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ABSTRACT A fundamental question in biology is why some species tend to occur
together in the same locations, while others are never observed coexisting. This
question becomes particularly relevant for microorganisms thriving in the highly
diluted waters of high mountain lakes, where biotic interactions might be required
to make the most of an extreme environment. We studied a high-throughput gene
data set of alpine lakes (.220 Pyrenean lakes) with cooccurrence network analysis
to infer potential biotic interactions, using the combination of a probabilistic method
for determining significant cooccurrences and coexclusions between pairs of species
and a conceptual framework for classifying the nature of the observed cooccur-
rences and coexclusions. This computational approach (i) determined and quantified
the importance of environmental variables and spatial distribution and (ii) defined
potential interacting microbial assemblages. We determined the properties and rela-
tionships between these assemblages by examining node properties at the taxo-
nomic level, indicating associations with their potential habitat sources (i.e., aquatic
versus terrestrial) and their functional strategies (i.e., parasitic versus mixotrophic).
Environmental variables explained fewer pairs in bacteria than in microbial eukar-
yotes for the alpine data set, with pH alone explaining the highest proportion of
bacterial pairs. Nutrient composition was also relevant for explaining association
pairs, particularly in microeukaryotes. We identified a reduced subset of pairs with
the highest probability of species interactions (“interacting guilds”) that significantly
reached higher occupancies and lower mean relative abundances in agreement with
the carrying capacity hypothesis. The interacting bacterial guilds could be more
related to habitat and microdispersal processes (i.e., aquatic versus soil microbes),
whereas for microeukaryotes trophic roles (osmotrophs, mixotrophs, and parasitics)
could potentially play a major role. Overall, our approach may add helpful informa-
tion to guide further efforts for a mechanistic understanding of microbial interac-
tions in situ.

IMPORTANCE A fundamental question in biology is why some species tend to occur
together in the same locations, while others are never observed to coexist. This
question becomes particularly relevant for microorganisms thriving in the highly
diluted waters of high mountain lakes, in which biotic interactions might be required
to make the most of an extreme environment. Microbial metacommunities are too
often only studied in terms of their environmental niches and geographic barriers
since they show inherent difficulties to quantify biological interactions and their role
as drivers of ecosystem functioning. Our study highlights that telling apart potential
interactions from both environmental and geographic niches may help for the initial
characterization of organisms with similar ecologies in a large scope of ecosystems,
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even when information about actual interactions is partial and limited. The multilay-
ered statistical approach carried out here offers the possibility of going beyond tax-
onomy to understand microbiological behavior in situ.

KEYWORDS cell-cell interaction, microbes, networks

The occurrence of specific microbes in natural environments is associated with mul-
tiple processes. At the spatial scale, geographic distance may create an effect of

dispersal limitation (1), but most importantly, the local environment exerts strong fil-
ters facilitating the settlement of microbes with similar environmental preferences (2).
A good example is the effect of pH on freshwater ecosystems, where a regional pool of
microbes distributed along the hydrographical network is filtered according to water alka-
linity, among other environmental reasons (3, 4). Although the environment has been
extensively studied under the lens of community ecology as a driver of community as-
sembly (4, 5), environmental factors or even dispersal limitation can be incomplete pre-
dictors of joint microbe occurrence (6). There is often a lack of understanding about the
direct interrelationships among microbes—i.e., biological and ecological interactions—
and how these are crucial in regulating the appearance or abundance of species in com-
plex communities (7, 8). Unfortunately, there is a lack of knowledge about the myriad of
interactions (9, 10) or ecological roles (9, 11, 12) of many community members. Microbial
ecology has traditionally studied microbial interactions by analyzing small sets of species
in controlled environments such as in cocultures (13) and biofilms (14), as well as popula-
tion-level responses through quorum sensing (15) or particular interactions such as com-
petition (7). For example, this issue was easily observed in microeukaryotes under a
microscope, spotting the parasitic behavior of aquatic fungi toward phytoplankton (16)
or the predatory effect of zooplankton toward phytoplankton (17). Still, there are poten-
tially many specific and unspecific interactions that have not yet been detected but that
may be particularly relevant in organizing biological communities. So, when direct obser-
vation of interactions is difficult, ecologists may rely on computational methods to infer
potential interactions. For example, signals of competitive interactions have been sug-
gested in the case of macroorganisms (18).

