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Abstract 

Biomedical information mining is increasingly recognized as a promising technique to accelerate drug discovery and 
development. Especially, integrative approaches which mine data from several (open) data sources have become 
more attractive with the increasing possibilities to programmatically access data through Application Programming 
Interfaces (APIs). The use of open data in conjunction with free, platform-independent analytic tools provides the 
additional advantage of flexibility, re-usability, and transparency. Here, we present a strategy for performing ligand-
based in silico drug repurposing with the analytics platform KNIME. We demonstrate the usefulness of the developed 
workflow on the basis of two different use cases: a rare disease (here: Glucose Transporter Type 1 (GLUT-1) deficiency), 
and a new disease (here: COVID 19). The workflow includes a targeted download of data through web services, data 
curation, detection of enriched structural patterns, as well as substructure searches in DrugBank and a recently depos-
ited data set of antiviral drugs provided by Chemical Abstracts Service. Developed workflows, tutorials with detailed 
step-by-step instructions, and the information gained by the analysis of data for GLUT-1 deficiency syndrome and 
COVID-19 are made freely available to the scientific community. The provided framework can be reused by research-
ers for other in silico drug repurposing projects, and it should serve as a valuable teaching resource for conveying 
integrative data mining strategies.
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Background
Computer-aided mining of biomedical data is an emerg-
ing field in cheminformatics and drug design which has 
reshaped current drug development [1–3]. Open access 
to various life-science repositories, such as ChEMBL [4], 
PubChem [5], UniProt [6], or DrugBank [7], provides a 

competitive advantage when using data-driven drug 
discovery approaches as opposed to non-integrative 
approaches [8]. Furthermore, many databases enable 
programmatic access of the stored data through an 
Application Programming Interface (API). Consequently, 
it is of importance to find appropriate tools to analyze 
gathered data in an automated way. The Konstanz Inte-
gration Miner (KNIME) is an open-source data pipelin-
ing and analytics platform which enables the creation of 
(semi)automated workflows to process, transform, ana-
lyze, and visualize the data as well as the generation and 
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deployment of approximative mathematical models [9]. 
In the recent past, the KNIME community has released 
a plethora of cheminformatics extensions, such as the 
RDKit [10], Chemistry Development Kit (CDK) [11], 
Indigo [12], or Vernalis [13] toolkits.

Large-scale data fusion supplied with cheminformat-
ics data analyses can uncover underlying patterns within 
the data and can pave the way for the development of 
novel medicine. Such a strategy can be leveraged for drug 
repurposing (also known as drug repositioning) strate-
gies, in which a re-evaluation of an already approved 
drug can lead to a treatment for another disease [14]. 
This approach is particularly useful to, e.g., discover a 
cure for orphan diseases [15], or to find drug candidates 
that are worth further investigations for an ongoing pan-
demic, such as Coronavirus disease 2019 (COVID-19).

With the rapid increase of the availability of biomedical 
data in the open domain, computational drug repurpos-
ing approaches now strongly benefit from interconnect-
ing different types of data entities, including genes, tissue 
expression data, targets, drugs, phenotypes, and dis-
eases, to deliver an indication about a drugs’ mode-of-
action. Method-wise, computational drug repurposing 
techniques range from data (text) mining, and different 
machine learning approaches, to network analyses and 
structure-based approaches [16]. For example, Li et  al. 
combined data originating from text mining with pro-
tein interaction networks to develop a drug-target con-
nectivity map for a certain disease [17]. Machine learning 
methods used in drug repurposing strategies include, 
inter alia, support vector machines [18], classification 
models [19], and currently also deep neural networks [20] 
to predict drug-disease relationships. Network analyses 
enable to model complex functional similarities between 
various biological entities, such as drugs, genes, proteins, 
or entire protein families [21]. An orthogonal approach 
to ligand-based strategies, is to perform structure-based 
virtual screening by using a  consensus inverse docking 
strategy, as demonstrated by Wang et al. [22].

Semi-automated drug repositioning pipelines are unit-
ing the advantages of computational workflows (e.g., pro-
vided by using the open source tool KNIME) with the 
availability of big open data sources that can be accessed 
programmatically. They make access to data resources 
easier and thus lower the barriers for effective data usage 
for non-data scientists. Also, their usage shortens the 
time period from data collection to the identification of 
hidden relationships in the data. In addition, such work-
flows are easily reproducible, and can be adapted accord-
ing to individual project needs [23].

In this study, we are providing a general strategy and a 
step-by-step tutorial for automated data access and data 
integration from multiple open data sources (which are 

providing an API), along with data processing and chem-
informatics data analysis by using the pipelining tool 
KNIME. Individual operations, such as the specification 
and execution of API requests, extraction of properties 
through JSON/XPath queries, structural data standardi-
zation, identification of enriched structural fragments, 
and substructure searches in external data sources, are 
thoroughly described and demonstrated herein.

Protein and ligand information related to GLUT-1 defi-
ciency syndrome and to COVID-19 have been chosen 
as individual use cases to demonstrate the usefulness of 
the approach. GLUT-1 deficiency syndrome is a rare dis-
ease caused by genetic variation of glucose transporter 
member 1 (SLC2A1), which leads to impaired trans-
port of glucose (https ://ghr.nlm.nih.gov/condi tion/glut1 
-defic iency -syndr ome). For COVID-19, to date only data 
for suggested targets can be used (with relatively little 
knowledge about the strength of the target-disease asso-
ciations). Just recently, about 66 druggable protein targets 
with potential interest for SARS-CoV-2 treatment have 
been reported [24].

The Open Targets Platform integrates public domain 
data to enable target identification and prioritization by 
providing association scores between targets and dis-
eases [25]. Targets represented in the Open Targets Plat-
form can be genes, transcripts or proteins integrated 
through the Ensembl gene ID (https ://www.ensem bl.org/
index .html).

In this study, we used highly scored proteins from the 
Open Targets Platform for the diseases under investiga-
tion. In case of COVID-19, protein targets listed in the 
UniProtKB pre-release web page (available at https ://
covid -19.unipr ot.org/unipr otkb?query =* ) were addition-
ally used as a starting point.

API calls were specified to map UniProt IDs of the tar-
gets to available structural data in the Protein Data Bank 
(PDB) [26]. Ligands co-resolved with a protein structure 
were extracted as separate entities. For sake of data aug-
mentation, ligand bioactivity measurements (such as Ki, 
IC50, or Km end-points) for the protein targets under 
study were retrieved from ChEMBL [4], PubChem [5], 
and Guide-to-Pharmacology (IUPHAR) [27]. After data 
cleaning and chemical structure standardization, Bemis-
Murcko scaffolds [28] were extracted from the ligands 
in the data set and grouped by similarity into structural 
queries for subsequent substructure searches in Drug-
Bank [7] and the CAS COVID-19 antiviral candidate 
compounds data  set (available upon request at https 
://www.cas.org/covid -19-antiv iral-compo unds-datas 
et). These searches led to the identification of structur-
ally analogous compounds which could potentially show 
similar pharmacological action at targets associated with 
GLUT-1 deficiency syndrome or COVID-19. A list of 

https://ghr.nlm.nih.gov/condition/glut1-deficiency-syndrome
https://ghr.nlm.nih.gov/condition/glut1-deficiency-syndrome
https://www.ensembl.org/index.html
https://www.ensembl.org/index.html
https://covid-19.uniprot.org/uniprotkb?query=*
https://covid-19.uniprot.org/uniprotkb?query=*
https://www.cas.org/covid-19-antiviral-compounds-dataset
https://www.cas.org/covid-19-antiviral-compounds-dataset
https://www.cas.org/covid-19-antiviral-compounds-dataset
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identified hits, is provided as an output of the workflow. 
A schematic overview of the whole data-driven drug 
repurposing workflow is depicted in Fig. 1.

