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Simple Summary: Immunotherapies harness the hosts’ immune system to combat cancer and are
currently used to treat many tumor types. Immunotherapies mainly target T cells, the major immune
population responsible for tumor-cell killing. One of the reasons that T cells may not respond to
immunotherapeutic treatment is that they are in a dysfunctional state termed senescence. This review
seeks to describe the molecular mechanisms that characterize and induce T cell senescence within the
context of the tumor microenvironment and how this might affect treatment responses.

Abstract: The inability of tumor-infiltrating T lymphocytes to eradicate tumor cells within the
tumor microenvironment (TME) is a major obstacle to successful immunotherapeutic treatments.
Understanding the immunosuppressive mechanisms within the TME is paramount to overcoming
these obstacles. T cell senescence is a critical dysfunctional state present in the TME that differs
from T cell exhaustion currently targeted by many immunotherapies. This review focuses on the
physiological, molecular, metabolic and cellular processes that drive CD8+ T cell senescence. Evidence
showing that senescent T cells hinder immunotherapies is discussed, as are therapeutic options to
reverse T cell senescence.
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1. Introduction

Harnessing the immune system to treat solid and hematological malignancies has ushered a novel
therapeutic era. The tumor micro-environment (TME) is complex, with many targeting opportunities
due to the signaling networks and cross-talk between immune, tumor and stromal cells. However,
the modulation of cytotoxic antigen-activated CD8+ T (Tc) cells has been at the forefront of the
immunotherapy revolution [1]. The antigen-specific process requires the engagement of the T cell
antigen receptor (TCR)-CD3 complex on Tc cells with a major histocompatibility complex (MHC)
class I-bound tumor antigen-derived peptide as well as co-stimulatory signals. Responsible for the
direct tumor cell killing through granule exocytosis [2], Tc cells are integral in eradicating tumors and
are currently targeted by many approved immunotherapies. The monoclonal antibody checkpoint
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inhibitors such as nivolumab [3] are currently used to treat solid tumors, and they target the inhibitory
programmed cell death 1 (PD-1) [4] receptor expressed on T cells. In the adoptive T cell therapy
field, a patient’s T cells are expanded ex vivo, transduced with synthetic chimeric antigen receptors
(CAR) targeting a tumor specific target antigen such as CD19, and transferred back to lymphodepleted
patients. Currently approved CAR-T cell therapies include the second generation anti-CD19 CAR T-cell
products axicabtagene ciloleucel and tisagenlecleucel for the treatment of B-cell malignancies [5,6].
Many more T cell based therapies are currently in the experimental phase of pre-clinical or clinical
testing [7]. While immunotherapies have made remarkable progress in increasing the survival of
some patients, low response rates, toxicities, as well as lack of available bio-markers in predicting
response, make the successful implementation of these therapies challenging. A major obstacle is the
inability to effectively target Tc cells. This can occur through Tc intrinsic or acquired resistance helped
by dysfunctional states present within the immunosuppressive networks [8] of the TME: exhaustion
and senescence. While T cell exhaustion has been extensively studied and targeted, T cell senescence,
especially within the context of anti-tumor immunity, is an emerging concept in the field of T cell
dysfunction. This review focuses on senescence in the CD8+ T cell compartment. It aims to explore the
different mechanisms that induce senescence in the context of TME, ways in which T cell senescence
affects responses to immunotherapies and how T cell senescence can be therapeutically reversed.

2. Exhaustion and Senescence

Both exhausted and senescent T cells have been found to accumulate during chronic viral
infections [9,10] and cancers [11,12]. Exhaustion and senescence are both considered dysfunctional
states. They are characterized by dampened granzyme B (GzmB)—mediated effector function
and impaired proliferation [13]. However, they are defined by distinct surface marker, cytokine,
transcriptional and metabolic profiles (Table 1).

Table 1. Characteristics of senescent and exhausted T cells.