Recently, amplicon sequencing through high-throughput technologies has allowed mi-
crobial ecologists to study multiple species thriving in their natural communities. Through
the inference of cooccurrences and coexclusions, many studies have attempted to unveil
why some species tend to occur together in the same locations, while others are never
observed sharing the same ecological space (19–21). These associations and network
properties linked to the association’s structure have been traditionally hard to interpret,
since occurrences based on spatial associations do not solely account for biotic interac-
tions and usually blend patterns of interactions and environment (22, 23). To decipher the
causes acting on associations (cooccurrences and coexclusions) and infer potential biotic
interactions, the study of microbial associations should be conducted within a defined
metacommunity (24), i.e., a set of local communities, linked by dispersal, of potentially
interacting species (25). A good model system would be one where local communities
have some degree of isolation to display specific environmental filters but still are con-
nected enough to be part of the same metacommunity. For this reason, in this study, we
used a high mountain lacustrine district (Pyrenees, Spain) with 224 sampled lakes (local
communities) comprising a regional metacommunity. In lacustrine districts, each lake acts
as a local community, isolated by land but closely influenced by regional processes such
as atmospheric deposition (26), catchment processes (27), and water flows (3), all mobiliz-
ing the regional species pool (28). Although interactions occur anywhere and can be
extremely varied, in habitats with a strong nutrient limitation, such as in the highly diluted
waters of high mountain lakes, food-web components and functional interactions are the
microbial engine responsible for nutrient mobilization (29–32).

The purpose of this study was 2-fold. First, to quantify the drivers of species associa-
tions in a high-altitude lacustrine microbial metacommunity, and second, to define
potential microbial interaction units and explore their properties. To do so, we identified
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microbial associations caused by both environmental niches and dispersal limitation,
interpreting the unexplained associations as potential biotic interactions. This approach
allowed us to extract several layers of information, starting by describing the environmen-
tal variables that were primarily linked to taxon associations and ranking the influence of
these factors to explain cooccurrence and coexclusion pairs. Once the importance of ex-
planatory variables on association pairs had been quantified, we examined specifically
the pairs interpreted as species interactions. By integrating pairs into a network analysis,
we sought to describe different groups of species interactions on the basis of network
properties and modules. We classified taxa into clusters of more-positive associations and
less-negative associations to find groups of species based on interactions (“interacting
guilds”) and keystone taxa organizing each group. Targeting these keystones and their
guilds in future studies adds a powerful new layer of information based on interactions to
the traditional approaches based on taxonomy or functional components in tag-sequenc-
ing studies.

For this purpose, we applied the combination of a probabilistic method for estimat-
ing significant cooccurrences/exclusions and a conceptual framework for filtering out
associations potentially linked to environmental and/or spatial factors.

RESULTS AND DISCUSSION

In the present study, we applied a combination of tools to tell apart biotic interactions
from associations driven by niche differentiation or geographic dispersal limitation, using
a large amplicon high-throughput sequencing data set. We first inferred significant asso-
ciations by combining a probabilistic method, followed by variance analysis, to separate
the species pairs that can be explained by environmental variables or geographic coordi-
nates. This computational method allowed us to rank the influence of environmental fac-
tors and to identify the pairs interpreted as species interactions. By integrating these pairs
into a network analysis, we described different groups of species interactions on the basis
of network properties and modules, as well as keystone taxa organizing each group.
Targeting these unseen keystones and their guilds added a new view based on interac-
tions to the traditional approaches mostly based on taxonomy or functional components
in tag-sequencing studies.