Taken together, the developed data mining pipeline is 
a useful resource for any in silico drug repurposing pro-
ject and is exemplified on the basis of a drug reposition-
ing strategy for GLUT-1 deficiency syndrome and the 
Coronavirus Disease 2019 (COVID-19). The step-by-step 
instructions allow for an easy implementation for other 
drug discovery projects along these lines and they shall 
give especially guidance to students or researchers new 
to the field of data-driven drug discovery. All workflows 
can be accessed via an open GitHub Repository (avail-
able at https ://githu b.com/Alzbe taTue rkova /Drug-Repur 
posin g-in-KNIME ).

Methods
As the drug-repurposing strategy applied here is mainly 
conceived for educational purposes, we introduce a step-
by-step tutorial for a guided development of a KNIME 
workflow. In addition, the workflow developed herein 
is fully versatile and it can thus be reproduced for other 
diseases of interest. Basic knowledge of configuration 
and execution of standard nodes (e.g., the ‘Row Filter’ 
node, the ‘GroupBy’ node, the ‘Joiner’ node, the ‘Pivoting’ 
node), import of external data sets into a KNIME work-
flow (e.g., the ‘SDF reader’ node, the ‘File Reader’ node), 
handling different structural formats, as well as working 
with specific data types in KNIME, is expected here as a 
prerequisite.

When integrating data from diverse sources, it becomes 
beneficial to query databases programmatically, i.e., with-
out the need of laborious manual data download and 
data integration. UniProtKB and other databases used 
in this example enable targeted access of the stored data 
through an Application Programming Interface (API).

In the KNIME workflow discussed herein, a triad of 
KNIME nodes is consecutively executed (1) to specify 
the API request (via the ‘String Manipulation’ node), (2) 
to retrieve data from web services (via the ‘GET request’ 
node), and (3) to perform XPath/JSON queries to extract 
useful properties for a given protein (via the ‘XPath’ or 
‘JSONPath’ node, respectively). The corresponding part 
of the KNIME workflow is depicted in Fig. 2.

1. Step: Mapping target identifiers of the Open Targets 
Platform to UniProt
The workflow discussed herein, allows two different sorts 
of input: (1) Automated retrieval of targets associated 

with a certain disease via the Open Targets Platform and 
(2) importing an external data  set with a list of protein 
targets.

In option (1), the disease identifiers from the Open 
Targets Platform for GLUT-1 deficiency syndrome 
(Orphanet_71277) and COVID-19 (MONDO_0100096) 
have been specified as input in the ‘Table Creator’ node. 
Next, an API request to fetch disease records was cre-
ated using the ‘String Manipulation’ node. The join() 
function in the ‘String Manipulation’ node is used and a 
corresponding Open Targets Platform disease ID is for-
warded to the string as a variable ($disease_id$ column). 
Additional parameters used in this API request are the 
maximum number of associated drug targets (‘size’, here 
set to 10,000), and the association score, which enables 
to prioritize the drug targets on basis of their avail-
able evidence for a disease (‘scorevalue_min’, here set 
to 0.99): join("https ://platf orm-api.opent arget s.io/v3/
platf orm/publi c/assoc iatio n/filte r?disea se=",$disea se_
id$,"&size=10000 &score value _min=0.99").

As an output of the ‘String Manipulation’ node, a col-
umn with the respective API requests is appended to 
the output table, such as: https ://platf orm-api.opent 
arget s.io/v3/platf orm/publi c/assoc iatio n/filte r?disea 
se=EFO_00013 60&size=10000 &score value _min=0.99.

By executing the API request (via the ‘GET Request’ 
node), a JSON file is downloaded from the Open Targets 
Platform and appended to the output table as a separate 
column. Additionally, columns reporting the content 
type (here ‘application/json’), and the HTTP status code 
are appended (Fig.  3). There exist five classes of HTTP 
status codes: (1) Informational responses (100–199), (2) 
Successful responses (200–299), (3) Redirects (300–399), 
(4) Client errors (400–499), and (5) Server errors (500–
599). The information provided about the status of the 
request can be used to filter out any useless data entries. 
It is recommended to increase the timeout in the ‘GET 
Request’ configuration as the default specification (2 s) is 
usually insufficient to receive all requested data.

Subsequently, the ‘JSON Path’ node is used to extract 
the information of interest on the basis of querying differ-
ent JSON objects. The ‘JSON Path’ node enables to create 
JSON Path queries in both dot-notation and bracket-
notation (depending on how the properties of an object 
are specified in the syntax). Here, the bracket notation 
is applied to extract target identifiers, target names, and 
gene symbol by using the following JSON paths:
$[’data’][*][’target’][’id’]
$[’data’][*][’target’][’gene_info’][’name’]

(See figure on next page.)
Fig. 1 Schematic overview of the data-driven drug-repurposing workflow

https://github.com/AlzbetaTuerkova/Drug-Repurposing-in-KNIME
https://github.com/AlzbetaTuerkova/Drug-Repurposing-in-KNIME
https://platform-api.opentargets.io/v3/platform/public/association/filter?disease=quot,$disease_id$,quot&size=10000&scorevalue_min=0.99
https://platform-api.opentargets.io/v3/platform/public/association/filter?disease=quot,$disease_id$,quot&size=10000&scorevalue_min=0.99
https://platform-api.opentargets.io/v3/platform/public/association/filter?disease=quot,$disease_id$,quot&size=10000&scorevalue_min=0.99
https://platform-api.opentargets.io/v3/platform/public/association/filter?disease=EFO_0001360&size=10000&scorevalue_min=0.99
https://platform-api.opentargets.io/v3/platform/public/association/filter?disease=EFO_0001360&size=10000&scorevalue_min=0.99
https://platform-api.opentargets.io/v3/platform/public/association/filter?disease=EFO_0001360&size=10000&scorevalue_min=0.99
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$[’data’][*][’target’][’gene_info’][’symbol’]
Output values are appended to separate cells as a col-

lection data type. The ‘Ungroup’ node is subsequently 
used to transform collections of values into individual 
rows.

Next, cross-references for all human target entries in 
the Open Targets Platform can be fetched via the Uni-
Prot web services. Here, a corresponding API request 
was executed to retrieve the mappings for targets (Uni-
Prot target IDs are mapped to Open Targets Platform 
target IDs): https ://www.unipr ot.org/unipr ot/?query 
=organ ism:9606+AND+datab ase:OpenT arget s&forma 
t=xls&colum ns=id,datab ase(OpenT arget s),revie wed.

Due to the potential workflow overload, we recom-
mend to download a mapping file (XLS format) and 

forward it to the workflow via the ‘File Reader’ node 
and later join the two data sets via the ‘Joiner’ node.

Option (2) is to use a user-specified list of UniProt IDs 
in a data table format. In this contribution, this step is 
exemplified by the use case for proteins that are listed to 
be of potential interest for treating COVID-19 (53 entries 
available at https ://covid -19.unipr ot.org/unipr otkb?query 
=*). The CSV/TSV file is read in by a ‘File Reader’ node.

2. Step: Retrieving protein–ligand structural data 
from the Protein Data Bank
UniProt IDs for targets of interest were used to retrieve 
available protein–ligand complexes stored in the Protein 
Data Bank (PDB) [29].

