c( )k  from ̂ and  c( )k  from 
∼
 as described in Equation 2;

    Obtain v ×​ 1 dimensional feature vectors ̂  and ∼ from distributions of ̂  and   respectively;

end

Algorithm 2: Computation of 3D CoLlAGe features

Extension of CoLlAGe to 3-Dimensions.  For 3D CoLlAGe (Algortithm 2), the local neighborhood 
around a voxel is first defined by a 3D window W of size × ×    along the X, Y, and Z-directions and gra-
dient directions for every voxel are calculated from within W. We collate the gradient magnitudes along the three 
axes in W into a single gradient matrix 

��
 of size  × 33  given as:  = ∂ ∂ ∂

�� � �� � �� � ��
f c f c f c[ ( ) ( ) ( )]X k Y k Z k , where 

∂ ∂ ∂
� �� � �� � ��

f c f c f c[ ( ) ( ) ( )]X k Y k Z k , ∈ …k {1, 2, , }3  is the matrix of gradient vectors in the X, Y and Z directions 
respectively for every ck. SVD of 

��
 for a voxel ck yields three dominant principal components ψX(ck), ψY(ck) and 

ψY(ck) in the X-, Y- and Z- directions respectively. Two dominant orientations θ3D(ck) and φ3D(ck) can then be 
obtained from the three principal components to capture variability in orientations across (X, Y), and (X, Y, Z), 
given by

θ
ψ
ψ

= −c c
c

( ) tan ( )
( ) (3)

D
k

Y k

X k

3 1

and

φ
ψ

ψ ψ
=

+

−c c

c c
( ) tan ( )

( ) ( ) (4)

D
k

Z k

Y k X k

3 1
2 2

Two co-occurrence matrices θ D3
  and φ D3

  corresponding to θ3D(ck) and φ3D(ck) capture the orientation pairs 
between voxels in the neighborhood and are computed as given in Equation 1. θ c( )k

D3
  from θ c( )k

D3
  and φ

D3
  

from φ D3
  (computed using Equation 2), yield two distinct entropy representations in (X, Y) and (X, Y, Z) direc-

tions within the volume of interest. A joint histogram of CoLlAGe feature vector = θ φF [ , ]D3 D D3 3
   can be 

obtained for further evaluation in a supervised or an unsupervised classification setting.

Experimental Design
Datasets and Preprocessing.  In this work, we employed three unique dataset cohorts obtained from 
different collaborating institutions to evaluate the efficacy of CoLlAGe on three extremely challenging clinical 
problems: (a) distinguishing radiation necrosis, a relatively benign effect of radiation, from tumor recurrence on 
T1-w MRI in brain tumors, (b) distinguishing different molecular sub-types of breast cancer on DCE-MRI, and 
(c) distinguishing adenocarcinomas from granulomas on non-contrast CT images. Details regarding inclusion 
criteria, pre-processing, and experimental design for each of the three datasets are provided below.

Brain tumor dataset.  Imaging scans were acquired under an Institutional Review Board (IRB)-approved (IRB # 
CC00148) and HIPAA-compliant study at University Hospitals, Cleveland (UH). The patient cohorts were iden-
tified by performing a retrospective review of neuropathology in all brain tumor patients who underwent a sur-
gery of a recurrent or progressive Gd T1w-enhancing lesion identified during follow-up post-9 months (or later) 
after the initial after brain radiation therapy. Follow-up MRI scans within 0–21 days prior to second resection 
or biopsy (for disease confirmation) were used for analysis. Written informed consent was obtained from all the 
subjects. Inclusion criteria were that the pathology specimen must have been obtained by resection (preferably) 
or by multiple biopsies (>​2) via stereotactic guidance. Fewer than two biopsies were not allowed because of the 
potential for sampling error. Histology was re-reviewed by a neuropathologist, blinded to the original diagnosis 
and type of radiation, in order to quantify the percentage of radiation necrosis and recurrent tumor. In order to 
avoid any training errors due to “mixed” pathologies on the same lesion the presence of RN was strictly defined 
as >​80% RN and of recurrent tumor as >​80% recurrent tumor (other “mixed” cases with varying proportions of 
RN and tumor recurrence were excluded). We identified a total of 42 cases, from 2006 to 2014 that followed this 
strict inclusion criterion. Our retrospectively analyzed brain tumor dataset comprised 22 primary (10 RN, 12 rBT) 
and 20 metastatic (8 RN, 12 rBT) cases. Patient MRIs were acquired at 3 Tesla. Images have an in-plane resolution 
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of 0.8–0.93 mm/pixel. Slice thickness =​ 3–5 mm, TR =​ 400–750 ms, TE =​ 14–17 ms. The clinicopathologic char-
acteristics of the brain tumor dataset have been summarized in Table 2.