Quantifying environmental niches and isolating potential biotic interactions.
The applied approach identified microbial associations caused by both environmental
niches and dispersal limitation, interpreting the unexplained associations as potential
biotic interactions. The probabilistic method for the calculation of co-occurrences
retrieved a total of 52,143 significant cooccurrences and 25,675 coexclusions, of 661
bacterial and 265 eukaryotic zero-radius operational taxonomic units (zOTUs) with
427,812 potential combinations. These pairs harbor significant associations primarily
reflecting environmental (analysis of variance [ANOVA] test: 83.34% of pairs) and dis-
persal (multivariate ANOVA [MANOVA] test: 4.14% of unique pairs) processes. Indeed,
cooccurrences have been often used before to show the ecological clusters based on
environmentally driven edges (33). Hence, we quantified the environmentally driven
edges by sorting the environmental variables based on the unique proportion of cooc-
currences and coexclusions explained for each variable. The analysis showed distinct
rankings for bacteria and microbial eukaryotes (Fig. 1). In general, environmental varia-
bles explained fewer pairs in bacteria than in microbial eukaryotes, with pH alone
explaining the highest proportion of bacterial pairs, and leaving 8,202 unexplained
pairs by any variable (Fig. 1a and c). Dispersal limitation alone, stood out in explaining
;10% of bacterial coexclusions but did not explain a high proportion of the cooccur-
rences (;2%). In Eukarya, cooccurrences were mostly explained by NO3

– and SO4
21

(Fig. 1b) and coexclusions by pH (Fig. 1d). Interestingly, most eukaryotic pairs were
explained by environmental and geographic variables, leaving only 212 pairs unex-
plained. With regard to the unexplained pairs, there are examples in the literature
where these precise associations have been explored to search for ecological interac-
tions at the community and regional levels (34, 35), which highlights the potential of
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the approach. In total, our analyses left 9,749 pairs unexplained (12.52% of the total,
7,017 cooccurring, 2,732 coexclusions), which may be interpreted as potential biotic
interactions.

Explanatory variables of associated pairs according to their taxonomic rank.When
combining explanatory variables with taxonomy there was an apparent equilibrium at
high taxonomic ranks (i.e., class), with taxa similarly explained by the different variables
(Fig. 2). However, there were higher differences between bacterial groups at the genus
level (see Fig. S1 and Table S1 in the supplemental material). We did not narrow down
to the genus level in eukaryotes because of classification limitations based on the short
ribosomal region used (V9, in the 18S-rRNA) (36). In all the cases, we used a chi-square
test of independence to analyze the contingency table of the absolute associations
between explanatory variables and microbial taxa to explore significant associations
(P , 0.0001). The pH was the variable explaining more associations both in Bacteria
and in Eukarya and promoted the networks with the highest clustering coefficients. It
has been shown that pH is one of the strongest predictors of microbial communities in
natural ecosystems such as soils (33, 37), and freshwater ecosystems (3, 4). However,

FIG 1 Proportions of cooccurrence and coexclusion pairs (Bacteria-Bacteria [a and c] and Eukarya-Eukarya [b and d]) estimated using the probabilistic
approach, explained by the environment and the geography after conducting ANOVA and MANOVA tests, respectively. Environmental variables were
ranked based on the cumulative proportion of links not previously explained by any other environmental variables (black line).
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there were no differences regarding how pH explained associations for each high-rank
taxon, except for a lower proportion of coexclusions involving Betaproteobacteria. In
addition, narrowing down at bacterial genus level (see Table S1), there were PAM k-
medoids clusters with more pairs (K2) explained by pH, or with less pairs (K3), showing
in turn an increase of pairs explained by nutrient variables (DOC, NO3

–, and total phos-
phorous [TP]). Indeed, nutrients were the second most important group of variables
explaining association pairs, particularly in Eukarya.

Although small differences were observed in Bacteria, it is worth to mention that in
Flavobacteria cooccurrences, dissolved organic carbon (DOC) explained a higher propor-
tion of pairs, agreeing with previous findings where flavobacterium-like populations were
favored during periods of high heterotrophic activity with a high availability of resources
(38). Sulfate was also an important explanatory variable of association pairs, particularly in
eukaryotic cooccurrences, but scarcely in their coexclusions. Despite not explaining a lot
of pairs in Bacteria, there were more pairs explained by sulfate when the pair involved
Armatimonadia or the K7 cluster, than in other taxa.

