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Vinpocetine (VPN) is an alkaloid derivative of vincamine inhibits phosphodiesterase type 1 that increase
cyclic guanosine monophosphate and cyclic adenosine monophosphate. VPN have anti-inflammatory and
antioxidant effects with suppression release of pro-inflammatory cytokines. Moreover, VPN mitigates
oxidative stress (OS) and inflammatory reactions through inhibition of mitogen-activated protein kinase
(MAPK) signaling pathway. Therefore, VPN may decrease hyper-inflammation-induced acute lung injury in
COVID-19 through modulation of NF-κB pathway. Taken together, VPN has pulmonary and extra-
pulmonary protective effects against COVID-19 through mitigation of OS and hyperinflammation. In
conclusion, VPN has noteworthy anti-inflammatory and anti-oxidant effects through inhibition of NF-
κB/MAPK signaling pathway so, it may reduce SARS-CoV-2-induced hyper inflammatory and OS.

Plain language summary: Vinpocetine (VPN) is an alkaloid from vincamine with a potent anti-
inflammatory and antioxidant effects. VPN has the possibility of inhibiting substances that cause
inflammation and oxidative stress and as a result, may be beneficial in COVID-19 treatment. Due to the
anti-inflammatory effect of VPN, acute lung injury in COVID-19 may reduce as a result of the inhibition
of agent that causes lungs inflammation in COVID-19. VPN may have potential to reduce difficulty
in breathing and damage to the lungs. Conclusively, VPN when administered with other therapy may
improve the outcome of treatment of COVID-19.
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Vinpocetine (VPN) is an alkaloid derivative of vincamine with specific and unique chemical structure (Figure 1).
VPN is used as dietary supplement to advance cognitive dysfunction and cerebrovascular complications associated
with aging [1]. VPN is a phosphodiesterase (PDE) inhibitor, mainly type 1, inhibits both basal and activated PDE1,
increase cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) [2]. Diverse types
of PDEs exhibit different affinity for cGMP and cAMP. The PDE4, PDE7 and PDE8 isoforms hydrolyze cAMP,
while PDE5, PDE6, PDE9 isoforms hydrolyze cGMP, though other isoforms have dual substrate specificities [2].
Schermuly et al. [3], showed that PDE1 was upregulated in the lung and pulmonary vessels in experimental
pulmonary hypertension.

In addition, VPN has anti-inflammatory effects through suppression the activity of NF-κB signaling pathway
and release of pro-inflammatory cytokines such as IL-s, IL-8, IL-6, IL-1β and TNF-α [4]. Therefore, VPN restrain
NF-κB-dependent pro-inflammatory cytokines release that is independent of PDE1 inhibition; thereby, the VPN
anti-inflammatory effect is chiefly mediated via modulation of inducer-κB kinase (IKK) and degradation of IκB
that regulate activity of NF-κB [5].

COVID-19 hypercytokinemia- and cytokine storm (CS)-induced multi-organ failure may occur in critical
cases because of stimulation of NF-κB pathway [6]. Given that, high circulating IL-6 is linked with progress
of acute respiratory distress syndrome (ARDS) [7]. Kircheis et al. [8], revealed that NF-κB signaling pathway is
regarded as a main inflammatory signaling during COVID-19-induced release of pro-inflammatory cytokines and
chemokines. The interaction between SARS-CoV-2 and angiotensin converting enzyme 2 (ACE2) provokes a
higher inflammatory response in the lung and development of ARDS through activation of NF-κB pathway [9].

Moreover, different studies illustrated that NF-κB pathway inhibitors such as acetylsalicylic acid, in-
domethacin and dexamethasone suppress excessive immune stimulation and CS-induced-multi-organ failure [10].
Thus, VPN may have a great role in the management of COVID-19 through suppression of NF-κB and associ-
ated ALI. Yongshun et al. [11], demonstrated that VPN mitigates lipopolysaccharide induced-ALI in rats. Lugnier
et al. [12], illustrated those PDEs mainly PDE4 are upregulated in both COVID-19 patients and chronic nicotine
cigarette smoking, and linked with COVID-19 severity through upregulation of pulmonary ACE2. Therefore,
VPN may decrease hyper-inflammation-induced ALI in COVID-19 through modulation of NF-κB pathway and
PDE activity.