Breast cancer dataset.  Breast MRI data was prospectively collected in an Institutional Review Board-approved 
(IRB #02-13-42C), HIPAA-compliant study at the University of Pennsylvania (UPenn) between 2002 and 2007. 
Written informed consent was obtained from all subjects. Women without contraindication to MRI or gadolin-
ium who presented with either a suspicious breast lesion or known malignancy prior to surgery were recruited 
to a larger single-institution study of MRI in the staging, diagnosis, and screening of breast cancer. Women who 
underwent neoadjuvant chemotherapy prior to surgery were excluded, as were women who had excisional biopsy 
prior to entry. From this data set we sub-selected women whose pathology revealed invasive cancer. Subjects 
whose images of the index lesion demonstrated substantial metallic artifact from prior biopsy were also excluded. 
This study examined MRI characteristics in 76 solid lesions from 65 patients for whom pathology results and, 
where applicable, ER, PR, and HER2 results were available. Reference standard diagnosis was made by histo-
pathologic examination of tissue obtained by either core biopsy sampling or lumpectomy. Of the 76 lesions, 12 
were benign fibroadenomas and 64 were invasive carcinomas. All of the carcinomas were immunohistochemi-
cally stained for hormone receptors and HER-2/neu. In cases in which staining for HER-2/neu was inconclu-
sive, amplification was confirmed with fluorescence in situ hybridization. Of the 64 carcinomas, 21 were triple 
negative (ER−​/PR−​/HER2−​) cancer, 18 were HER2+​ (14 ER−​/HER2+​, 4 ER+​/HER2+​) cancer, and 25 were 
ER+​ (ER+​/HER2−​) cancer. Patient MRIs were acquired at either 1.5 or 3 Tesla (Siemens Sonata or Trio, respec-
tively, Malvern, PA). Imaging parameters for DCE-MRI varied over time and magnet type (in-plane resolution 
0.20–0.70 mm/pixel, slice thickness 2–5 mm, TR =​ 7–26 ms, TE =​ 1.8–6.5 ms, flip angle 25–30 degrees. The clin-
icopathologic characteristics of the breast cancer dataset have been summarized in Table 3.

Lung cancer dataset.  Two separate datasets of non-contrast Lung CT scans were prospectively collected in an 
Institutional Review Board-approved (IRB #02-13-42C), HIPAA-compliant study from two collaborating insti-
tutions: University Hospitals, Cleveland and Cleveland Clinic Foundation (CCF) in 2013 and 2014. Written 
informed consent was obtained for all the studies within the two cohorts. Histology was confirmed by anatom-
ical pathologists at the respective institutions from the surgical specimen available for studies employed in both 
the cohorts. All patients underwent non-contrast CT scans prior to resection as part of routine care. Patients 
with multiple solitary nodules were excluded. Dataset 1 from University Hospitals, used as the training set, 
comprised 64 studies (31 adenocarcinomas and 33 granulomas). Dataset 2, from Cleveland Clinic, consisted 
of 56 cases (34 adenocarcinomas and 22 granulomas), and was used as an independent test set. The CTs were 
acquired using Siemens scanners with 2 mm slice thickness and 1 mm reconstruction. The tube voltage/current 
was 120 kV/150 mAs. The clinicopathologic characteristics of the lung cancer dataset have been summarized in 
Table 4.

Primary Brain tumors Metastatic Brain Tumors

Number of patients (samples) 22 (10 RN, 12 rBT) 20 (8 RN, 12 rBT)

Gender 12 F, 10 M 5 F, 15 M

Age (y, range) 53 (33–75) 50 (37–65)

Table 2.   Clinicopathologic characteristics of brain tumor studies.

Fibroadenoma HER2+ ER+ Triple Negative

Number of patients (samples) 9 14 23 19

Number of lesions 12 18 25 21

Age (y, range) 46 (32–60) 50 (38–63) 45 (32–70) 51 (32–68)

Pre-menopausal (n) 5 5 15 9

Post-menopausal (n) 2 9 1 7

Peri-menopausal (n) 2 0 7 3

Lymph Node Positive Studies 0 1 8 3

Table 3.   Clinicopathologic characteristics of breast cancer studies.