Other variables that to a lower extent may form niches are water-renewal time
(RWT), explaining more cyanobacterial pairs, SRP, explaining more Dictyochophyceae
and Ciliophora associations, and the K4 PAM k-medoids bacterial cluster, and DRSi,
explaining more Cryptomonadales associations. Altitude, as a proxy of temperature
and UV radiation, seemed to explain more pairs involving Alphaproteobacteria and
Acidimicrobia than in other taxa.

FIG 2 Proportions of variables (environment, dispersal, or potential species interaction) explaining cooccurrences and coexclusions across taxonomic
groups. A single pair constitutes two nodes with the same or different taxonomy; hence, a pair could contribute to two different taxa. The bar plot displays
the dominant bacterial classes and ecologically relevant eukaryotic groups, and the number of pairs by taxa subject to an explanatory variable. The
asterisks (*) indicate the highest contributors to the significant association between bar and explanatory variables according to a chi-square test.
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Assuming that we covered the most important environmental variables, as we had
shown in previous studies using the same data set (4, 39), we argue that the remaining
pairs could be interpreted as potential positive and negative biotic interactions, which
are differently quantified and balanced depending on the taxonomic affiliation (see
Fig. S2). Although we cannot rule out unmeasured environmental variables or other
factors explaining some pairs, the method selected a reduced subset of pairs with the
highest probability of species interactions. In fact, microbes that potentially interact,
significantly reached higher occupancies than those that do not interact (Bacteria:
P, 0.031, Eukarya: P, 0.015) (Fig. 3, right panel). Most importantly, there were signifi-
cant abundance differences between those microbes that potentially interact (with
lower mean relative abundances) and those that do not interact (Wilcox test, Bacteria:
P , 0.001, Eukarya: P , 0.013). Indeed, this result has previously been observed in
protist experiments (40) and has been explained by the carrying capacity hypothesis
(41), in which the maximal abundance is given by the system resources and its idio-
syncrasies. Also, microbes that cooperate with many other microbes need to share
the available resources while limiting their abundances. This trend reflects the previ-
ous observation that niche-expanding positive nontrophic interactions (i.e., facilita-
tion, mutualism, or commensalism) (42) seem to be overrepresented in the pool of
inferred potential interactions (43).

Overall, after separating the cooccurrences and coexclusions that could not be
explained by overlapping environmental niches or geographic dispersal, the resulting
networks were closer to an ecological network rather than a simple associational net-
work, integrating multiple types and effects of ecological interactions, direct and indi-
rect, taking place across spatial scales from regional to local. In these networks, the
internal ecological structure should harbor subgroups of organisms based on an eco-
logical criterion. Although there is some ecological coherence in high-rank bacterial
taxa (44), defining alternative groups with a common ecology rather than those with
a common phylogeny (45) may be more relevant in terms of biological interactions.

We arranged positive and negative potential biological interactions into domain
networks that were subsequently divided in three modules both in bacteria (B1, B2,

FIG 3 Mean regional relative abundances and regional occupancy between interacting zOTUs or noninteracting
zOTUs in bacterial and microbial eukaryotes.
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and B3, respectively, spinglass modularity = 0.31) and in eukaryotes (E1, E2, and E3,
respectively, spinglass modularity = 0.53). Using modularity to “separate” subcommun-
ities within a metacommunity network is a common strategy (46–48), often assumed
to divide a metacommunity network into theoretical community types that would be
naturally found in the local samples. These modules hold structural characteristics that
can be objectively measured such as diameter, clustering coefficient, average path
length, and the average hub value of their nodes (Table 1), weighted degree distribu-
tions (see Fig. S3), between-module arrangements (see Fig. S4), or properties quanti-
fied at the local community level such as richness and abundance per lake, among
others (see Fig. S5). These modules promote within-module cooccurrences, and inter-
module coexclusions. These groups can be considered “interacting guilds,” according
to a very broad definition: “a group of species that are similar in somewhat that is eco-
logically relevant, or might be” (45). Since there is not a single definition of “guild,” the
criterion we use here to characterize guilds was to separate groups of microorganisms
that potentially interact more than expected by chance.

