
Phylogenetic Evidence for Lateral Gene Transfer in the
Intestine of Marine Iguanas
David M. Nelson1,2*, Isaac K. O. Cann2,3,4, Eric Altermann5, Roderick I. Mackie2,3*

1 Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland, United States of America, 2 Institute for Genomic Biology,

University of Illinois, Urbana, Illinois, United States of America, 3 Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America,

4 Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America, 5 AgResearch Limited, Grasslands Research Centre, Palmerston North, New

Zealand

Abstract

Background: Lateral gene transfer (LGT) appears to promote genotypic and phenotypic variation in microbial communities
in a range of environments, including the mammalian intestine. However, the extent and mechanisms of LGT in intestinal
microbial communities of non-mammalian hosts remains poorly understood.

Methodology/Principal Findings: We sequenced two fosmid inserts obtained from a genomic DNA library derived from an
agar-degrading enrichment culture of marine iguana fecal material. The inserts harbored 16S rRNA genes that place the
organism from which they originated within Clostridium cluster IV, a well documented group that habitats the mammalian
intestinal tract. However, sequence analysis indicates that 52% of the protein-coding genes on the fosmids have top BLASTX
hits to bacterial species that are not members of Clostridium cluster IV, and phylogenetic analysis suggests that at least 10 of
44 coding genes on the fosmids may have been transferred from Clostridium cluster XIVa to cluster IV. The fosmids encoded
four transposase-encoding genes and an integrase-encoding gene, suggesting their involvement in LGT. In addition, several
coding genes likely involved in sugar transport were probably acquired through LGT.

Conclusion: Our phylogenetic evidence suggests that LGT may be common among phylogenetically distinct members of
the phylum Firmicutes inhabiting the intestinal tract of marine iguanas.
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Introduction

There is no other quarter of the world, where this order (reptiles), replaces

herbivorous mammalia in so extraordinary a manner. –Darwin [1]

During his visit to the Galápagos archipelago in 1835 Charles

Darwin encountered several species of large herbivorous reptiles,

and he made the intriguing observation that, with the exception of

the Galápagos islands, there are few places on earth today where

reptiles are the most abundant herbivores. The success of

herbivorous reptiles on the Galápagos is, in part, related to their

varied morphological, physiological, and behavioral adaptations

[2,3]. In addition, their effective utilization of plant material is

aided by symbiotic relationships with intestinal microorganisms

that hydrolyze and ferment the otherwise indigestible plant

polymers [4], which is consistent with the known role of bacteria

and protozoa in aiding digestion in herbivorous mammals [5] and

insects [6].

In order to compete for resources and ultimately, to allow their

host to survive and reproduce, intestinal microorganisms must

also adapt. An emerging theme in genomic biology suggests that

lateral gene transfer (LGT) is key for promoting genotypic and

phenotypic variation in microorganisms [7], including those from

intestinal environments [8,9,10,11]. For example, Ricard et al.

(2006) showed that ,4% of genes in the genomes of ciliates

common in the rumen were likely obtained from bacteria and

archaea [11]. The majority of these genes were involved with

carbohydrate catabolism, suggesting that their acquisition helped

ciliates to successfully colonize and adapt to the rumen

environment. Although the extent and control of LGT among

microorganisms in the intestine of non-mammalian hosts, such as

reptiles, remains unexplored, 16S rDNA clone libraries suggest

that their gut bacterial communities differ in composition from

those of herbivorous mammals. Firmicutes and specifically several

phylogenetically defined Clostridium clusters (I, III, IV, and XIVa)

are the predominant phyla in the intestine of marine iguanas

(Amblyrynchus cristatus; Fig. 1) [4], land iguanas (Conolophus spp.),

and giant tortoises (Testudo elephantopus) (Mackie, unpublished

data). In contrast, herbivorous mammals also contain an

abundance of diverse representatives of the phylum Bacteroidetes

[12]. Thus if LGT is an important process in the intestine of
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herbivorous reptiles, it likely occurs among non-Bacteroidetes

species.