Indeed, SARS-CoV-2 directly activates various intracellular proteins such as nod-like receptor pyrin 3 (NLRP3)
inflammasome, which through caspase-1 triggers liberation of pro-inflammatory cytokines [13,14]. It has been shown
that SARS-CoV-2 may directly activate NLRP3 inflammasome through viroporin protein 3a and damage asso-
ciated molecular patterns causing production release of pro-inflammatory cytokines [15]. NLRP3 inflammasome
inhibitors such as tranilast, tetracycline, resveratrol, nicardipine, erythropoietin and colchicine are under clini-
cal trials for management of COVID-19 [16]. It has been proposed that VPN inhibits NLRP3 inflammasomes
induced-pro-inflammatory cytokines in the experimental rats [17]. As well, a recent study illustrated that VPN
alleviates acute ischemic stroke associated inflammatory reactions through suppression of NLRP3 inflammasomes
in mice [18]. Hence, VPN may mitigate COVID-19 severity and clinical outcomes through modulation of NLRP3
inflammasomes dependent immune overstimulation.

Notably, in severe SARS-CoV-2 infection, production of free radicals is increased, resulting in oxidative stress
(OS) that induce local and systemic tissue damage [19]. Overwhelming OS induces the neutrophils into formation
of neutrophil extracellular traps (NETs), and inhibits T cells that are essential to eradicate virus-infected cells.
Therefore, SARS-CoV-2-induced OS may inhibit innate immune response [20]. Thus, different antioxidants like
vitamin C and vitamin E may reduce the severity of COVID-19 [21]. In addition, high reactive oxygen species (ROS)
leads to dysfunction of red blood cells, thrombosis, microvascular injury, disturbance of iron homeostasis, oxygen
transport and tissue damage that are linked severity of COVID-19 [22]. VPN has noteworthy antioxidant effect via
inhibition of macrophages and neutrophil superoxide anion production [23]. Also, VPN improves lipid peroxidation
and endogenous antioxidant capacity with subsequent reduction of OS in the experimental acute kidney injury [18].
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O Figure 1. Chemical structure of vinpocetine.

For these reasons, VPN may reduce SARS-CoV-2 infection-associated OS and related complications such as acute
kidney injury in COVID-19.

Into the bargain, downregulation of ACE2 during SARS-CoV-2 infection, decrease level of vasodilator an-
giotensin (Ang)I–VII with augmentation of AngII [24]. High circulating AngII induces a sequence of inflammatory
changes through stimulation of mitogen-activated protein kinase (MAPK) [25]. It has been illustrated that MAPK
signaling pathway is implicated in SARS-CoV-2 pathogenesis through release of pro-inflammatory cytokines and
induction of ALI/ARDS in severely affected COVID-19 patients, thus MAPK signaling pathway inhibitors may
attenuate SARS-CoV-2-induced complications [26]. Different p38 MAPK inhibitors such as losmapimod and
dilmapimod reduced ALI in various clinical trials [27,28]. Overactivation of p38 MAPK signaling pathway in the
endothelium leads to platelet activation, thrombosis, endothelial cell apoptosis and cardiomyocyte injury [29]. Sim-
ilarly, high p38 MAPK activity in lung causes pulmonary vasoconstriction and ALI [30]. Wang et al. [31], illustrated
that VPN mitigates OS and inflammatory reactions through inhibition of p38 MAPK signaling pathway in dia-
betic rats. Moreover, Lee et al. [32], showed that VPN inhibits bacterial infection of respiratory mucosal epithelium
through suppression of MAPK/ERK signaling cascade. Thus, VPN may prevent different secondary bacterial
infections in critically ill COVID-19 patients.