Understanding interaction guild components and keystone taxa. A look in detail
for Bacteria showed different properties in the three guilds (Fig. 4a and b; see also Fig. S3
and S5): (i) B1, a low-abundance module with a degree distribution skewed toward nega-
tive values, dominated by Alpha-, Beta-, and Gammaproteobacteria, from soil, sediment,

TABLE 1 Properties of network modulesa

Module No. of nodes Diam Clustering Avg path length Mean Hub value (SD)
B1 268 26.93 0.10 2.81 0.01 (0.02)
B2 186 23.10 0.19 2.54 0.05 (0.09)
B3 189 18.35 0.35 2.13 0.18 (0.19)
E1 54 15.23 0.38 1.63 0.01 (0.02)
E2 52 42.67 0.04 3.38 0.02 (0.13)
E3 26 68.46 0.12 5.54 0.00 (0.00)
aIn eukaryotes, properties exclude five unconnected pairs. The number of edges and the distribution within and
between modules is presented in detail in Fig. S4. Additional module metrics are available in Fig. S5.

FIG 4 Bar plots showing the relative abundances of bacterial taxonomic groups (a) and bacterial associated EnvO terms (b) and the relative abundances of
eukaryotic taxonomic groups (c) and nutrition strategies (d) for the different biotic-driven modules (“interacting guilds”) found.
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and biofilm habitats; (ii) B3, a high-abundance module with a degree distribution skewed
toward positive values, dominated by Actinobacteria, Sphingobacteria, and Opitutae, from
aquatic habitats; and (iii) B2, with intermediate characteristics between B1 and B3.
Interestingly, according to the environmental ontology annotations of their nodes, the
interacting bacterial guilds may be related to habitat and microdispersal processes (i.e.,
aquatic versus soil microbes). This phenomenon has been recognized as an important
structuring factor in freshwater ecosystems (49). In the case of Actinobacteria from mod-
ule B3, it could be a good example of a potential keystone taxa that deserves further
investigations. Actinobacteria have actinorhodopsins (50, 51), which may function as
energy generation for the trophic chain in ultraoligotrophic alpine lakes. Hypothetically,
Actinobacteria may act in these systems as a central community component where other
organisms may arrange around to form an interacting guild.

In the case of Eukarya, the interacting guilds were split into three categories, as follows:
(i) E1, high-abundance mixotrophs with high total weights and an extended degree distri-
bution; (ii) E2, low-abundance parasites and osmotrophs such as Peronosporomycetes,
Chytridiomycota, and Diatomea, exhibiting a peaked degree distribution skewed toward
negative degrees; and (iii) E3, showing the lowest abundance and total node weights,
characterized by Cercozoa and Chrysophyceae, and displaying a degree distribution
skewed toward positive values (Fig. 4c and D; see also Fig. S3 and S5). Each of these guilds
has taxa whose ecologies are related to their interactions, and module E2 (fungal para-
sites) might be particularly relevant. The role of fungi in freshwater ecosystems has been
highlighted as a modulator of dynamics by releasing nutrients through the degradation
of organic matter, although their roles are still being resolved (9, 16). Given that module
E2 has most negative interactions with modules E1 and E3 (phytoplankton) but also curi-
ously harbors positive interactions with Diatomea, we wonder whether diatoms can prop-
erly manage nonlethal highly specific infections by parasitic/saprotrophic fungi in high
mountain lakes, a question meriting further study. Overall, these results strongly suggest
that the unveiled bacterial and eukaryotic interacting guilds found have differences based
on ecological categories.

Limitations and opportunities of the approach. We carried out an approach that
certainly has the potential to tease apart the influence of the environment and disper-
sal limitation on community assembly in microbial systems but that also has some limi-
tations that must be acknowledged to avoid interpretations based on false premises.
Methodologically, we dealt with presence-absence data and not real abundances. This
limitation may obscure the interaction-abundance relationships, but presence-absence
has the advantage that it may detect nonlinear relationships that pure correlation
methods cannot detect. In addition, there might be other ecological processes that
drive joint species occurrence, such as particular dispersal mechanisms taking place in
freshwater environments, without actually interacting. For instance, habitat dispersal
at the catchment scale in the bacterial component (4, 49) is not easy to isolate, and
may add noise to the filtered potential interactions. Also, we might have missed rele-
vant environmental variables that could explain some of the species pairing. However,
it seems unlikely that new variables could explain a significant portion of the potential
interactions, since additional variables incurred in decreasing percentages of previ-
ously unexplained pairs (Fig. 1) and the selected variables already represent the envi-
ronmental variation at a regional scale. Despite these uncertainties, unexplained pairs
are good candidates to correspond to actual biotic interactions and may add helpful
information to guide further efforts for a mechanistic understanding of microbial inter-
actions in situ. By narrowing down potential biological interactions with association
networks there is the possibility of discovering new interactions that were missed by
traditional methods. In our study, we highlight the association networks with which
taxa are most likely to establish interactions.