Based on the same strategy as in step 1, a column with 
the respective API requests is appended to the output 

Fig. 2 An example workflow for creation, execution, and post-processing API requests to retrieve protein information from UniProt: The ‘String 
Manipulation’ node accepts a column with UniProt IDs listed and an API request is created (as string). The ‘GET Request’ node executes the requests 
generated in the previous step. The ‘XPath’ node extracts PDB IDs associated with a certain UniProt ID (if available). For a detailed description of how 
to retrieve UniProt IDs we refer the reader to the subsequent section

Fig. 3 An example of the output table generated after the execution of the ‘GET Request’ node: Status, content type, and JSON file are appended to 
the table as separate columns

https://www.uniprot.org/uniprot/?query=organism:9606+AND+database:OpenTargets&format=xls&columns=id,database(OpenTargets),reviewed
https://www.uniprot.org/uniprot/?query=organism:9606+AND+database:OpenTargets&format=xls&columns=id,database(OpenTargets),reviewed
https://www.uniprot.org/uniprot/?query=organism:9606+AND+database:OpenTargets&format=xls&columns=id,database(OpenTargets),reviewed
https://covid-19.uniprot.org/uniprotkb?query=*
https://covid-19.uniprot.org/uniprotkb?query=*
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table. An example for such an API request looks like this: 
https ://www.unipr ot.org/unipr ot/F8W8F 0.xml.

When executing the workflow with COVID-19 pre-
release data provided by UniProtKB, the API request has 
to be adopted in the following manner: https ://www.ebi.
ac.uk/unipr ot/api/covid -19/unipr otkb/acces sion/O1539 
3.xml.

By executing the API requests (via the ‘GET Request’ 
node), the XML file is downloaded from UniProt and 
appended to the output table as XML cell. Similar to the 
‘JSON Path’ described in the previous step, the ‘Xpath’ 
node (XPath 1.0 version) is used to extract the informa-
tion of interest on the basis of querying different XML 
elements and the associated XML attributes. One can 
define an Xpath query within the ‘Xpath’ node from 
scratch. Another way is to perform a double-click on a 
specific section in the XML-Cell Preview table and the 
Xpath query is generated automatically. The XPath query 
below is used to retrieve all available PDB IDs for a given 
UniProt ID:
/ d n s : u n i p r o t / d n s : e n t r y /

dns:dbReference[@type=’PDB’]/@id
The ‘dns’ prefix corresponds to the namespace used 

in the XPath query. Here, http://unipr ot.org/unipr ot’ is 
used as a namespace. Namespaces are defined automati-
cally and are listed in the node configuration.

The example XPath query shows that PDB IDs are 
integrated within the < dbReference > XML element. 
However, UniProt entries consist of multiple < dbRef-
erence > elements which are pointing to different data 
sources, such as PubMed, GO, InterPro, Pfam, or PDB:
<dbReference type="PubMed" 

id="12730500">
<dbReference type="GO" id="GO:0039579">
<dbReference type="InterPro" 

id="IPR036333">
<dbReference type="Pfam" id="PF06478">
<dbReference type="PDB" id="6NUR">
A key task is to query data from XML elements which 

do possess the ‘PDB’ attribute exclusively. The ‘@’ char-
acter is used to specify certain XML attributes in the 
XPath query. Therefore, dbReference[@type = ’PDB’] is 
forwarded to the XPath query to get all PDB IDs by que-
rying the @id attribute.

Due to the possible synchronization delay of UniProt 
releases with other cross-referenced databases, an addi-
tional alternative approach has been used to fetch PDB 
data. Specifically, PDBe graph APIs were used for this 
purpose. The PDB entities are returned in JSON format 
by default. Below an example is provided for a request 
to fetch protein structures for the ACE2 receptor (Uni-
Prot ID: Q9BYF1) via PDBe graph APIs: https ://www.ebi.

ac.uk/pdbe/graph -api/mappi ngs/best_struc tures /Q9BYF 
1.

Similar to the ‘XPath’ node for processing XML docu-
ments, KNIME also provides the ‘JSON Path’ node which 
is used to process JSON data. The ‘JSON Path’ node ena-
bles to create JSON Path queries in both dot notation 
and bracket notation (depending on how the properties 
of an object are specified in the syntax). In the discussed 
KNIME workflow herein, the bracket notation is applied 
to extract the PDB IDs:
$..[*].[’pdb_id’]
Since the data are listed as a collection column type, 

the ‘JSON Path’ node is followed by the ‘UnGroup’ node 
to list multiple PDB IDs per protein target into separate 
rows. After concatenating data (‘Concatenate’ node) 
retrieved from PDBe graph APIs, duplicates for a respec-
tive target were removed by grouping the data by target 
UniProt ID and PDB IDs (‘GroupBy’ node). The ‘PDB ID’ 
column is used to create the Uniform Resource Locator 
(URL) path to extract different properties by using the 
same strategy as shown in Fig.  2. An example of such 
URL is given below: https ://files .rcsb.org/view/2VYI.pdb.

The ‘PDB Loader’ and the ‘PDB Property Extractor’ 
nodes are available from the KNIME repository (created 
by Vernalis, Cambridge, UK) to facilitate analysis of PDB 
data in KNIME (Fig.  4). These nodes were employed in 
order to explore properties of the PDB files, such as the 
experimental method used (X-ray diffraction, solution 
NMR, cryo-EM, theoretical models), the number of 
stored models, the resolution of structures, Space groups, 
R-factor, and so on.

Next, the available PDB structures were examined for 
their availability of co-resolved ligands. Ligand informa-
tion (in JSON format) can be received through the RCSB 
PDB RESTful Web services by creating the following 
request: https ://data.rcsb.org/rest/v1/core/entry /2VYI.

Following JSON Path node is used to retrieve a collec-
tion of bound ligands, if available:
$ [ ’ r c s b _ e n t r y _ i n f o ’ ]

[’nonpolymer_bound_components’]
Available ligands are listed using their shortcuts (e.g., 

BME, NAG, XU3). An API request is subsequently cre-
ated and executed to fetch ligand information (in JSON 
format): https ://data.rcsb.org/rest/v1/core/chemc omp/
NAG.

The following JSON path node is used to retrieve the 
SMILES code for a specific ligand:
$[’rcsb_chem_comp_descriptor’]

[’smiles’]
Subsequently, PDB entries without a co-resolved ligand 

are filtered out (by applying the ‘RowFilter’ node). The 
‘GroupBy’ node is used to keep unique ligand structures 
per protein target (grouping by UniProt ID and smiles 

https://www.uniprot.org/uniprot/F8W8F0.xml
https://www.ebi.ac.uk/uniprot/api/covid-19/uniprotkb/accession/O15393.xml
https://www.ebi.ac.uk/uniprot/api/covid-19/uniprotkb/accession/O15393.xml
https://www.ebi.ac.uk/uniprot/api/covid-19/uniprotkb/accession/O15393.xml
http://uniprot.org/uniprot
https://www.ebi.ac.uk/pdbe/graph-api/mappings/best_structures/Q9BYF1
https://www.ebi.ac.uk/pdbe/graph-api/mappings/best_structures/Q9BYF1
https://www.ebi.ac.uk/pdbe/graph-api/mappings/best_structures/Q9BYF1
https://files.rcsb.org/view/2VYI.pdb
https://data.rcsb.org/rest/v1/core/entry/2VYI
https://data.rcsb.org/rest/v1/core/chemcomp/NAG
https://data.rcsb.org/rest/v1/core/chemcomp/NAG
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string). This procedure might also retrieve salts, solvents, 
and/or co-crystallizing compounds, as they are identified 
as ‘ligands’ in PDB. Although the salts and unconnected 
fragments are stripped during the structure standardi-
zation procedure (as described in Sect. 3), it is generally 
advisable to cross-check the output table to eliminate 
retained co-crystallizing agents (e.g., isonicotinamide).