Senescent T Cells Exhausted T Cells

Stimulus Repetitive Ag Stimulation, Stress Continuous Ag Stimulation

Cytokine Secretion ↑ IFN–γ, IL-6, IL-8, IL-10, TNF, TGF-β ↓ IFN-γ, IL-2, TNF

Surface Markers ↑ CD57, Tim-3, TGIT, CD45RA, KLRG1, ↓
CD28, CD27

↑ PD-1, LAG-3, CD 160, 2B4, CTLA-4,
Tim-3, TGIT

Metabolism ↑ Glycolysis, ↓Mitochondrial Biogenesis ↓ Glycolysis, ↓Mitochondrial Biogenesis

Transcriptional T-bet Eomes, NFAT, TOX, T-bet, Nr4a

Effector Functions ↓ Granzyme B, ↓Perforin ↓ Granzyme B

Phenotypic Characteristic ↓ Proliferative Capacity, ↑ DNA Damage
Molecules, ↑ SA-β-gal activity ↓ Proliferative Capacity, Cell Cycle Arrest

↓ Decrease, ↑ Increase.

When Tc cells are exhausted through excessive and continuous stimulation, they upregulate
inhibitory cell surface receptors such as PD-1 and LAG-3 and possess a decreased capacity to secrete
interleukin 2 (IL-2) and interferon gamma (IFN-γ) [14] (Figure 1). The exhausted transcriptional Tc

profile is very context dependent and is driven, during varying stages of exhaustion, by nuclear factor
of activated T cell (NFAT), nuclear receptor Nr4a, thymocyte selection-associated HMG box (TOX),
eomesodermin (Eomes) and T-Bet [15]. While exhausted and senescent Tc cells share characteristics
such as the upregulation of surface markers Tim-3 and tyrosine-based inhibitory motif (ITIM) domain
(TIGIT), senescent Tc cells also upregulate CD57 and CD45RA (Figure 1). The cytokine secretory profile
of senescent Tc cells sharply contrasts that of exhausted T cells (Figure 1). Senescent Tc cells secrete high
levels of inflammatory cytokines such as IL-2, IL-6, IL-8, TNF, IFN-γ and the immunosuppressive IL-10
and TGF-β (Figure 1), a program known as senescence-associated secretory phenotype (SASP). This in
turn has critical consequences not only for T cell themselves, but for other immune cells within the
TME milieu, including antigen presenting cells (APCs) such as dendritic cells (DCs), tumor-associated
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macrophages (TAMs) and myeloid-derived suppressor cells (MDSC). Transcriptional programs in
senescent Tcs have been shown to be mediated by T-bet [16] but otherwise are poorly characterized.
Senescence-inducing stimuli include exposure to DNA damaging agents, stress signals and repetitive
stimulation linked but not limited to the ageing process. It should be pointed out that dysfunctional T
cell states other than exhaustion and senescence such as anergy have also been described. Anergic
T cells are hypo-responsive, produce low levels of IL-2 and generally have little effector function.
T cell anergy is caused by insufficient CD28 dependent co-stimulation of the TCR, but the surface
markers of anergic T cells are poorly characterized [17]. Insufficient CD28 stimulation within the
TME combined with tumor cell expressing factors, such as PD-L1 and CD95, is also closely linked
to deletion of effector T cells through a process known as tolerance. Tolerance is exacerbated by
TGF-β and IL-10 [18]. Taken together, senescent, anergic and exhausted Tc cells often co-exist in
the TME or circulation and simultaneously exert immunosuppressive effects [11,19]. The current
limitations of check-point inhibitors suggest that targeting multiple dysfunctional Tc cell states would
be therapeutically beneficial. A deeper understanding of the mechanisms and functional consequences
of T cell senescence are urgently needed.
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Figure 1. Surface phenotypic, metabolic and transcriptional differences between CD8+ dysfunctional
senescent and exhaustive states. Characteristics common to both dysfunctional states are shown the
in the middle, purple overlapping section. While both T cell state exhibit decreased effector function,
senescent T cells have a very distinct senescence-associated secretory phenotype (SASP) with increased
cytokine production of IFN-γ, IL-6, IL-8, IL-10, TNF and TGF-β. In contrast. exhausted T cells are
characterized by decreased IL-2, TNF and IFN-γ production. While some surface markers such as
Tim-3 and TGIT are common to both dysfunctional T cell states, there is otherwise quite a distinct
pattern of expression. Ag = antigen.