Concluding remarks. We unveiled here potential keystone taxa for the defined
interacting units and showed that even phylogenetically related organisms behave very
differently in terms of abundance and interaction strength according to their assigned
role. Understanding the interaction of organisms within these metacommunities is the
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basis for unveiling the processes behind ecological organization. Microbial metacom-
munities are too often only studied in terms of their environmental niches and geo-
graphic barriers due to inherent difficulties that make it harder to quantify biological
interactions and their role as drivers of ecosystem functioning. Our study highlights
that distinguishing potential interactions in both environmental and geographic
niches may help in the initial characterization of organisms with similar ecologies in
a large scope of ecosystems, even when information about actual interactions is par-
tial and limited. The multilayered statistical approach carried out here offers the pos-
sibility of going beyond taxonomy to understand microbiological behavior in situ.

MATERIALS ANDMETHODS
Data sets and metadata. The metacommunity was composed of lake surface plankton samples that

were taken during summer of 2011 along the Pyrenees mountain range (4). Most of these lakes lie
within ultraoligotrophic/oligotrophic ranges (52), where nitrate-phosphate imbalances caused by atmos-
pheric depositions (53) may alter significantly the phytoplanktonic behavior and trophic status (54).
However, pH is often the strongest segregator of community types (55–57). DNA was extracted, ampli-
fied and sequenced with standard methodology as previously described (4, 58), using a subset of 224
lake samples where both Bacteria and Eukarya were successfully sequenced. Briefly, high-speed multi-
plexed rRNA gene sequencing with the Illumina MiSeq System was carried out using the primers 515f
and 806r (59) for the bacterial 16S V4 region and the primers 1391f and EukBr for the eukaryal 18S V9
region (60). Illumina paired-end raw data were processed and quality filtered using UPARSE (61), and
zero-radius OTUs (zOTUs) were recovered with the UNOISE algorithm (62). To avoid a sequencing depth
bias and to homogenize the presence/absence probabilities of zOTUs, we first rarefied both bacterial
and eukaryotic communities to 5,000 sequences per sample. Then, we kept these zOTUs with a mini-
mum occurrence of 10% (24 lakes). Each zOTU was annotated with its mean relative abundance in the
data set, its dominant Environmental Ontology (EnvO) affinity in the case of bacteria through the
SeqEnv pipeline (63), and its primary nutrient assimilation strategy in the case of eukaryotes (39), respec-
tively. Taxonomy was then inferred using the SILVA 128 database through the SILVA-NGS online portal
(64). Raw data are fully available under BioProject PRJNA413654.

In addition, we specifically selected environmental variables for the 224 samples that broadly repre-
sent the data set: pH, DOC, nitrates (NO3

–), total phosphorus (TP), soluble reactive phosphorus, dissolved
reactive silica, sulfate (SO4

2–), water renewal time, and altitude as a joint proxy of temperature and UV
radiation, as previously reported (4).

Inferring potential interactions. We used a modified version of the framework of Blois et al. (22)
that assesses causes of species associations controlling for environmental and spatial factors. The
method identifies aggregation, randomness, or segregation of pairs of species across a landscape and
then estimates whether the deviations from randomness can be attributed to environmental filtering
and/or dispersal limitation. While the original framework uses C scores to quantify the significance of
species cooccurrences and relies on matrix randomizations, we opted for Veech’s probabilistic method
(65) to carry out this task. This probabilistic method assumes that the probability of a species occurrence
at a site is equal to its observed frequency among the set of sites considered, allowing for the calculation
of the probability of cooccurrence between two species at a given number of sites under the assump-
tion of independent distribution of the species. Therefore, the model produces an expected distribution
of cooccurrences that can be used to assign significance to the actual observed cooccurrences. This
method is analytically exact, and fast, and does not imply prior interactive structure. Also, it is based on
presence-absence, which avoids problems derived from the compositional nature of microbial amplicon
data, such as spurious correlations, low sensitivity due to relative frequencies, and alterations in its co-
variance structure (66, 67).