3. Step: Fetching ligand bioactivity data from open 
bioactivity data sources via programmatic data access
Orthogonal to fetching ligand data for drug targets of 
interest from their protein structures, ligands and their 
experimental bioactivity measurements can also be col-
lected from open pharmacological databases. In this 
example, data is retrieved from ChEMBL (version 26) [4, 
30], PubChem [5], and IUPHAR (also known as Guide-
to-Pharmacology, version 2020.2) [27] by using the 
respective web services via the ‘Get Request’ and ‘XPath’ 
nodes in KNIME. Automated data access can be achieved 
by using predefined identifiers for targets, ligands (such 
as ligand structure, available bioactivities, or molecule 
names), biochemical assays, and so on.

The KNIME workflow for fetching ChEMBL data 
allows to map UniProt IDs of protein targets to tar-
get ChEMBL IDs and subsequent retrieval of ligand 

bioactivities and their respective structural information 
(here: canonical smiles), document ChEMBL IDs, and 
Pubmed IDs for the primary publication. A major chal-
lenge is the limited number of bioactivities (up to 1000 
bioactivities) that are being fetched per single call. The 
KNIME workflow therefore has to be adopted to fetch all 
available data without manual intervention. The metan-
ode that does the trick (termed ‘Get bioactivities per tar-
get’) works as follows:

1. A single XML file per target is downloaded and the 
number of bioactivities integrated within the < total_
count > XML element is extracted.
2. The number of iterations needed to fetch all avail-
able bioactivities per target is calculated by dividing 
the number of bioactivities by 1000 and then round-
ing the result up (ceil() function in the ‘Math For-
mula’ node).
3. A recursive loop is used in order to process pro-
tein targets one-by-one.
4. A nested loop is used within a recursive loop where 
the API call is modified in a way that it dynamically 
changes the ‘offset’ parameter per each iteration. The 
‘offset’ parameter determines the number of bioactiv-
ities that should be skipped before downloading the 

Fig. 4 PDB nodes which enable to fetch and extract various properties of deposited PDB structures: The ‘String Manipulation Node’ accepts a 
column with PDB IDs listed. The ‘PDB Loader’ node is used to download PDB files specified by an URL path. The ‘PDB Property Extractor’ is used to 
extract structure title, experimental method, crystal resolution (if applicable), number of models (if applicable), R and Rfree factor (if applicable), 
space group (if applicable), and further experimental remarks from a PDB cell column. An example output table shows UniProt ID (‘Entry’ column), 
associated PDB IDs (‘PDB’ column), and experimental method (‘Experimental Method’) used for resolving 3D structures
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next portion of bioactivities for a given target. After 
the loop ends, all information needed is extracted 
from the collected XML files by the ‘Xpath’ node.

This procedure shall be illustrated on basis of an 
example: There are 2410 bioactivities for protein X 
available. Thus, three iterations are needed to fetch 
all data available for protein X if offset is set to 1000. 
Within each iteration, a column is appended to the 
table containing the API call with the corresponding 
offset parameter, i.e.

https ://www.ebi.ac.uk/chemb l/api/data/activ ity?targe 
t_chemb l_id=CHEMB L5118 &limit =1000&offse t=0 
(iteration#1).

https ://www.ebi.ac.uk/chemb l/api/data/activ ity?targe 
t_chemb l_id=CHEMB L5118 &limit =1000&offse 
t=1000 (iteration#2).

https ://www.ebi.ac.uk/chemb l/api/data/activ ity?targe 
t_chemb l_id=CHEMB L5118 &limit =1000&offse 
t=2000 (iteration#3).

At the end of the loop, 2410 bioactivities have been col-
lected for protein X and these are processed as indicated 
in the description above.

Step 3 and 4 from the metanode ‘Get bioactivities per 
target’, as described above, are visually depicted in Fig. 5.

In case of PubChem, UniProt IDs are mapped to 
‘PubChem Assay IDs’ (AID) in the first step. Further, 
AIDs are mapped to available compounds by ‘PubChem 
Compound ID’ (CID), including bioactivity measure-
ments and associated PubMed IDs. Compound struc-
tures and names are retrieved in the next step. In some 
cases, compound names in PubChem are included in the 
form of molecule ChEMBL IDs. If this condition is true, 
the ChEMBL is additionally queried to download a com-
pound name, if available.

In order to query IUPHAR data, the UniProt ID is 
mapped to the IUPHAR target ID. API calls have a spe-
cific syntax for accessing substrates, e.g.: http://www.
guide topha rmaco logy.org/servi ces/targe ts/2421/subst 
rates  and for accessing inhibitors, e.g.: http://www.guide 
topha rmaco logy.org/servi ces/targe ts/2421/inter actio ns,

Fig. 5 Nested recursive loop in order to fetch bioactivity data from ChEMBL (steps 3 and 4 of the metanode ‘Get bioactivities per target’): UniProt 
ID, Target ChEMBL ID, associated total count of available bioactivities, as well as the number of iterations needed for data download, are provided 
as input. The ‘Table Row to Variable’ node converts the respective UniProt ID into a variable and forwards it to the ‘Row Splitter’ Node. The table 
is thereafter split according to the UniProt ID, while the rest of the table is temporarily forwarded to the ‘Recursive Loop End’. The ‘One Row to 
Many’ node is used to multiply table rows on the basis of the number of iterations, as indicated in the ‘#Iter’ column. The ‘Counter Generation’ 
node is used to generate a column with the sequence of the offset values having an interval of 1000. The nested loop (initiated by the ‘Table Row 
To Variable Loop Start’ node) is used to create an API call (‘String Manipulation’ node) with the current value of the offset parameter. An API call is 
executed (‘GET Request’ node) and the bioactivity values are extracted accordingly (‘XPath’ node). The nested loop is running until all the offset 
values generated by the ‘Counter Generation’ node are applied. After the ‘Recursive Loop End’, the rest of the table from the second input port is 
passed back to the loop start and the workflow is repeated for the next protein target. As an output, each bioactivity data point (including activity 
comment, assay description, molecule ChEMBL ID, molecule general name, standard bioactivity type, standard unit, standard bioactivity value, 
standard relation, parent molecule ChEMBL ID, and document ChEMBL ID) is listed in the output table

https://www.ebi.ac.uk/chembl/api/data/activity?target_chembl_id=CHEMBL5118&limit=1000&offset=0
https://www.ebi.ac.uk/chembl/api/data/activity?target_chembl_id=CHEMBL5118&limit=1000&offset=0
https://www.ebi.ac.uk/chembl/api/data/activity?target_chembl_id=CHEMBL5118&limit=1000&offset=1000
https://www.ebi.ac.uk/chembl/api/data/activity?target_chembl_id=CHEMBL5118&limit=1000&offset=1000
https://www.ebi.ac.uk/chembl/api/data/activity?target_chembl_id=CHEMBL5118&limit=1000&offset=1000
https://www.ebi.ac.uk/chembl/api/data/activity?target_chembl_id=CHEMBL5118&limit=1000&offset=2000
https://www.ebi.ac.uk/chembl/api/data/activity?target_chembl_id=CHEMBL5118&limit=1000&offset=2000
https://www.ebi.ac.uk/chembl/api/data/activity?target_chembl_id=CHEMBL5118&limit=1000&offset=2000
http://www.guidetopharmacology.org/services/targets/2421/substrates
http://www.guidetopharmacology.org/services/targets/2421/substrates
http://www.guidetopharmacology.org/services/targets/2421/substrates
http://www.guidetopharmacology.org/services/targets/2421/interactions
http://www.guidetopharmacology.org/services/targets/2421/interactions
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where “2421” is an identifier for a specific target 
ID. Compound ID, PubMed ID, affinity, affinity type 
(corresponding to a certain end-point), and action 
(corresponding to a certain activity annotation) were 
retrieved by using the ‘JSON Path’ node. Retrieval of 
the ligand structural format is done by an additional 
API call on basis of the respective ligand ID.