3. Mechanisms of T Cell Senescence Induction

Senescent T cells have been found in primary and metastatic solid tumor sites [19–23] as well as
hematological malignancies [11,24]. Tc senescence can be classified into two major cellular mechanisms
which are however not entirely separated from one another: premature and replicative senescence.
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Premature senescence is caused by external factors such as stress within the TME incurred by (i)
effects of immune and tumor cells, (ii) TME metabolic changes, (iii) and drug and radiation therapy,
all of which are closely interlinked and not necessarily independently occurring events (Figure 2).
Replicative senescence is linked to age-related changes and to telomeric shortening. T cell anergy on
the other hand, is closely linked to peripheral tolerance.
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Figure 2. T cell senescence can occur via multiple mechanisms within the tumor microenvironment.
Tregs, through glucose metabolic competition and transfer of cAMP produced by tumors, can induce
CD8+ T cell senescence, as can other metabolites produced by tumor cells, such as adenosine. Repeated
antigen stimulation and external factors such as chemotherapeutic and radiation therapy also induce
premature senescence. A key molecular pathway involved in CD8+ T cell senescence induction is
non-canonical signaling through p38-MAPK.

3.1. Signaling Pathways Involved in Tc Senescence

The intrinsic molecular pathways governing premature and replicative senescence are not
completely defined but involve the MAPK pathway. The diverse and complex MAPK pathway with
its three subgroups, Erk, Jnk and p38, is involved in many aspects of innate and acquired immune
regulation. Classical engagement of the MAPK pathway downstream of the TCR does not occur in
senescent Tc cells as they lack the costimulatory molecule CD28. p38-MAPK activation however, can
also be mediated by environmental stressors such as low glucose, DNA damage and by proinflammatory
cytokines which trigger AMPK to auto-phosphorylate p38. Henson et al. showed that p38 MAPK
expression was elevated in human senescent CD8+ T cells and that blocking p38 following inhibitor
treatment resulted in increased mitochondrial mass, improved mitochondrial function and enhanced
proliferation [25]. Human senescent CD27–CD28–CD4+ T cells prompt AMPK-stimulated recruitment
of p38, resulting in p38 autophosphorylation, facilitated by the protein scaffold TAB1, which inhibits
telomerase activity and parts of the TCR signalosome [26]. In addition to p38, involvement of the other
MAPK members Erk and Jnk have been found to impact T cell senescence in the context of a new
immune inhibitory complex termed the sestrin—MAPK activation complex (sMAC). sMAC formation
is increased with age [27]. In human and murine CD4+ T cells, sestrins induced senescence through
binding and simultaneous activation of Erk, Jnk and p38 to form sMAC. Silencing sestrin enhanced T
cell activity. Although CD4+ T cells were experimentally used in this study, the authors did show that
sestrin deficiency increased vaccine responses in aged mice and increased the frequency of splenic
CD8+ T cells. A follow-up study specifically examining the effects of sestrin in CD27−CD28−CD8+

T cells, showed that a divergent mechanism was responsible for sestrin-dependent senescence in
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CD27−CD28−CD8+ T cells linked to a natural killer group 2 member D (NKG2D)–DNAX Activating
Protein of 12KDa (DAP12)–sestrin 2 complex. Disturbance of the NKG2D–DAP12–sestrin 2 complex
through sestrin 2 genetic inhibition, restored TCR signaling [28]. T cell mitochondrial dysfunction also
accelerates senescence. It was recently demonstrated that Tfamfl/fl Cd4Cre mice (where mitochondrial
transcription factor A (TFAM) is depleted in CD4+ and CD8+ lymphocytes) prematurely died due to
multiple age-related changes [29]. Taken together, the full extent of the molecular pathways involved
Tc senescence are not completely elucidated. The current knowledge, however, presents targetable
opportunities to potentially reverse senescence and understand how senescent Tc cells might impact
immunotherapies in the treatment of cancer.