Adenocarcinomas Granulomas

Number of patients (samples) 65 55

Gender 39 F, 26 M 25 F, 30 M

Age (y, range) 67 (40–85) 58 (18–84)

Table 4.   Clinicopathologic characteristics of lung studies.
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Pre-processing.  For the brain tumor cohort, the lesion ROIs were manually traced by an expert neuroradiologist, 
with over 25 years of experience, using the annotation tool in 3D Slicer after skull-stripping and intensity stand-
ardization. Intensity standardization17,18 is an essential pre-requisite when comparing image intensities across 
different acquisitions, as it allows the gray scale MR intensities to have a fixed tissue-specific meaning within the 
same imaging protocol and the same body region, and within the same patient. For the brain MRI cohort, the 
segmented regions included enhancing and non-enhancing neoplastic tissue with the exclusion of edema. The 
neuroradiologist annotated all the 2D slices that had visible lesions.

For the breast cancer and lung cancer cohort, the best representative section, which was a central section of 
either the DCE-MRI volume or the non-contrast CT scan, was annotated by a breast radiologist and a thoracic 
radiologist respectively, who were both blinded to the pathologic diagnosis. Both for lung and breast cohorts, the 
lesion boundary was manually delineated on the basis of the image that demonstrated the greatest lesion conspi-
cuity from neighboring tissues, which was then used for subsequent analysis.

Comparison of CoLlAGe with other popular texture features.  While we qualitatively evaluated 3D 
CoLlAGe on a limited cohort of studies, quantitative analysis for all the three use cases in brain, breast, and lung, 
was restricted to 2D CoLlAGe, due to the variable slice thickness and anistropic MRI volumes of our retrospective 
studies. We compared the performance of 2D CoLlAGe with other state-of-the-art texture descriptors (i.e. 
Haralick, Gabor, HOG). Apart from CoLlAGe, we extracted a total of 584 2D texture features for the ROIs on a 
per-pixel basis, including 52 Haralick features, 432 Gabor features and 100 HOG descriptors. The Gabor filter 
bank consisted of six different frequency-shift values ∈ …t {0, 2, 4, , 32}, eight orientation parameter values 
λ ∈ . …{0, 22 5, 45, , 180}, and 9 different variance settings, generating a total of 432 different filters. Each filter 
yielded a real and imaginary response, which were used to calculate the total response magnitude for every region 
of interest. HOG features were computed via pixel-wise gradient orientations obtained from the grayscale inten-
sity differences in the region of interest. These orientations were then equally binned into v bins, 
∈v {10, 15, 20, 25, 30}, with each bin encompassing 36°, 24°, 18°, 14.4° or 12°. For Haralick and Gabor descrip-

tors, the feature representations were obtained from every lesion by computing the median of feature values 
across all pixels within a lesion. Summary of parameters used for different feature sets is provided in Table 5.

Comparison of CoLlAGe with expert diagnosis.  To further demonstrate the efficacy of CoLlAGe in dis-
tinguishing similar appearing pathologies on imaging, we performed a human machine comparison for our brain 
(N =​ 42) and lung (N =​ 20) cohort. For both the cohorts, collaborating expert readers (board certified attending 
radiologists and pulmonologists) independently provided a diagnosis, which was then compared with the anal-
ysis from the CoLlAGe classifier. In both the human-machine comparison experiments, the expert readers were 
kept blinded to the pathology reports. The experts assigned a score between [0, 1] to each lesion, with 0 referring 
to a high confidence that the nodule is “benign” (radiation necrosis or granuloma), and 1 being “malignant” 
(recurrent tumor or adenocarcinoma). Similarly, probability scores were assigned by the Random Forest classifier 
using CoLlAGe features. Using the assigned probabilities we computed the areas under the respective receiver 
operating characteristic curves (AUCs).