Bioactivity values are converted to their negative 
logarithmic representation and binary labels (‘1’ for 
active and ‘0’ for inactive) are assigned on the basis 
of an activity cut-off. In this example, all compounds 
possessing a negative logarithmic value greater than 
9 (i.e., < 1  nM) were labeled as ‘1’, while the rest was 
labeled as ‘0’.

After merging the output tables from ChEMBL, 
PubChem, and IUPHAR, the data is grouped to keep 
unique ligands per target and median values for binary 
activity labels (by using the ‘GroupBy’ node). In addi-
tion, only active ligands per target (label ‘1’) are kept 
and the final table is concatenated with ligand struc-
tures from PDB entries.

A prerequisite for merging ligand data from diverse 
sources is standardization of the molecular structures. 
A similar curation strategy like the one published by 
Gadaleta et al. [31] was applied:

1. Characters encoding stereoisomerism in 
SMILES format (@; \; /) are removed by using the 
‘String Replacer’ node since for subsequent opera-
tions this information is not needed.
2. Salts are stripped by using the ‘RDkit Salt Strip-
per’ node. (This node works with pre-defined 
sets of different salts/salt mixtures by default. If 
requested, additional salt definitions can be for-
warded to the node.)
3. Salt components are listed in the output table 
using the ‘Connectivity’ node (CDK plugin) fol-
lowed by the ‘Split Collection Column’ node
4. The ‘RDKit Structure Normalizer’ node neu-
tralizes charges and checks for atomic clashes, 
etc. Additional criteria for compound quality 
check can be adjusted in the ‘Advanced’ section of 
the node configuration.
5. The ‘Element Filter’ node keeps com-
pounds containing the following elements only: 
H,C,N,O,F,Br,I,Cl,P,S).
6. InChI, InChiKey, and Canonical smiles formats 
are finally created from the standardized com-
pounds.

Steps 2–4 are visually depicted in Fig. 6.

4. Step: Substructure searches to identify potentially 
interesting compounds for drug repurposing
Finally, the merged data sets are used to generate struc-
tural queries in SMARTS format in order to perform 
substructure searches in DrugBank (version 5.1.6, 
approx. 10,000 compounds, structures in SDF format 
are publicly available at https ://www.drugb ank.ca/relea 
ses/lates t#struc tures ) and in the COVID-19 antiviral 
candidate compound data set provided by the Chemical 
Abstracts Service (approx. 50,000 compounds, available 
upon request at https ://www.cas.org/covid -19-antiv 
iral-compo unds-datas et).

Bemis-Murcko scaffolds are extracted (‘RDKit Find 
Murcko Scaffolds’ node) in order to get a quick over-
view of the structural diversity of the curated data set. 
Scaffolds possessing too generic structures (i.e., a single 
aromatic ring) can be filtered out (by using the ‘RDKit 
Descriptors Calculator’ node in conjunction with the 
‘Row Filter’ node) and remaining ones can be explored 
with respect to their structural similarity in the context 
of a certain target. This step is done by (1) calculating 
molecular distances (the ‘MoSS MCSS Molecule Simi-
larity’ node), (2) hierarchical clustering (the ‘Hierarchi-
cal Clustering [DistMatrix]’ node), and (3) assigning a 
threshold (here: distance threshold = 0.5) for cluster 
assignment (the ‘Hierarchical Cluster Assigner’ node). 
The ‘MoSS MCSS Molecule Similarity’ node is used to 
calculate similarities between Murcko scaffolds by tak-
ing the size of their Maximum Common Substructure 
(MCS) as a similarity metric. Molecular similarities are 
then evaluated on the basis of a distance matrix. The 
respective part of the workflow is depicted in Fig. 7.

Next, looping over distinct clusters of associated 
Bemis-Murcko scaffolds for a respective target is done 
in order to create a maximum common substructure 
(the ‘RDKit MCS’ node) from all associated scaffolds 
belonging to a respective cluster. Recursive loops are 
extensions to regular loops which can be used in con-
junction with a ‘Row Splitter’ node to separate the cur-
rent row from the rest of the table. After termination of 
the current iteration, the rest of the table is forwarded 
to the loop start and the next row is used for the sub-
sequent iteration (see Fig. 8). Generated substructures 
for a certain target are appended to the output table in 
SMARTS format.

For the substructure searches in DrugBank and the 
CAS data  set loops are being used as well (Fig.  9). The 
‘Table Row To Variable Loop Start’ forwards each sub-
structure as a  query to the ‘RDKit Substructure Filter’ 
node as a flow variable which then examines whether a 
particular substructure is contained in the data sets from 
DrugBank or CAS. Extracted compounds are being for-
warded to the ‘RDKit molecule highlighting’ node which 

https://www.drugbank.ca/releases/latest#structures
https://www.drugbank.ca/releases/latest#structures
https://www.cas.org/covid-19-antiviral-compounds-dataset
https://www.cas.org/covid-19-antiviral-compounds-dataset
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visualizes the highlighted substructure within the respec-
tive compounds.

Software
KNIME workflows were built in KNIME version 4.1.2. 
The KNIME workflows are freely available from GitHub 

(https ://githu b.com/Alzbe taTue rkova /Drug-Repur 
posin g-in-KNIME ). The published workflow can be 
either used as a single pipeline, or as multiple stand-
alone workflows (1) to gather data from PDB, (2) to 
retrieve ligand bioactivities from ChEMBL, PubChem, 
and IUPHAR, and (3) to perform substructure searches, 
by providing the needed data input, respectively.

Fig. 6 Standardization workflow used to strip salts and neutralize charges: The ‘RDKit’ Salt Stripper is used to split unconnected fragments 
according to predefined rules. The ‘Connectivity’ node (CDK) is used to list all the unconnected structures and list them in separate columns (‘Split 
Collection Column’ node). The output is joined together (‘Joiner’ node followed by the ‘Column Filter’ node to drop redundant columns). The ‘RDKit 
Structure Normalizer’ node is used to neutralize charges (if applicable). As an output of this part of the workflow, the neutralized molecule and the 
unconnected fragment(s) (if applicable) are listed in separate columns

https://github.com/AlzbetaTuerkova/Drug-Repurposing-in-KNIME
https://github.com/AlzbetaTuerkova/Drug-Repurposing-in-KNIME
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Fig. 7 Hierarchical scaffold clustering in KNIME: Bemis-Murcko scaffolds and associated UniProt IDs (as a list) are forwarded as an input. The 
‘Table Row To Variable Loop Start’ node forwards Bemis-Murcko scaffolds per respective target into the loop. Molecular distances are computed 
for the retained scaffolds (‘MoSS MCSS Molecule Similarity’ node) and hierarchical clusters are generated accordingly (the ‘Hierarchical Clustering 
[DistMatrix]’ node). Scaffolds are grouped into a specific group by applying the ‘Hierarchical Cluster Assigner’ node. The loop is then repeated for the 
remaining targets from the input table. The output table contains UniProt IDs, associated scaffolds, and cluster IDs