The marine iguana, which is endemic to the Galápagos Islands,

is unique among herbivorous reptiles because its diet consists solely

of soft macrophytic algae. A previous study of Orkney sheep

consuming a diet of seaweed indicated that such a diet selected for

the proliferation of Candidatus Oscillospira guilliermondii, an

uncultivated, but morphologically conspicuous, member of

Clostridium cluster IV [13]. More recently, a closely related

member of Clostridium cluster IV, Oscillibacter valericigenes, was

isolated from the alimentary canal of clams that feed on marine

plankton [14]. However, the ecology and evolution of Oscillospira-

and Oscillibacter-like organisms remains poorly understood. To

select for gut microbes capable of degrading agar (the primary

component of the algal cell walls) we established an anaerobic

enrichment culture from marine iguana fecal material using agar

as a sole carbon source. We then created a fosmid library from the

enrichment culture to obtain genomic information from organisms

Figure 1. Phylogenetic relationships of 16S rRNA gene sequences among the fosmids, clone library, and Clostridium clusters. Clone
library sequences start with ‘‘M.’’ The numbers in parentheses following some of the marine iguana sequences indicate the number of times that a
particular sequence was obtained. Only representatives of the major Clostridium clusters, and limited representatives of the Bacteroidetes and
Coriobacteriales, are shown. The tree was inferred using the neighbor joining approach. The numbers at the nodes represent bootstrap values. The
bar represents 0.02 substitutions per nucleotide position. The outgroup is Aquifex pyrophilus.
doi:10.1371/journal.pone.0010785.g001
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actively involved in agar-degradation in the hindgut of marine

iguanas. We hypothesized that members of Clostridium cluster IV

would be active in the culture, given their previously demonstrated

abundance in the gastrointestinal tracts of marine animals. In the

course of screening the library we discovered two fosmids with 16S

rRNA gene sequence similar to those of Oscillibacter valericigenes, and

an initial examination of the sequences using a BLAST-based

approach suggested that some of the genes on the fosmids may

have been subject to LGT. Here we report these sequence data

and use a phylogenetic approach to assess the extent, probable

direction, and mechanisms of LGT among these members of

Clostridium cluster IV.

Results and Discussion

The fosmid library that was constructed contained ,2,000

clones. The fosmids selected for sequencing, named 7–14 and 7–

25, were ,35.3 and ,29.5 kb in length, respectively. Each fosmid

contained an RNA operon consisting of 16S rRNA, tRNA, and

23S rRNA genes (Table 1). The 16S and 23S rDNA tags on the

fosmids were almost identical to each other (99.8% and 99.9%

sequence similarity, respectively), and codon usage patterns on the

fosmids were significantly correlated (r = 0.70, p,0.001), which

indicates that the fosmids likely derive from the same species.

Phylogenetic analysis, based on 16S rDNA, indicated that the

fosmids were derived from members of Clostridium cluster IV with

,97.3% 16S rDNA similarity to their nearest cultivated relative,

Oscillibacter valericigenes (Fig. 1). The nearest cultivated relative with

a complete genome sequence available in a public database is

Bacteroides capillosus, which has now been reclassified as Pseudo-

flavonifractor capillosus, a member of Clostridium cluster IV, based on

biochemical properties, DNA G+C content, DNA-DNA hybrid-

ization and phylogenetic position [15].

Oscillibacter 16S rRNA gene sequences were not recovered from

the small clone library created from genomic DNA extracted from

marine iguana fecal material. Nevertheless, we successfully

amplified 16S rDNA sequences using primers unique to the fosmids

from 4/5 fecal samples from 5 different marine iguanas (Fig. S1),

confirming the presence of the bacteria that the fosmids represent in

the original fecal material. To ensure that the primers amplified the

16S rRNA gene sequences identified in the fosmid sequences, we

extracted DNA and then cloned and sequenced 16S rDNA from

one sample (sample 24). As anticipated, the top BLASTN hits of two

clones that were sequenced (GenBank accession numbers

GQ243725 and GQ243726) were fosmids 7–14 and 7–25. These

results confirm that the organisms that the fosmids represent are

present in marine iguana fecal material and are commonly found in

the intestinal tracts of marine iguanas (Fig. S1).