3.2. The TME Drives Tc Premature Senescence

3.2.1. Immune and Tumor Cells

A tumor’s ability to evade the immune system is dynamic, complex and partially dependent on the
immunosuppressive activities of infiltrating immune cells. Tc effector function is similarly complicated
and shaped by the spatiotemporal distribution of APCs in the tumor milieu and tumor-draining lymph
nodes, cytokines and the presence of other immune cells such as regulatory CD4+CD25hiFoxP3+ T
(Treg) cells. Initial priming of naïve T cells occurs in the lymph node through direct interaction with
antigen present on APCs such as DCs. DCs also co-express receptors such as CD80 necessary for
binding to CD28 and inducing co-stimulatory signals. Upon migration of primed Tc cells into the TME,
the tumor cells expressing the antigenic peptide become targets. The numbers of infiltrating CD8+

T cells varies widely across tumor types. Some tumors, such as melanoma and non-small cell lung
cancer (NSCLC), generally have a high degree Tc infiltration. Other tumors, such as pancreatic and
neuroblastoma, typically have a low degree of Tc infiltrates, although of course within a specific tumor
type, there is a lot of intra-tumoral heterogeneity [30]. Many factors during this process can impact the
ability of Tc cells to target tumor cells.

Regulatory CD4+CD25hiFoxP3+ T (Treg) cells are subsets of T cells which play a role in maintaining
immune homeostasis and present a critical barrier for immunotherapies through their suppressive
effects on Tc cells. Tregs have been found in lymph nodes where they impact DC function through
CCL22. CCL22, a chemokine produced by dendritic cells, enables cell-to-cell contact between DCs
and Treg through Treg-expressed CCR4 [31]. Tregs accumulate within the TME, and their ability to
infiltrate into tumors has been linked to the expression of multiple chemokine receptors such as CCR4,
CCR5, CCR8 and CCR10. Within the TME, Tregs usually express immunosuppressive molecules
such as CTL-4, which binds to CD80 and CD86 on APCs thereby affecting Tc effector function [32].
Treg suppressive mediated-effects on APCs and Tc effector cells can also occur through inhibitory
cytokine secretion of IL-10, TGF-β, and IL-35. These inhibitory cytokines suppress antigen presentation
in APCs. IL-35 and IL-10 promote T cell exhaustion. Metabolic competition for the consumption of
IL-2 through the expression of CD25 on Tregs also suppresses Tc effector functions [33]. Tregs are also
found in peripheral circulation, but their precise role in facilitating immune evasion are not as well
characterized as with the TME-associated Tregs [32].