Fig. 8 Looping through scaffold clusters and generating a maximum common substructure for a given cluster: The ‘Table Row To Variable Loop 
Start’ accepts a single target per iteration and the ‘Recursive loop start’ takes a single cluster (indicated by the ‘Cluster number’ column) per iteration. 
From the scaffolds grouped into a single cluster their maximum common substructure (the ‘RDKit MCS’ node) is calculated. The output table 
contains the target as a UniProt ID and associated substructures in SMARTS format
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Results and discussion
In this contribution, a semiautomatic KNIME work-
flow for drug repurposing based on publicly available 
structural- and bioactivity-ligand data is presented. 
The pipeline includes automatic mapping of UniProtKB 
entries and PDB via cross-referencing, program-
matic data access via the data sources’ web services 
(exemplified for ChEMBL, PubChem, and IUPHAR), 
fully automatic data curation (including data integra-
tion, chemical data standardization, removal of dupli-
cates, and cut off setting for assigning activity labels), 
the identification of common structural patterns in 
SMARTS format, and substructure searches (here in 
DrugBank and the CAS data  set of antiviral drugs) in 
order to identify interesting compounds for further 
investigations. The drug repurposing pipeline devel-
oped here is showcased by applying it on one rare dis-
ease as well as one new disease: Glucose Transporter 
Type 1 (GLUT-1) deficiency syndrome and COVID-19.

Retrieval of COVID‑19 data
The Universal Protein Resource KnowledgeBase (Uni-
ProtKB) is a freely accessible database for protein 
sequence and annotation data. The UniProt ID (e.g., 
P59596, P59637, P0C6X7) is a protein identifier which 
can be used to retrieve comprehensive information about 
a given protein, including protein names and synonyms, 
taxonomy, function, cellular localization, available three-
dimensional structures, as well as cross-references to 
other databases. Cross-referenced databases include (but 
are not limited to) sequence databases (e.g. GenBank 
[32], CCDS [33]), 3D structure databases (e.g., Protein 
Data Bank [29], ModBase [34], SWISS-MODEL-Work-
space [35]), protein–protein interaction databases (e.g., 
Biogrid [36], IntAct [37], STRING [38]), and chemistry 
databases (e.g., BindingDB, [39] ChEMBL, [4] DrugBank 
[7]). In a first instance, content from a pre-release Uni-
Prot web page (available at https ://covid -19.unipr ot.org/
unipr otkb?query =*) was used as an input for the data 

Fig. 9 Automated substructure searches in KNIME: The loop iterates through the input substructure queries (in SMARTS) to find hits in DrugBank 
(input data set includes molecules in SDF format, DrugBank IDs, and associated content). The structures from DrugBank are standardized 
(‘Standardization of structures’ metanode), and then subjected to the ‘RDKit Substructure Filter’ node to perform substructure searches. The SMARTS 
query is forwarded to the input as a variable. Detected substructures are highlighted by the ‘RDKit Molecule Highlighting’ node. The output table 
contains identified hits (molecule names, associated targets, SMARTS keys, chemical structures), and highlighted substructures in SVG format

https://covid-19.uniprot.org/uniprotkb?query=*
https://covid-19.uniprot.org/uniprotkb?query=*
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mining pipeline to gather and analyze data for proteins 
potentially interesting for the treatment of infections 
with human SARS-CoV-2 (53 proteins, Additional file 1: 
Table S1). As seen from Additional file 1: Table S1, avail-
able protein templates include 14 SARS-CoV-2, 15 SARS-
CoV, and 24 structures with origin Homo Sapiens.

Listed UniProt IDs were used to retrieve protein struc-
tures stored in PDB (1084 structures, 953 unique struc-
tures). From these sources, 151 unique ligands could be 
extracted, yielding 87 unique Murcko scaffolds. From the 
orthogonal approach—the automatic gathering of ligand 
bioactivity data from ChEMBL, PubChem, and IUPHAR 
via its webservices—3951 unique ligands with (median) 
activity value < 1  nM were identified (2555 unique 
Murcko scaffolds).

As an alternative solution for generating a list of tar-
gets associated to COVID-19, 55 human protein targets 
with the association score of at least 0.99 were retrieved 
from the Open Targets Platform (see Additional file  1: 
Table S2). Interestingly, the interleukin-6 receptor subu-
nit alpha (UniProt ID P08887) was identified as a sole 
target which was also listed at the UniProt pre-release 
web page. Such a different constitution of the input data 
between the UniProt pre-release webpage and the Open 
Targets Platform could be explained by the fact that tar-
get-disease association scores in Open Targets are based 
on a cumulative score collecting different sources of evi-
dence (such as genetic associations, somatic mutations, 
drugs available in ChEMBL, pathways & system biology, 
RNA expression data, text mining, animal models). How-
ever, in the case of COVID-19 to date only association 
scores for evidence from drugs in ChEMBL and text min-
ing are available, which restricts the highly scored targets 
to the ones already described in literature. The approach 
did not allow for prioritization of, e.g., ACE2 receptor, as 

its association score possesses a value of only 0.11 in the 
Open Targets Platform  (accessed Sept. 2020). This use 
case might illustrate the ultimate benefit when combin-
ing protein-disease association data from various inde-
pendent sources.

Listed targets originating from the Open Target plat-
form have become a source of multiple PDB structures 
(571 structures, 502 unique structures). In total, 85 
unique ligands could be extracted, (45 unique Bemis-
Murcko scaffolds). By applying integrative mining of bio-
activity data from public databases, 3207 unique ligands 
with (median) activity value < 1  nM were fetched (1710 
unique Bemis-Murcko scaffolds).

The highly ranked targets (based on the number of 
retrieved compounds) from either resource are listed in 
Table 1.

Analysis of COVID‑19 data sets
Numbers of unique compounds per individual COVID-
19 drug target that could be fetched from the different 
data sources are listed in Additional file 1: Tables S3 and 
S4. In case of targets retrieved from the UniProt pre-
release web page (Additional file 1: Table S3), PubChem 
is the predominant source of ligands (9751 unique com-
pounds). At the other end of the scale, IUPHAR provides 
19 unique compounds only. Inspecting the origin of data 
for the respective protein targets, it becomes appar-
ent that the ligand information for human SARS-CoV-2 
solely originates from PDB structures (see Additional 
file  1: Table  S3, entries ending with “_SARS2”). Nota-
bly, the majority of structures for SARS-CoV-2—such as 
PDB IDs 6W4B [40], 6Y2E, or 6Y2G for replicase poly-
protein 1a [41] were refined via molecular replacement 
based on the homology to SARS-COV. It therefore seems 

Table 1 Number of compounds available from different data sources (PDB, ChEMBL, IUPHAR, PubChem) for the five top-
ranked protein targets retrieved from both the UniProt pre-release web page and the Open Targets Platform

Target shortcut Target source PDB ChEMBL IUPHAR PubChem # Unique 
active 
compounds

PPIA_HUMAN UniProt pre-release 57 2 1 3123 3183

CATL1_HUMAN UniProt pre-release 25 38 4 946 1003

ITAL_HUMAN UniProt pre-release 13 94 2 550 564

FURIN_HUMAN UniProt pre-release 4 10 1 448 463

R1AB_CVHSA UniProt pre-release 37 187 0 47 227

GABRG2_HUMAN Open Targets Platform 152 0 677 2 831

MMP13_HUMAN Open Targets Platform 319 3 80 28 430

GABRB1_HUMAN Open Targets Platform 121 0 166 0 287

DPP4_HUMAN Open Targets Platform 140 2 29 14 185

GABRA1_HUMAN Open Targets Platform 3 4 172 2 181
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to be beneficial to integrate data from diverse sources, 
especially including PDB as a source for most up-to-date 
compound information.