Consistent with the fact that their 16S rRNA genes indicate that

the fosmids are members of Clostridium cluster IV (Fig. 1), the most

dominant flare in a BLAST Heat Map of the coding genes was

observed compared to the genus Clostridium. However, zones of

relatively conserved sequences (e-values,1e-80) are also evident in

comparison with other genera (Fig. 2a), and a concatenated

BLAST Heat Map, created using custom databases of Clostridium

clusters, displays flares with members outside of Clostridium cluster

IV (Fig. 2b). In addition, over half (52%) of the protein-coding

genes on the fosmids have top BLASTX hits to bacteria that are

not members of Clostridium cluster IV (Table 1). These results

contrast with phylogenetic relationships based on 16S rRNA gene

sequences, and they suggest potential exchange of genetic material

between phylogenetically distinct groups of bacteria.

To more rigorously assess which genes may have been subject to

LGT we used phylogenetic analysis, in conjunction with

parsimony analysis [9]. Assessments of LGT using neighbor-

joining (NJ) and approximately maximum-likelihood (ML) trees

were congruent for all but four of the coding genes. In two cases

(CDS 11 on fosmid 7–14 and CDS 18 on fosmid 7–25, Figs. S2

and S3, respectively) the NJ trees could not resolve the occurrence

of LGT and the ML trees suggested that LGT did not occur

(Table 1). For one coding gene (CDS 29 on fosmid 7–14, Fig. S2)

the NJ tree suggested LGT, whereas the ML tree indicated no

LGT (Table 1). Bootstrap support for the NJ tree was low (61) and

thus this gene was unlikely to have experienced recent LGT. For

one coding gene (CDS 34 on fosmid 7–14, Fig. 2) LGT was

unresolved with the NJ approach, whereas the ML approach

suggested the occurrence of LGT. Thus we conservatively estimate

that at least 10 of 44 coding genes on the fosmids (Table 1, Figs. S2

and S3) had been subject to LGT, which confirms that LGT is an

important process in the evolution of intestinal microorganisms in

marine iguanas. Although the precise proportion of genes subject

to LGT on fosmids 7–14 and 7–25 may differ from the extent of

LGT in the genome from which the fosmids derive, these results

nevertheless indicate the occurrence of LGT. For all cases in

which the direction of LGT could be resolved (i.e. 7 of 10 cases),

the transfers likely occurred from Clostridium cluster XIVa to

cluster IV. Representatives of Clostridium clusters XIVa and IV are

predominated by intestinal bacteria and are common in marine

iguana fecal material (Fig. 1). Thus our finding of the acquisition of

genetic material by organisms in Clostridium cluster IV from those

in cluster XIVa is reasonable.

The presumed split of Clostridium clusters XIVa and IV cannot

explain the occurrence of genes from Clostridium cluster XIVa

within the fosmids, because the phylogenetic results indicate that

the gene transfers likely occurred after these organisms diverged.

When phylogenetic analysis based on the NJ and ML trees

indicated that a particular gene was likely not subject to LGT, the

top BLASTX hit was from Clostridium cluster IV, whereas when

phylogenetic analysis indicated the gene was subject to LGT the

top BLAST hit was not from Clostridium cluster IV (Table 1). It is

possible that some coding genes for which the occurrence of LGT

could not be resolved using phylogenetic analysis were also subject

to LGT as indicted by their lack of top BLASTX hits to members

of Clostridium cluster IV (Table 1). These results suggest an

occurrence of the exchange of genetic material between

phylogenetically distinct groups of intestinal microbes in herbiv-

orous reptiles, consistent with recent evidence for the occurrence

of LGT among microorganisms in the intestine of mammalian

herbivores [9,11,16], as well as in marine water and sediment

[7,17].

In addition, our sequence analysis indicated a total of four

transposase-encoding genes and an integrase-encoding gene on the

fosmids, which provides circumstantial evidence of a potential

mechanism for facilitation of LGT (Table 1). Three of the

transposase-encoding genes are native to Clostridium cluster IV (not

subject to LGT), and two of these appear to have interrupted the

RNA operons on their respective fosmids. One transposase-

encoding gene and an integrase-encoding gene appear to have

originated from Clostridium cluster XIVa, suggesting their potential

role in transferring genes specific to Clostridium cluster XIVa into

the genomes of members of cluster IV.