Relating specifically to Treg-mediated Tc senescence induction, an important study demonstrated
that co-transfer of Tregs and naïve CD8+ T cells into Rag1−/− mice transformed naïve T cells into
senescent T cells (as assessed by SA-β-Gal positivity). Furthermore, the senescent T cells acquired
immunosuppressive functions both in vitro and in vivo. Involvement of the mitogen-activated protein
kinase (MAPK) pathway was implicated, as pre-treatment with ERK and p38 inhibitors abrogated these
immunosuppressive effects [34]. Another critical study by Liu at al. using ex vivo cultured primary
human T cells demonstrated that human Tregs induced nuclear kinase ataxia–telangiectasia-mutated
protein (ATM)-associated DNA damage responses in Tcs [35]. The majority of subsequent mechanistic
experiments demonstrated that senescence was mediated by competition for glucose, which triggered
phosphorylation of the energy sensor AMP-activated protein kinase (AMPK) in cooperation with
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Stat1 and Stat3. These mechanistic studies were performed using naïve CD4+ T cells. However, the
authors did show that Treg-induced naïve CD8+ T cell senescence was blocked by pre-treatment with
ATM or STAT inhibitors in NOD SCID gamma (NSG) mice, indicating that similar mechanisms of
senescence induction also occur in CD8+ T cells. These studies did not directly explore the specific
co-localized induction of Treg-induced Tc senescence within the TME. However, as Tregs and Tcs are
often co-expressed within tumors [36,37] and tumor-draining lymph nodes [38], the clinical relevance
of these in vivo and ex vivo studies is plausible. These interactions, however, would likely be mediated
by APCs, which these studies did not address. APCs might guide the cellular interaction between
Tregs and Tcs through costimulatory (CD28/CD80 and CD86, OXO/OXOL, CD95/CD95L) on CD8+ T
cells or co-inhibitory (PD-1/PD-L1 and CTLA-4/CD80) signals on CD8+ and CD4+ T cells, respectively.
Other immune cells within the TME might also indirectly impact Tc senescence. Treg and MDSC
populations often support each other’s expansion through positive feedback loops involving TGF-β
and other cytokines [33]. In turn, MDSCs can be expanded by many of the SASP cytokines secreted by
Tc senescent cells such as TGF-β, IL-6 and IFN-γ [39].

Tumor cells are the targets of Tcs following priming in the lymph nodes. Tc-mediated tumor cell
killing occurs through TCR-mediated Tc cell binding to MHC-I-restricted tumor antigens on tumor
cells. This interaction releases cytolytic perforin and granzymes causing tumor cell killing. Tumor
cell killing can also occur through the death receptor pathway mediated by the expression of CD95
on tumor cells and CD95L on Tc cells. Receptors present on tumor cells such as PD-L1 can diminish
Tc cells responses through the PD-1–PD–L1 axis [2]. Tumor cells can also downregulate MHC-I and
CD95 expression to dampen responses and evade apoptosis. Immunosuppressive cytokines produced
by tumor cells such as TGF-β and IL-10 also influence Tc effector function. Metabolites produced by
tumor cells, elaborated on in the section below, can also affect Tcs.

Tumor cells have been shown to induce Tc senescence in in vitro and in vivo models. Montes et al.
showed that ex vivo incubation of human T cells isolated from healthy donors with a variety of human
tumor cell lines triggered downregulation of CD28 expression. Activation of ATM, shortening of
telomere length and an ability to suppress antigen nonspecific and allogeneic-induced proliferation of
responder T cells were also observed [40]. Tumor-induced senescence was dependent on direct tumor-T
cell contact [40]. Another pivotal investigation demonstrated that adoptive transfer of tumor-specific
CD8+ tumor-infiltrating lymphocytes (TIL) 586 cells into tumor-bearing (586 mel cells) NSG mice
induced senescence, as assessed by SA-β-Gal+ staining in TILs [41]. Activation of TLR8 signaling in
tumor cells was able to reverse the tumor-induced senescence [42]. Taken together, tumor-infiltrating
immune cells such as Tregs as well as tumor cells have been shown to be capable of inducing T cell
senescence. As this evidence largely stems from ex vivo studies, the role of critical cells mediating Tc

priming such as DCs in facilitating this process remains to be explored.