Experimental Evaluation.  The feature sets were used to train a Random Forest (RF) classifier19, a 
boostrapped aggregation of multiple decision tree classifiers, in conjunction with F2D to distinguish between the 
categories of interest. Wilcoxon’s rank sum test20 was employed to assess statistical significance and corrected for 
multiple comparisons for the experiments performed for the three use-cases. The sample size for the different 
experiments has been summarized in Table 6. In all our experiments, the RF classifier was used to assign every 
ROI into classes {+​1, −​1} based on the following classification tasks:

•	 Experiment 1: Distinguishing radiation necrosis from recurrent tumor on MRI,
•	 Experiment 2: Distinguishing triple negatives from other molecular subtypes of breast cancer (ER+​, HER2+​ 

and benign FA) on MRI,
•	 Experiment 3: Distinguishing adenocarcinoma from granuloma on non-contrast CT.

Experiment E1: Distinguishing Radiation Necrosis from Recurrent Tumor.  We computed F2D for every slice with 
expert-annotated ROI on the primary and metastatic brain tumor cohorts and employed the feature set in a RF 
classifier setting to distinguish RN from rBT such that slices from the same patient are either used for training 
or for testing. A total of 50 trees were used for training the RF classifier. 3-fold randomized cross-validation was 

 Descriptor # Feature setting

 Haralick 52 Window size ×( )  ; ∈ {3, 5, 7, 9, 11} ; θ ∈​ [0 180°]

 HOG 100 v ∈​ {10, 15, 20, 25, 30}; κ =​ 360°/v

 Gabor 432 t ∈​ {0, 2, 4, …​, 32}; λ ∈​ {0, 22.5, …​, 180}; σ ∈ {2, 4, 6}x
2 , σ ∈ {2, 4, 6}y

2

 CoLlAGe 500 Window size ×( )  ;  ∈ {3, 5, 7, 9, 11}; v ∈​ {10, 15, 20, 25, 30}

Table 5.   Summary of features and feature parameters used in this work. A total of 26 parameters (across 
different features) were compared and evaluated in terms of their classification performance, for each of the 
three experiments in brain, breast and lung cancers.
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used to train and evaluate classifier performance. This involved randomly splitting the entire dataset into 3 equally 
sized sets with 2 subsets used for classifier training and 1 subset used for independent evaluation. The diagnostic 
performance of each classifier trained with CoLlAGe and other comparative features was evaluated using average 
classification accuracy βAcc, computed over 150 iterations of cross-validation runs. Quantitative results across 
CoLlAGe and the other texture features were compared by computing βAcc for every feature set at the operating 
point. Additionally, for a subset of studies we computed F3D for qualitative visualization. Qualitative results for 
both 2D and 3D CoLlAGe feature representation were visualized as standard heatmaps where high CoLlAGe 
values were shown in red while blue represented low CoLlAGe values.

Experiment E2: Distinguishing Molecular Subtypes of Breast Cancer.  F2D was similarly computed for the slices 
with expert annotated ROI for the breast cancer cohort and was used to distinguish triple negative from the 
other breast cancer subtypes (ER+​, HER2+​) and benign fibroadenoma. A similar cross-validation technique was 
employed, along with a comprehensive comparison with other texture descriptors as given in E1.

Experiment E3: Distinguishing Adenocarcinomas from Granulomas.  For every slice with the expert annotated 
ROI, F2D was similarly computed for the lung cancer cohort and was used to distinguish adenocarcinomas from 
granulomas. Cross-validation, along with a comprehensive comparison with other texture descriptors as given in 
E1 was employed for the training set. This cross-validation strategy was employed for all the parameters as listed 
in Table 5. The model using the parameters that yielded the best results, for each category of feature descriptors, 
across the aggregated cross-validation runs was ‘locked down’, and then used to classify the cases in the independ-
ent test cohort.

Parameter Sensitivity Analysis.  The sensitivity of CoLlAGe features was evaluated across its two key 
parameters, bin size of the entropy histogram (v) and neighborhood ( )  size for computing localized orientations. 
To account for smaller lesion sizes across the two cohorts, we restricted the  ∈ …{3, 5, , 11}. Bin sizes 
∈ …v {10, 15 , 30} were additionally considered at regular bin intervals of 5 to evaluate variation in βAcc. We 

reported the variation in βAcc as a function of   and v. v >​ 20, and  = 9 (Fig. 4) were found to be optimal 
parameters for the brain tumor cohort. Similarly, for the breast cancer cohorts (results not shown), the following 
pairs of parameters were found to be optimal: v =​ 30, and  = 5 for TN versus ER+​, v =​ 30, and = 11  both for 
TN versus HER2+​ and TN versus FA. For the lung cancer cohort, the best parameters were found to be v =​ 10, 
and = 3 . The bounds of the different parameters were selected in a way that accounted for boundary effects 
that would arise in case of relatively small lesions >( 11) , and when v >​ 30. Figure 4 shows the parameter sen-
sitivity for all the different classification experiments using CoLlAGe.