Initially, we calculated the probability that each pair of species cooccur more (aggregated pair) or
less (segregated pair) than expected, given their occurrences. Then, for species pairs that deviated
from the expectations (i.e., that were not random), we tried to identify the cause of these deviations,
whether they are produced by environmental or spatial factors. Environmental factors were tested by
one-way ANOVA of each environmental variable comparing allotypic sites (sites with only species A
versus only species B) in segregated pairs or, in the case of aggregated pairs, sites with both species
against empty sites. In the case of spatial factors, the null hypothesis tested with a one-way MANOVA
of the coordinates of the sites is that the different types of sites are not spatially segregated. If this
hypothesis is rejected, the cause of the observed pattern can be imputed to some form of dispersal li-
mitation, at least partially. In summary, each pair of zOTUs can be assigned to one of the following
results: random pairs, segregated pairs due to negative interactions or environmental filtering and/or
dispersal limitation, and aggregated pairs due to positive interactions or environmental filtering and/
or dispersal limitation (22).

Network and node properties estimation. We used the inferred positive and negative potential
interactions to build a metacommunity network, where nodes (zOTUs) are linked with weighted links.
These weights can be positive (cooccurrences) or negative (coexclusions), and their value was the loga-
rithm of the cooccurrence/coexclusion P value obtained when testing the null hypothesis that cooccur-
rences/coexclusions emerge by chance (68). In practice, this means that weights were proportional to
the order-of-magnitude difference between probabilities and the significance level.
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We described network structure using standard statistical descriptors for complex networks imple-
mented in iGraph (69). We analyzed network properties such as “diameter” (shortest-path length
between the most distant nodes in the network), “average shortest-path length” (average number of
steps it takes to get from one node of the network to another), and “clustering coefficient” defined as
the average transitivity (the clustering of a node is defined as the ratio of existing links connecting its
neighbors among each other to the maximum possible number of such links between neighbors; the
network clustering coefficient is the average over the network of each node’s clustering). Modularity
was calculated using the spinglass algorithm (70), which allows the definition of community clusters
based on both positive and negative edges. The index reveals how significant network community clus-
ters are, optimizing network partitions by including more positive edges within the modules and more
negative edges between modules. Finally, we extracted the modules assigned by the spinglass algo-
rithm for downstream analyses. The total number of edges connected to a given node is defined as
“node degree.” By classifying zOTUs into network modules, we aimed at finding taxonomic differences
in and between the modules and to assess keystone groups based on weighted node degree. When
including the sum of the connection strength (weight) of every edge in the network, we refer to the
node degree as the “weighted node degree” (71). The nodes that have a significantly larger degree, in
comparison to other nodes in the network, are interpreted as hubs or keystones. These are nodes that
can be interpreted as facilitator species, highly competitive species, or species subject to a high biotic
pressure (i.e., predation).

Statistics.We used a chi-square test of independence to analyze contingency tables of the contribu-
tion of explanatory variables to taxonomic groups and also the contribution of taxonomy, EnvO (72), or
nutrient assimilation strategies to different modules. We quantified the contribution in the percentage
of the residuals to the total chi-square statistic to indicate particular associations that stand out, not hav-
ing an effect on the differential interaction numbers included in the categories. To study the explanatory
variables and their association with taxonomy at the genus level, we first grouped genera according to a
clustering partition around k-medoids (PAM-K) and optimum average silhouette to estimate the opti-
mum number of clusters, as implemented in the R package fpc (73, 74).

Data availability. The whole gene sequence data sets were deposited to the NCBI Sequence Read
Archive and are available through BioProject PRJNA413654.
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