3.2.2. Metabolic Changes

Metabolic re-programming within the TME is critical to many pro-tumorigenic processes, including
driving senescence [43,44]. Cancer cells have a high rate of glucose consumption through aerobic
glycolysis, resulting in low glucose and high lactate concentrations in the TME [45]. Antigen-activated
effector T cells, once they become primed and activated in the lymph nodes, begin their clonal
expansion and rapid proliferation [43]. Therefore, they have metabolic requirements different to those
of circulating naïve cells which rely on oxidative phosphorylation for their energy requirements. Rapidly
proliferating T cells have higher glycolytic activity [46] and increased amino acid metabolism [47].
TCR-mediated T cell activation is followed by metabolic re-programming and biomass accumulation.
Changes in metabolism include a switch to aerobic glycolysis despite there being enough oxygen
present to generate glucose through the tricarboxylic acid (TCA) cycle [43]. Aerobic glycolysis provides
important intermediates for cell growth, such as glucose-6-phosphate, 3-phosphoglycerate (3PG) and
citrate. Molecularly, this metabolic transition is supported by mTOR, PI3K activity, the transcription
factor Myc and hypoxia-inducible factor-1α (HIF-1α) [43,47]. As already described above in the study
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by Liu et al., increased glucose consumption by Tregs reduced the glucose pool available for naïve T
cells, initiating AMPK signaling cascades and DNA damage responses [35]. Effector T cell activity
is sensitive towards intracellular NAD depletion, often occurring in the TME. Tregs, however, have
developed re-programming strategies mediated by the transcription factor FOXP3 to maintain their
proliferative capabilities and suppressive functions, despite low glucose and high lactate levels [48]. It
remains to be elucidated whether within the TME Treg numbers would be high enough to deplete
glucose pools. However, in addition to Treg competing for glucose consumption, other immune cells
within the TME also have distinct metabolic requirements which can affect glucose pools. MDSCs
have high glucose uptake rates and can contribute to the dysfunction of other immune cells by limiting
pools of available glucose [39]. MDSCs can also affect the T cell activation through depletion of amino
acids such as cystine and cysteine [49], but whether that eventually also contributes to Tc senescence
induction is not known. Conditions of hypoxia within the TME compounded by increased tumor
acidity can cause an accumulation of immunosuppressive M2 polarized TAMs, which are critical in
maintaining a tolerogenic phenotype, expanding Tregs and suppressing Tc function [50].

Tumor cells also produce metabolites that are inducers of Tc cell senescence. For instance adenosine,
whose production is catalyzed by the surface ectonucleotidases CD39 and CD73, accumulates in the TME
through CD38 and CD73 expression on cancer exosomes [51]. Adenosine exposure triggered replicative
senescence in human CD8+ T cells, decreased proliferative capacity and reduced IL-2 production [52].
Furthermore, adenosine can impact APCs that are critical for Tc function. Tumor-produced adenosine
has been shown to decrease DC maturation and immune function [53]. Another example is cyclic
adenosine monophosphate (cAMP), produced by tumor cells and a suppressor of T cell function [54].
In ex vivo co-culturing experiments, cAMP was shown to be transferred from Tregs to Tcs through direct
gap junction formation, thereby suppressing proliferation of Tcs and decreasing IL-2 production [55].
However, the in vivo relevance of these findings in the context of the TME has yet to be validated.
Other TME-associated metabolites such as indoleamine 2,3-dioxygenase (IDO) [56], although not yet
shown to directly induce Tc senescence, plausibly contribute to the induction of Tc dysfunction through
activation of Tregs.

3.2.3. Chemotherapeutics and Radiation Therapy

DNA damage caused by commonly used chemotherapeutics can lead to senescence induction
in both tumor and normal cells [57]. Most chemotherapeutic agents are genotoxic and cause DNA
damage by triggering chromosomal breaks or double stranded DNA breaks. This is followed by
induction of the DNA damage response (DDR) mediated by ATM and ATR kinases, whose downstream
targets are cell cycle regulatory proteins checkpoint homologs 1 and 2 (Chk1 and Chk2). Chk1 and
Chk2 trigger the activation of various cyclin-dependent kinase inhibitors causing cell cycle arrest [58].
It is not surprising that treatment with such agents can also lead to immuno-senescence, especially
in rapidly proliferating populations such as Tc cells following antigen exposure. A six months
longitudinal study tracked shifts in CD8+ T cell populations in DNA-damaging chemotherapy-treated
breast cancer patients. The study found that senescent-enriched CD28−CD57+ cells were more
pre-dominant in cancer patients compared to the untreated healthy age-matched group. The study
also found that immuno-senescence and immune risk parameters were more pronounced in the
chemotherapy-treated group [22]. When peripheral CD8+ T lymphocytes were assessed in metastatic
breast cancer patients during the post-salvage taxane chemotherapy follow-up, it was found that
CD8+CD28− populations were increased in breast cancer patients compared to the control cohort [23].
In another longitudinal study, radiotherapy and chemotherapy in early-stage breast cancer patients
increased senescent cytotoxic T lymphocytes [59]. Shortened telomere length was observed in peripheral
blood mononuclear cells in non-Hodgkin’s lymphoma patients undergoing chemotherapy [60]. These
results are correlative, and the functional consequences of Tc cell senescence induction in these clinical
settings should be mechanistically explored. Tumor senescence might be beneficial to the organism
under some contexts, as it stops tumor-cell proliferation. However, the unintended potentially
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detrimental consequences of Tc cell senescence should be considered during the course of therapy,
especially if immunotherapy treatment such as CAR-T cell therapy is to be further applied.