Together, these results indicate the exchange of genetic material

between phylogenetically distinct Clostridia found within the

intestine of the marine iguana that are potentially involved in agar

degradation and are the subject of ongoing research. Some of the

transferred genes may have functions particularly valuable for

enabling bacteria to colonize and survive in the marine iguana

intestine. For example, a primary role of bacteria in the intestine of

LGT in Marine Iguana Guts
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the marine iguana is to degrade algal polysaccharides (e.g. agar

and agaropectin), found in the cell walls of macrophytic algae, into

simple sugars. These sugars may then be transported into bacterial

cells. The acquisition of new types of transporters through LGT

may increase the types of sugars from which microorganisms may

obtain energy, and Oscillospira has been shown to rapidly associate

with freshly ingested forage [18]. Although the precise timing of

the LGT events revealed on the fosmids is unclear, there is

evidence that some transfers may have occurred recently in

evolutionary history. For example, the ABC transporters on

fosmid 7–25 have synteny with, and high nucleotide-level

sequence similarity to, sequences found in Clostridium bolteae

(Table 1 and Fig. 1), suggesting little divergence and a relatively

recent transfer event. Indeed, a recent review concludes that

transfers of complex protein-encoding genes, many of which are

located on operons and gene clusters, could be very common [19].

Conversely, other genes subject to LGT have less nucleotide-

level sequence similarity, suggesting more ancient transfers

(Table 1). Thus LGT appears to be a means for microorganisms

in the intestine of herbivorous reptiles to acquire new functions

and adapt to changing environmental conditions. These results,

combined with other recent studies, indicate that the high

microbial density and diversity of the rumen and other intestinal

ecosystems create an environment conducive to LGT [8].

Materials and Methods

Fresh fecal material from 5 individual marine iguanas was

collected and stored at 220uC. All procedures were non-invasive

and conducted in accordance with guidelines from the American

Society of Icthyologists and Herpetologists, approved by the

Charles Darwin Research Station and covered under University of

Illinois Urbana-Champaign LACAC #03041 and Princeton

University IACUC #1428. To assess overall bacterial community

composition in feces a 16S rDNA clone library was created from

pooled genomic DNA. DNA was extracted using the UltraClean

Soil DNA kit (MO BIO Laboratories, Carlsbad, CA). The primers

used for PCR amplification of DNA from the pooled fecal samples

were 27f and 1525r [20]. Amplicons were directly cloned into the

PCRII-TOPO cloning vector (Invitrogen, Carlsbad, CA), and

recombinant plasmids were extracted using the WizardH Plus

Minipreps DNA Purification System (Promega, Madison, WI).

Sequencing was performed by the W.M. Keck Center for

Comparative and Functional Genomics at the University of

Illinois Urbana-Champaign.

An enrichment culture from the fecal material was created using

agar as the sole carbon source in anaerobic medium [21]. The

culture actively degraded agar as evidenced by rapid liquefaction.

However, repeated attempts to isolate pure cultures of organisms

capable of agar-degradation failed. A fosmid library was created

from the fecal material using previously described methods [22].

The fosmid library was screened using PCR for those harboring

inserts with a phylogenetic tag, the 16S rRNA gene, from

Clostridium cluster IV [23], a heterogeneous group that includes

non-clostridial species and is abundant in the intestine of the

marine iguana (Fig. 1). The complete sequences of two of these

fosmids, named 7–14 and 7–25, were obtained using Sanger

sequencing and a ‘‘primer walking’’ approach. The sequences of

fosmids 7–14 and 7–25 (GenBank accession numbers FJ625861

and FJ625862, respectively) were analyzed in the SEED

Annotation Engine in RAST (http://rast.nmpdr.org/, Version

2.0) in order to identify genes and determine their predicted

function [24]. Putative tRNA genes were folded using tRNA-scan

[25] to confirm their identity.
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The 16S rRNA gene sequences from the fosmids, the clone

library, and representatives of the major Clostridium clusters, and

limited representatives of the Bacteroidetes and Coriobacteriales

were aligned using CLUSTAL W [26]. Evolutionary distances

were calculated using the method of Kimura [27], and

phylogenetic trees were inferred using the NJ [28] and maximum

parsimony [29] methods in the MEGA 3.1 software package [30].