Across all data sources, the largest number of ligand 
bioactivity measurements (in case of targets from Uni-
Prot pre-release web page) was gathered for human pep-
tidyl-prolyl cis–trans isomerase A (UniProt ID P62937; 
3183 unique compounds), followed by human procath-
epsin L (UniProt ID P07711; 1003 unique compounds), 
human integrin alpha-L (UniProt ID P20701; 564 unique 
compounds), human furin (UniProt ID P09958; 463 
unique compounds), SARS replicase polyprotein 1ab 
(UniProt ID P0C6X7; 227 unique compounds), human 
angiotensin-converting enzyme 2 (ACE2; UniProt ID 
Q9BYF1; 172 unique compounds), SARS replicase poly-
protein 1a (UniProt ID P0C6U8; 141 unique compounds), 
and human mothers against decapentaplegic homolog 3 
(UniProt ID P84022; 71 unique compounds). For other 
potential COVID-19 targets, only a neglectable number 
of compounds was retrieved. The ACE2 receptor is con-
sidered a relevant therapeutic target due to its interaction 
with spike glycoprotein of coronaviruses when enter-
ing host cells [42]. Replicase polyproteins 1a and 1ab are 
attractive targets to treat COVID-19 given their crucial 
role in replication and transcription of viral RNAs [43]. A 
current study has suggested a potential role of integrins 
as alternative receptors for SARS-CoV-2, as the spike gly-
coprotein contains an integrin-binding motif [44].

From the data retrieved from the Open Targets Plat-
form, a complete list of unique compounds per individ-
ual target is included in Additional file 1: Table  S4. The 
highest number of unique compounds was retrieved 
for gamma-aminobutyric acid type A receptor subunit 
gamma 2 (UniProt ID P18507; 831 unique compounds). 
In general, different gamma-aminobutyric receptor sub-
units have been ranked high in terms of the number of 
gathered compounds.

COVID‑19 case: substructure searches in external data sets
Chemical (molecular) similarity is a traditional concept 
in the field of cheminformatics [45]. It is used to iden-
tify structural analogs which might exert similar biologi-
cal action on similar biological targets [46]. Common 
cheminformatics similarity approaches are based on the 
global similarity of a molecule. For example, fingerprint-
based descriptors are used to evaluate compound simi-
larity by quantifying the presence/absence of the specific 
structural features (e.g., distinct functional groups in 
a molecule). On the contrary, molecular graph-based 
methods do capture a specific molecular topology and 
hence account for the local similarity of molecules [47]. 
Graph-based methods are therefore a robust tool to, e.g., 
distinguish between different structural isomers (such as 

n-pentane and dimethylpropane). Here, Maximum Com-
mon Substructures (MCS) of a compound collection were 
used as structural keys for detecting new potential drug 
candidates. Such substructure searches are especially 
useful for drug repositioning strategies, since they more 
likely capture the local similarity of chemical compounds 
and therefore allow for more flexibility than global simi-
larity measures (especially if there are large differences of 
the size of compounds that are being compared).

In a first instance, the Bemis-Murcko scaffold for 
identified ligands was extracted. For each target, scaf-
folds were grouped into hierarchical clusters by consid-
ering their Maximum Common Substructure (MCS) as 
a measure of similarity. Afterwards, looping in KNIME 
was applied to generate one MCS (in SMARTS) per clus-
ter (and target). For details see the Methods Section. In 
total, 257 distinct MCSs were calculated. A complete list 
of MCSs can be found in Additional file 1: File S1.

Structural queries generated in the previous step 
helped identify 7836 compounds from DrugBank and 
36,521 compounds from the CAS data  set. A complete 
list of hits found by the substructure searches is provided 
in Additional file  1: File S2 (DrugBank) and Additional 
file 1: File S3 (CAS data set). Out of those hits, 135 com-
pounds were retrieved from both DrugBank and the CAS 
data  set (Additional file  1: File S4) and were identified 
on basis of 18 distinct MCSs (Table 2). Identified MCSs 
can be combined into five separate clusters (Table 2): (1) 
Hits identified on basis of the open-chain structural keys 
(59 hits), (2) Nucleoside/nucleotide analogs (53 hits), (3) 
miscellaneous, which contain ubiquitous substructures 
(22 hits), (4) cyclopropane-containing hits (3 hits), and 
(5) adamantane derivatives (3 hits). Supplementary Fig-
ure S1 shows examples of identified hits for the most 
pronounced clusters. It has to be noted, that the searches 
do also retrieve compounds that were part of the list of 
structural queries that were used as an input. For exam-
ple, remdesivir was rediscovered as part of the substruc-
ture searches but it was also included in the original input 
file. However, for the COVID-19 use case, only less than 
2% of hits (820 out of 43,259 compounds) were already 
part of the input query file.

GLUT‑1 deficiency syndrome
Glucose transporter type 1 (GLUT1) deficiency syn-
drome is characterized by the impairment of glucose 
transport that might be attributed to mutations in  the 
SLC2A1 gene. Indeed, glucose transporter 1 (GLUT1, 
encoded by SLC2A1 gene) has been identified as a sole 
target associated with this disease (with an associa-
tion score of 1.00 in the Open Targets Platform). Glu-
cose transporter 1 (GLUT-1) is a member of the SLC2A 
transporter subfamily, being ubiquitously expressed 
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Table 2 COVID-19 case: Five clusters of enriched Maximum Common Substructures which were retrieved from DrugBank 
and the CAS data set

Cluster 
number

Maximum Common Substructure SMARTS String # Hits Targets

1 [#6](:[#7]:[#6]:[#7]-,:[#6]-,:[#6]-[#6]-[#6]):[#6] 53 PPIA_HUMAN

[#6](-,:[#6]-,:[#6]-[#6]-[#6] = [#6]-[#6])-,:[#6]-,:[#6] 5 PPIA_HUMAN

[#6]:,-[#6]-,:[#7]-,:[#6]:,-[#6]:,-[#6]:,-[#6]:[#6]:[#6] 1 PPIA_HUMAN

2 [#6]1:[#7]:[#6]:[#7]:[#6]2:[#6]:1:[#7]:[#6]:[#7]:2-[#6]1-[#8]-[#6]-[#6]-[#6]-1 36 R1AB_SARS2

[#7]1:[#6]:[#7]:[#6]2:[#6]:1:[#7]:[#6]:[#7]:[#6]:2 11 PPIA_HUMAN

[#6]1:[#7]:[#6]:[#7](-[#6]2-[#8]-[#6]-[#6]-[#6]-2):[#7]:1 3 PPIA_HUMAN

[#6]1:[#7]:[#6]:[#7]:[#6](:[#6]:1):[#7](:[#6])-[#6]1-[#8]-[#6]-[#6]-[#6]-1 2 PPIA_HUMAN

[#6]1(-[#6]2:[#6]:[#6]:[#6]3:[#6]:[#7]:[#6]:[#7]:[#7]:2:3)-[#8]-[#6]-[#6]-[#6]-
1

1 R1AB_SARS2
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Table 2 (continued)

Cluster 
number

Maximum Common Substructure SMARTS String # Hits Targets

3 [#7]1-[#6]-[#6]-[#7]-[#6]-[#6]-1 8 R1AB_SARS2

[#6]-:[#6]-:[#6](-[#6](= [#8])-[#7]-[#6](:-[#6]:-[#6]):-[#6]:-[#6])-:[#6]-:[#6] 4 R1AB_SARS2

[#6]1:[#6]:[#6]:[#6]2:[#6](:[#6]:1)-[#8]-[#6]-[#8]-2 3 R1AB_SARS2

[#6]1:[#7]:[#6]:[#6]:[#6]:[#6]:1 3 PPIA_HUMAN

[#6](-[#6]-[#6]1-[#6]-[#6]-[#7]-[#6]-1 = [#8])-[#7]-[#6](= [#8])-[#6] 2 R1A_SARS, R1AB_SARS

[#6](-[#6]-[#6]1-[#6]-[#6]-[#7]-[#6]-1 = [#8])-[#7]-[#6](= [#8])-[#6]-[#6]-
[#6]1:[#6]:[#6]:[#6]:[#6]:[#6]:1