Besides, high circulating AngII triggers expression of pulmonary PDE with subsequent inflammatory changes
in SARS-CoV-2 infection [33]. Therefore, PDEIs like sildenafil had been successfully developed for management
of pulmonary inflammation-induced hypertension in COVID-19. Indeed, tadalafil and sildenafil also suppress
the transition of smooth muscles and endothelial to mesenchymal cells in the pulmonary vessels, preventing
thrombotic and clotting complications [34]. As well, losartan, which is angiotensin receptor type 1 blocker is also
regarded as PDE4 inhibitor, has important role in mitigation of lung inflammation storm with possible role in
treating COVID-19 [35].

Of interest, COVID-19 is associated with various neurological manifestations including; confusion, headache,
seizure and cognitive impairment due to direct SARS-CoV-2 brain tropism, endothelial dysfunction, cerebral
thrombosis and systemic inflammatory disorders [36]. Golovacheva et al., revealed that VPN has important role in
the management of cognitive impairment in COVID-19 patients through regulation of brain neurotransmitters
with noteworthy anti-inflammatory and anti-oxidant effects [37]. Besides, VPN and other nootropic agents may
ameliorate SARS-CoV-2 infection-induced short and long-term neuropsychiatric disorders [38].

Therefore, in addition to the pulmo-protective effect of VPN, it has neuroprotective effects against neuropsy-
chiatric disorders, so VPN could have dual central and peripheral protective effects in COVID-19 patients.

Of note, mutation in cardiac voltage-gated sodium channel (VGSC), which encoded by SCN5A gene may
lead to sudden cardiac death due to arrhythmias in the Brugada syndrome [39]. High fever in COVID-19 induces
overactivity of cardiac VGSC in patients with Brugada syndrome leading to electrical storm, which presented
as ventricular arrhythmia and non specific ST-changes [39]. This syndrome is commonly treated by hypothermic
protocol and quinidine, a potent anti-arrhythmic drug inhibits propagation of ventricular arrhythmia [40]. Zhang
and colleagues reported that VPN inhibits cardiac VGSC, AngII-induced cardiomyopathic hypertrophic growth,
cardiac fibroblast activation and suppression expression of fibronectin and matrix genes [41]. Thus, VPN has a
cardioprotective effect against cardiomyocyte injury and arrhythmias, which are commonly linked with COVID-
19-induced acute cardiac injury [42]. Therefore, ultimate effects of VPN are correlated with the suppression of
PDE1, inducer-κB kinase and voltage gated sodium channel that involved in cell toxicity and death (Figure 2) [43].

Moreover, VPN has significant antiplatelet and antithrombotic effects following single dose in patients atheroscle-
rosis and ischemic heart disease through inhibition of von Willebrand factor and arachidonic acid-induced platelet
aggregations with increases of erythrocyte deformability and improvement of endothelial dysfunction [44]. Therefore,
VPN can be used as an adjuvant treatment to overcome aspirin resistance in patient with high risk of coagulopathy,
since it reduces intra-plaque hemorrhage with increasing of atherosclerotic plaque stability [45].
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Figure 2. The potential mechanism of vinpocetine in the attenuation of acute lung injury and acute respiratory
distress syndrome. Vinpocetine inhibits IKK, MAPK, PDE1 and VGSC-induced cell toxicity. Therefore, vinpocetine
reduces risk of ALI and ARDS.
ALI: Acute lung injury; ARDS: Acute respiratory distress syndrome; IKK: Inducer-κB kinase; MAPK: Mitogen-activated
protein kinase; PDE1: Phosphodiesterase 1; VGSC: Voltage-gated sodium channel.