An approximately maximum-likelihood (ML) phylogenetic tree

was also inferred using FastTree 2.1.2 [31]. All trees were

concordant with each other. We also aligned the sequences using a

core set of 16S rRNA gene sequences (i.e. http://greengenes.lbl.

gov) and the resulting phylogenetic trees were concordant with

those derived from sequences that were aligned using CLUSTAL

W. To verify the presence of the 16S rDNA sequences of fosmids

7–14 and 7–25 in marine iguana fecal samples we randomly

selected and extracted genomic DNA from 5 other samples of

fresh fecal material. Primers unique to the 16S rDNA sequence of

the fosmids (99f, 59-AATGTTTAGTGGCGGACTGG-39, and

1503r, 59-ACCTTCCGATACGGCTACCT-39) were designed

and used to amplify the genomic DNA.

NJ and approximately ML phylogenetic trees of amino acid

sequences from fosmids 7–14 and 7–25 were used to assess LGT,

as described by Xu et al. [9]. Briefly, genes were marked as

‘‘novel’’ if they had e-values.1026. If e-values were,1026 we

started at the query sequence and then stepped back in the tree

until a bootstrap-supported node (.60) that contained sequences

from a different species was found. If the node had decedents only

from Clostridium cluster IV the gene was marked as ‘‘no LGT.’’ If

the node had decedents from within and outside of Clostridium

cluster IV the gene was marked as ‘‘unresolved.’’ If the node had

Figure 2. BLASTP result distribution across fosmids 7–14 and 7–25. a) The X-axis indicates genera with at least 10 BLASTP hits throughout
the ORFeome of the analyzed fosmids. Using a previously published approach [33] the organism distribution on a genus level was identified for each
coding gene, e-values were grouped into ranges, and threshold levels were defined for minimum overall frequency. Genera are phylogenetically
sorted. The Y-axis indicates respective e-value ranges. The frequency of hits for each genus in each e-value range (log scale) is shown by color coding
and corresponding values are indicated in the figure. All BLASTP hits per genus per ORF were accepted. b) Same as a), except that custom databases
of species from phylogenetically defined Clostridium clusters were used.
doi:10.1371/journal.pone.0010785.g002
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decedents only from outside of Clostridium cluster IV the gene was

marked as laterally transferred. Genes marked as laterally

transferred were then subject to Fitch parsimony analysis [32] in

order to determine the ancestral state of each node and the

probable direction of transfer, when possible.

Supporting Information

Figure S1 PCR assessment of the presence of fosmid 7–14 and

7–25 16S rDNA sequences in marine iguana fecal samples from

five different marine iguanas (named 24, 10, 18, 26, and 19).

Arrows point to the 1.4 and 1.5 kb markers, between which is the

expected PCR product size. Lanes 1 and 10 are molecular weight

ladders (M). Lanes 2–6 represent the samples. A faint band of the

expected size is present in sample 10, whereas no bad is visible in

sample 18. Lanes 7–8 are positive controls (DNA from fosmids 7–

14 and 7–25), and lane 9 is negative control (2).

Found at: doi:10.1371/journal.pone.0010785.s001 (0.15 MB

PDF)

Figure S2 Neighbor-joining phylogenetic trees of amino acid

sequences from fosmid 7–14 that were used to assess LGT, as

described in the text. Sequences in bold represent those from

Clostridium cluster IV. For CDS 11, 29, and 34 the conclusion of

LGT based upon the neighbor-joining trees differed from that

based upon maximum likelihood trees (as listed in Table 1). Thus

for these CDSs we also show the maximum likelihood trees.

Found at: doi:10.1371/journal.pone.0010785.s002 (4.49 MB

PDF)

Figure S3 Neighbor-joining phylogenetic trees of amino acid

sequences from fosmid 7–25 that were used to assess LGT, as

described in the text. Sequences in bold represent those from

Clostridium cluster IV. For CDS 18 the conclusion of LGT based

upon the neighbor-joining tree differed from that based upon the

maximum likelihood tree (as listed in Table 1). Thus for this CDS

we also show the maximum likelihood tree.

Found at: doi:10.1371/journal.pone.0010785.s003 (3.02 MB

PDF)
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