2 R1A_SARS, R1AB_SARS

4 [#6](-[#7]-[#6](= [#8])-[#6]1-[#6](-[#6]-[#6]-[#7]-1-[#6](= [#8])-[#6]-[#7]-
[#6] = [#8])-[#6])-[#6]-[#6](= [#8])-[#7]-[#6]1-[#6]-[#6]-1

1 R1AB_SARS2

[#6](-[#7]-[#6](= [#8])-[#6]1-[#6]2-[#6]-[#6]-[#6]-[#6]-2-[#6]-[#7]-1)-[#6]-
[#6](= [#8])-[#7]-[#6]1-[#6]-[#6]-1

1 R1AB_SARS2

[#7]1-[#6]-[#6]2-[#6](-[#6]-1-[#6](= [#8])-[#7]-[#6]-[#6]-[#6]1-[#6]-[#6]-
[#6]-1)-[#6]-2

1 R1AB_SARS2

5 [#6]12-[#6]-[#6]3-[#6]-[#6](-[#6]-1)-[#6]-[#6](-[#6]-2)-[#6]-3 3 PPIA_HUMAN
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in different tissues, including fetal tissues, mammary 
glands, placenta, brain, or epithelial cells [48]. GLUT-1 
is an essential transmembrane protein for basal glucose 
uptake.

Symptoms of GLUT1 deficiency syndrome are pre-
dominantly seizures, epilepsy and cognitive deficit. 
GLUT-1 deficiency syndrome is treatable via ketogenic 
diet [49]. Furthermore, several drugs (e.g., Triheptanoin, 
DrugBank ID DB11677) have been tested in clinical trials 
for their efficacy. Up to now, no drug candidate has been 
found to become an effective treatment for GLUT-1 defi-
ciency syndrome. This neurologic disorder belongs to the 
group of rare diseases and therefore represents an inter-
esting case study for our drug repurposing pipeline.

Retrieval of GLUT‑1 data
By mapping GLUT-1 retrieved from the Open Target 
Platform to UniProt IDs, protein structures stored in 
PDB (4 unique structures) have been fetched. From these 
sources, 4 unique ligands could be extracted, yielding 3 

unique Bemis-Murcko scaffolds. Integrative mining of 
bioactivity data delivered 653 unique compounds from 
ChEMBL (394 unique Murcko scaffolds), 243 unique 
compounds from PubChem (115 unique Murcko scaf-
folds), and 2 unique compounds from IUPHAR (2 unique 
Murcko scaffolds) with activity < 1 μM. The threshold for 
activity label assignment was adopted due to the specific 
activity range characteristic for membrane transporters 
[50, 51].

GLUT‑1 case: substructure searches in DrugBank
Hierarchical clustering of available Murcko scaffolds 
delivered 94 fragments used for substructure searches in 
DrugBank. 18 different fragments (depicted in Fig.  10) 
have been enriched in 539 unique compounds retrieved 
from DrugBank (Additional file  1: File S5). 14% of the 
retrieved hits (28 out of 200 compounds in total) were 
already part of the input query file and were therefore 
rediscovered as part of the substructure searches.

Table 2 (continued)
The structural fragment, SMARTS string, the number of identified hits, and the protein target(s) for which these hits have been found, are given

Fig. 10 Enriched structural queries retrieved for the target GLUT-1. The numbers in yellow circles indicate the number of identified hits per given 
structural query
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It appears interesting that most of the identified hits 
do contain a quinoline (n = 247 hits) or quinazoline 
(n = 125) scaffold. These heterocyclic compounds are 
broadly pharmacologically active [51, 52]. Interestingly, 
quinoline/quinazoline analogs have been inspected to 
become promising anticonvulsant agents, as indicated in 
different studies [53–55]. Since 90% of all patients with 
this syndrome also develop frequent seizures (https ://
medli neplu s.gov/genet ics/condi tion/glut1 -defic iency 
-syndr ome/) these classes of compounds could be inter-
esting for future investigations on GLUT-1 deficiency 
syndrome.

Experiences when using the workflow in the classroom
The workflow described herein has been used in the 
summer semester 2020 (April 20–24) in the framework 
of the course “Experimental Methods in Drug Discov-
ery and Preclinical Drug Development’’ which is part of 
the English-language Master’s Degree Program Drug 
Discovery and Development at the University of Vienna 
(https ://drug-dd.univi e.ac.at/). Due to the requirements 
of social distancing caused by the COVID-19 pandemic, 
this course was conceptualized as a virtual classroom. 
The students have attended online sessions, in which the 
authors of this manuscript have explained the various 
steps of the workflow. Tutorials and the different parts of 
the workflow (available at https ://githu b.com/Alzbe taTue 
rkova /Drug-Repur posin g-in-KNIME ) have been handed 
out daily in order to not overwhelm the students. On the 
last day of this 5-days course, each student had to select 
one of the hits retrieved by the substructure search and 
dedicate some time to literature searches. Finally, every 
student submitted a report summarizing what is known 
about the selected compound and its potential usefulness 
for COVID-19 treatment (according to what was known 
in April 2020). Based on the feedback that was provided 
by students after the course was finalized, the pace of 
teaching was evenly distributed over the course schedule. 
The only exception was the step when bioactivity data 
was retrieved from ChEMBL and PubChem on day 3 of 
the course. Specifically, some students found it difficult to 
grasp the essence of the application and execution of the 
recursive and/or nested loops. In conclusion, the course 
did provide insights into a variety of KNIME nodes, 
which can be exploited further for future drug discovery 
applications.

Summary and conclusions
In this educational paper, we are describing a semi-auto-
matic KNIME workflow for ligand-based in silico drug 
repurposing. The consecutive data mining steps include 
integration, curation, and analysis of bioassay data from 
the open domain for specific targets of interest, as well 

as the generation of structural queries for automated 
substructure searches in collections of approved, with-
drawn, and/or experimental drugs. Targeted access of 
data through APIs has been implemented at several 
stages of the KNME workflow. Incorporation of API 
calls into KNIME allows repeating the whole procedure 
in an automated fashion, e.g., when new data is becom-
ing available. As a consequence of the current COVID-
19 pandemic, the cheminformatics analyses performed 
as a use case herein was tailored to ligand and protein 
data currently available for drug repurposing strategies in 
the framework of this life-threatening disease. As a side 
effect of analyzing the data, we are providing insights into 
enriched chemical substructures for proposed drug tar-
gets of SARS-CoV-2. In addition, the workflow has been 
used to detect data coverage and enriched clusters for 
the treatment of a rare disease, GLUT-1 deficiency syn-
drome. The material has been used successfully for teach-
ing undergraduate students the use of programmatic data 
access via KNIME workflows and subsequent data analy-
sis steps. The workflows, tutorials, and the information 
gained on COVID-19 and GLUT-1 data are freely avail-
able to the scientific community for follow-up studies or 
may be tailored to specific needs of other use cases (avail-
able at https ://githu b.com/Alzbe taTue rkova /Drug-Repur 
posin g-in-KNIME ).
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