It has been shown that in both influenza and SARS-CoV-2 infections, the platelets are activated by viral viroporins
through TLR7 with subsequent platelets hyper-reactivity and risk of thrombosis [46]. The activated platelets together
with neutrophils through P-selectin and activated complements contribute in formation NETs and release of
thrombogenic DNA histone [47]. Thus, VPN through inhibition of platelets activity could reduce their interactions
with the neutrophils and complements with attenuation of thrombogenic NETs formation. Besides, blood viscosity
in COVID-19 is augmented due to erythrocyte deformity (ED), hyperinflammation and dehydration due to
nausea and vomiting [48]. As well, mechanical stress caused by ED and atherosclerosis increase Ca+2 entries into the
erythrocytes leading to decrease of erythrocyte deformability with subsequent high blood viscosity [48]. It has been
documented that VPN inhibits Na+2-Ca+2 dependent pathways, through which enhance erythrocyte membrane
deformability with reduction of blood viscosity [49]. What’s more, VPN exerts a vasorelaxant effect by activating
release of nitric oxide (NO), which induces generation of cGMP. Therefore, VPN can attenuates tolerance to the
nitroglycerine effect, which caused by over-expression of PDE1A [50]. Similarly, VPN inhibits AngII inhibitory effect
on atrial natriuretic peptide-induced cGMP accumulation caused by over expression of PDE1A [50]. So, inhibition
PDE1A by VPN may improve transpulmonary cGMP and pulmonary vasodilatation and prevent development
of pulmonary hypertension [43]. Therefore, VPN might be of great value in attenuation of COVID-19-induced
hyperviscosity, platelets-mediated microthrombosis and pulmonary complications.

Taken together, VPN has pulmonary and extra-pulmonary protective effects against COVID-19 through miti-
gation of OS, hyperinflammation, hyperviscosity, platelets hyper-reactivity and thrombosis (Figure 3).

To date, there is no any of experimental or clinical trial studies or report regards the possible role of VPN in
treating COVID-19. However, this brief report shed light on the crucial role of VPN in COVID-19 through PDE1
dependent and independent pathways. This drug is available and cheap with well-known safety profile and its use
in the management of COVID-19 may open a new window for single drug with multiple effects. To support the
role of VPN in COVID-19, in silico and in vitro preliminary studies are required to be an initial first step to confirm
its role.

Conclusion
VPN has noteworthy anti-inflammatory and anti-oxidant effects through inhibition of NF-κB/MAPK signaling
pathway so, it may reduce SARS-CoV-2-induced hyper inflammatory and OS. As well, VPN has pulmonary and
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Figure 3. The pulmonary and extra-pulmonary effects of vinpocetine. The pulmonary effects of VPN including
inhibition of lung inflammation, ALI and ARDS through suppression of MAPK, NF-κB with release of NO. The
extra-pulmonary effects of VPN including Improvement of brain neurotransmission and reduction cognitive
dysfunction, inhibition of SARS-CoV-2-induced acute cardiac injury through inhibition of VGNC, inhibition of
COVID-19-induced thrombosis by attenuating ED and platelets hyper-reactivity and inhibition of COVID-19-induced
hyperviscosity by improvement of erythrocytes deformability.
ALI: Acute lung injury; ARDS: Acute respiratory distress syndrome; ED: Erectile dysfunction; MAPK: Mitogen-activated
protein kinase; NO: Nitric oxide; VGNC: Voltage gated Na+2 channel; VPN: Vinpocetine.

extra-pulmonary protective effects against COVID-19 through mitigation of OS, hyperinflammation, hyperviscos-
ity, platelets hyper-reactivity and thrombosis. Clinical trials and prospective studies are mandatory in this concern
to verify the beneficial effect of VPN in COVID-19.

Future perspective
The authors are currently carrying out in silico and in vitro studies to confirm the possible effect of VPN on
SARS-Cov-2 infection and hope to publish results of this new study in due course.

Summary points

• Vinpocetine (VPN) is a phosphodiesterase inhibitor, inhibits both basal and activated phosphodiesterase 1.
• VPN have anti-inflammatory effects through suppression the activity NF-κB signaling pathway and release of

pro-inflammatory cytokines.
• VPN inhibits inflammatory signaling pathways including NLP3 inflammasome and MAPK that are triggered in

SARS-CoV-2 infection.
• VPN has pulmonary and extrapulmonary protective effects against COVID-19 through mitigation of oxidative

stress, hyperinflammation, hyperviscosity, platelets hyper-reactivity and thrombosis.
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