Results and Discussion
Experiment E1: Distinguishing Radiation Necrosis from Recurrent tumor.  Figure 5 shows the 
qualitative feature maps of 3D CoLlAGe on a Gd-T1 MRI for radiation necrosis (a) and recurrent tumor (e) 
respectively. The localized gradient field, θ3D, for radiation necrosis and recurrent tumor is shown in (b) and (e), 
while the CoLlAGe entropy heatmaps, θ

D3
  and φ

D3
 are shown in (c), (d) for radiation necrosis and in (g), (h) for 

tumor recurrence respectively. High CoLlAGe values are reflected in red, while blue reflects under expression of 
CoLlAGe values. As may be evidenced from the CoLlAGe heatmaps, tumor recurrence has an over-expression of 
CoLlAGe both in (X, Y) as well as (X, Y, Z) directions compared to radiation necrosis. The over-expression of 
CoLlAGe values may be reflective of the higher structural heterogeneity of recurrent tumor, owing to the presence 
of more varied tissue types and hypercellularity, as compared to radiation necrosis.

The quantitative results including comparison of the classification performance of 2D CoLlAGe with Haralick, 
Gabor, and HOG, using the best parameter settings, are shown in Table 7. The best classification accuracy 
obtained for the popular-texture features was reported to be between 50% to 65%, while CoLlAGe was found to 
perform significantly better (over 20% improvement in classification accuracy (p-value <​ 0.001)) with an accu-
racy of 83.79 ±​ 5.43% for primary cases, and 88.52% ±​ 3.93 for the metastatic brain tumor cohort. It has been 
previously shown that anomalies in brain tissue morphology are associated with directional patterns that can be 

Cancer Site Cohort Size (Site) Clinical challenge Classification task Number of samples

Brain Tumors 42 (UH) RN versus rBT
Primary tumor cohort 10 RN, 12 rBT

Metastatic tumor 
cohort 8 RN, 12 rBT

Breast Cancer 65 studies (UPenn) Distinguish subtypes of 
breast cancer

TN-ER 21 TN, 25 ER+​

TN-HER2+​ 21 TN, 18 HER2+​

TN-FA 21 TN, 12 FA

Lung Cancer 120 studies (UH, CCF) Distinguish granuloma 
from adenocarcinoma

Training Set (UH) 31 adenocarcinoma, 
33 granuloma

Test Set (CCF) 34 adenocarcinoma, 
22 granuloma

Table 6.   List of studies employed in this work for three different clinical problems in brain, breast, 
and lung cancers. The data acquisition sites include University Hospitals, Cleveland (UH), University of 
Pennsylvania (UPenn) and Cleveland Clinic (CCF).
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Figure 4.  Parameter sensitivity analysis shown for CoLlAGe features for the six different classification 
experiments (a) RN vs rBT (primary brain tumors), (b) RN vs rBT (metastatic brain tumors), (c) TN vs ER+​, 
(d) TN vs HER2+​, (e) TN vs FA and (f) adenocarcinoma vs granuloma. The most optimal CoLlAGe parameters 
for each of the experiments were found to be as follows: (a)  = 9, v =​ 30 (b) = 9 , v =​ 20 (c) = 5 , v =​ 30 
(d)  = 11, v =​ 30 (e)  = 11, v =​ 30 (f)  = 3, v =​ 10, respectively.

Figure 5.  CoLlAGe entropy maps on brain tumor cases. Qualitative feature maps of 3D CoLlAGe visualized 
on Gd-T1 MRI for radiation necrosis (a) and recurrent tumor (e) respectively. The localized gradient 
orientations are shown in (b) and (f) for radiation necrosis and tumor recurrence, while the CoLlAGe heatmaps, 
θ D3
  and φ

D3
 are shown in (c), (d) for radiation necrosis and in (g), (h) for tumor recurrence respectively. As 

evident, tumor recurrence has a higher density of high entropy regions both in (X, Y) as well as (X, Y, Z) 
directions than radiation necrosis.
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captured by texture analysis. For example, gyrifications in gray matter create oriented spatial frequencies, that can 
be captured by wavelet-based features. Kovalev et al.21 have analyzed gradient and anisotropy properties of 3D 
texture in the context of neurodegenerative diseases. According to Georgiadia et al.22, brain lesion texture is cor-
related with presence and type of cancer cells. A recent study23 employed Haralick and wavelet texture features to 
distinguish radiation necrosis from metastatic brain tumor recurrence with a reported AUC of 94%. However, we 
believe that the results, reported on a per-slice basis, may have been affected by the classifier being contaminated 
by slices from the same patient being used both within the training as well as testing sets during classification. It 
is worth noting that the diagnostic accuracy of distinguishing radiation necrosis from tumor recurrence by an 
expert radiologist on visual inspection of MRI has been reported to be between 50–60%24.

Classification Task Haralick HOG Gabor CoLlAGe

RN vs rBT (GBM) 62.19 ±​ 0.99 60.62 ±​ 3.21 59.68 ±​ 5.8 83.73 ±​ 5.43

RN vs rBT (Metastatic) 63.83 ±​ 2.42 72.99 ±​ 1.35 59.45 ±​ 1.73 88.52 ±​ 3.93

TN vs ER+​ 60.5 ±​ 4.49 68.49 ±​ 3.8 62.37 ±​ 4.29 72.52 ±​ 5.19

TN vs HER2+​ 54.69 ±​ 5.19 60.18 ±​ 4.08 62.67 ±​ 3.97 71.64 ±​ 6.13

TN vs FA 78.37 ±​ 3.75 72.7 ±​ 4.41 68.1 ±​ 1.85 90.06 ±​ 4.38

Adenocarcinoma vs 
Granuloma (Training) 75.5 ±​ 5 67.7 ±​ 5.4 66.2 ±​ 4.4 70.9 ±​ 7.1

Adenocarcinoma vs 
Granuloma (Testing) 69.6 67.3 62.4 69.8

Table 7.   βAcc for 2D CoLlAGe and the comparative strategies (Haralick, Gabor, and HOG) obtained across 
150 iterations of 3-fold cross validation in a random forest classifier setting for the brain and breast cancer 
use-cases, as well as for independent training and test dataset for the lung cancer use-case.

Figure 6.  CoLlAGe entropy maps on breast cancer cases. 2D DCE-MRI (1.5 Tesla) scan for TN+​ (a), 
HER2+​ (b), ER+​ (c), and FA (d) with the lesion outlined in red. 4(e), (f), (g), (h) represent localized gradient 
orientations, while 4(i), (j), (k), (l) represent CoLlAGe heatmaps for the corresponding lesion on (a), (b), (c) 
and (d), where red represents higher while blue represents low CoLlAGe values.
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Experiment E2: Distinguishing Molecular Sub-types of Breast Cancer.  Figure 6 shows the qual-
itative 2D CoLlAGe feature maps for each of the breast cancer sub-types, TN (i), HER2+​ (j), ER+​ (k), and FA 
(l). Higher CoLlAGe values are reflected in red, while blue reflects low CoLlAGe values. The corresponding 
localized orientations (θ2D) for TN, HER2+​, ER+​ and FA are shown in Fig. 6(e), (f), (g) and (h) respectively. It is 
interesting to note that the gradient field was found to be more disordered across cancer sub-types, as compared 
to benign FA. Similar to Experiment E1, a marked difference in CoLlAGe values was observed across different 
sub-types of breast cancer (TN, HER2+​, ER+​, and FA), suggesting that CoLlAGe may potentially be capturing 
local anisotropic differences in micro-structures on imaging that are otherwise not visually appreciable.

Table 7 shows the average βAcc values obtained over 150 iterations of a 3 fold-cross validation via a RF classifier. 
βAcc values obtained from CoLlAGe in the breast cancer cohort significantly outperformed (p-value <​ 0.001) the 
other state-of-the-art texture descriptors (Haralick, Gabor, HOG), with an improvement of ≈​10% for majority 
of the 3 classification tasks (TN versus ER+​, TN versus HER2+​, TN versus FA). Our results resonate with the 
findings reported in Agner et al.25 that used a similar cohort of breast DCE-MRI studies to distinguish different 
sub-types of breast cancer using a novel texture kinetic approach. Similar to Agner et al., the most prominent 
difference, both in qualitative and quantitative performance of CoLlAGe, is reported between FA, a benign con-
dition, from TN, the most aggressive sub-type of breast cancer with βAcc of 90.06 ±​ 4.38. It is worth noting that 
currently radiologists are unable to distinguish TNs from FAs on a routine MRI26–28.

Experiment E3: Distinguishing Adenocarcinomas from Granulomas.  Figure 7 shows the qualita-
tive 2D CoLlAGe feature maps for a representative non-contrast CT image with pathologically proven adeno-
carcinoma (a) and granuloma (d), respectively. Higher CoLlAGe values are reflected in red, while blue reflects 
low CoLlAGe values. It may be observed that representative adenocarcinoma lesion has higher density of larger 
CoLlAGe entropy values as compared to the granuloma sample. Table 7 shows the average βAcc values obtained 
over 150 iterations of a 3 fold-cross validation via a RF classifier. Using the locked-down classifier, CoLlAGe fea-
tures showed the best classification results for the test set (69.8%).

Tumor heterogeneity has been previously shown to be associated with non-small cell lung carcinoma29. This 
heterogeneity can be attributed to the hypoxic microenvironment30. The subtle differences in the hypoxia-related 
heterogeneity as suggested in ref. 29 is perhaps manifested in the differential expression of CoLlAGe entropy. 

Figure 7.  CoLlAGe entropy maps on lung cancer cases. Qualitative feature maps of 2D CoLlAGe visualized 
on non-contrast lung CT for (a) adenocarcinoma and (d) granuloma shown in (c) and (f) respectively. 
Adenocarcinomas have higher CoLlAGe entropy values as compared to granulomas. Red represents higher 
while blue represents low CoLlAGe values.
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Dennie et al.31 have reported an AUC of 0.90 in distinguishing the two conditions. The texture analysis in ref. 31, 
using Haralick features, has yielded higher accuracy than FDG-PET/CT in distinguishing the two pathologies. 
However, the approach in ref. 31 has not been validated on an independent test set. Besides, there is no clear qual-
itative evidence of the Haralick features visibly distinguishing the two pathologies.

Human-Machine Comparison Results.  On the hold-out lung cohort, the AUCs for the two experts were 
found to be 0.68, and 0.54 respectively. Using the CoLlAGe features, the associated AUC was computed as 0.78. 
For the brain tumor studies, AUCs for the two independent readers were 0.75 and 0.58 respectively, while the 
same for a CoLlAGe-based classifier was computed to be 0.80. To the best of our knowledge, no radiomics-based 
work recently has demonstrated such a rigorous and comprehensive human-machine reader comparison across 
multiple disease sites.

Concluding Remarks
We presented a radiomic feature descriptor, Co-occurrence of Local Anisotropic Gradient Orientations 
(CoLlAGe), that captures higher order co-occurrence patterns of local gradient tensors at a voxel level to distin-
guish disease phenotypes that have similar morphologic appearances. We employed three clinically challenging 
datasets to evaluate the efficacy of CoLlAGe, distinguishing (a) radiation necrosis, a relatively benign effect of 
radiation, from tumor recurrence on T1-w MRI in brain tumors, (b) different molecular sub-types of breast 
cancer on DCE-MRI and (c) adenocarcinomas from granulomas on non-contrast CT. Additionally, we compared 
performance of CoLlAGe with other state-of-the-art texture descriptors (Haralick, Gabor, Histogram of Gradient 
orientations) as well as across two expert readers (for two use-cases), and demonstrated that CoLlAGe has sig-
nificantly better classification accuracy than the other texture descriptors as well as the expert readers. Across the 
cross-validation and testing stages, CoLlAGe outperformed other texture features in 20 out of 21 comparative 
experiments (Table 7). Our results, on all three cohorts, seem to suggest that CoLlAGe has the potential to serve 
as a powerful radiomic descriptor in distinguishing similar appearing pathologies on imaging.

Nevertheless, there are a few limitations to our study. Firstly, CoLlAGe was only compared against three pop-
ularly used texture features (Haralick, Gabor, and HOG). Secondly, based on our parameter sensitivity analysis, 
it appears that parameter selection may be an important consideration when employing CoLlAGe for a specific 
problem. In this paper, histogram representation was used to collate CoLlAGe values to classify every image 
within a random forest classifier. However, the choice of feature representation and classification methods is 
flexible and can be modified depending on the specific application. Future work will focus on (1) rigorously eval-
uating efficacy of CoLlAGe across other texture features on a larger cohort of multi-institutional studies, and (2) 
identifying a domain-independent parameter selection strategy to evaluate robustness of CoLlAGe.
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