3.3. Age-Related Replicative Senescence

Replicative senescence in normal somatic cells is telomere dependent and occurs as a result of
telomere shortening or a classical DNA damage response triggered by a dysfunctional telomerase [61].
Telomerase dysfunction can be triggered by oxidative stress [62]. This is paralleled in Tc cells.
The natural aging process is accompanied by blunted immune responses to anti-viral, bacterial and
other stimuli as well as decreased responsiveness to vaccines [63,64]. Repeated antigen stimulation
throughout an individual’s life time is one potential cause of aging-induced Tc senescence. Others
include physiological changes such as thymic shrinking which limits the naïve T cell pool, changes in
the bone marrow, and obesity [62,65,66]. While ex vivo stimulated human CD8+ T cells have been
shown to have high initial telomerase activity, their telomere lengths shorten following several rounds
of antigen stimulation, and their telomerase activity dramatically decreases [67]. A decrease in the
number of naïve CD8+ T cells and suppressed functionality in terms proliferation and decreased
cytokine production accompany age-related dysfunction [63,68]. In aged mice, proliferative defects
have also been demonstrated in anti-viral memory CD8+ T cells [69]. Senescence has also been observed
in CD8+ T cells which have not undergone repetitive antigen stimulation. A recent study explored a
specialized subset of semi-differentiated antigen naïve but semi-primed T cells expressing the activation
marker CD44 termed “virtual memory” CD8+ T cells (CD44hiCD49dlo; TVM). The investigation found
TVM cells accumulated in aged mice and humans and acquired a dysfunctional senescent but not
exhausted phenotype [70]. The presence of TVM cells in aged individuals would be expected to
diminish primary CD8+ T cell responses while still maintaining a base effector function and the ability
to secrete cytokines.

4. Tc Cell Senescence and Effects on Immunotherapy Response

4.1. Checkpoint Inhibitors

Given the increased accumulation of senescent Tc cells in older individuals, it would be reasonable
to expect that age would dimmish response to immunotherapies. Curiously, however, some reports
indicate that advanced age positively correlates with anti-PD-1 therapy response [71]. In this study,
when a total of 538 metastatic melanoma patients treated with pembrolizumab were stratified according
to age and response, a smaller percentage of patients aged over 62 years had progressive disease.
The study, which controlled for prior MAPK inhibitor therapy, did not control for mutational burden
but did corroborate the patient data with murine models. Genetically identical tumors experienced
better, albeit minor, anti-PD-1 responses in aged mice. The study found that in younger patients, Tregs
were increased and CD8+ T cells decreased in the TME. The authors speculated that memory CD8+ T
cells, which accumulate with age and expand in response to immunotherapy, may be responsible for
improved anti-PD-1 responses. However, accumulation of memory CD8+ T cells in aged individuals
is not absolute and is relative to a decrease in naïve T cells due to thymic shrinking. Other studies
in various tumor types have found no correlation [72,73], or a negative correlation between age and
checkpoint inhibitor response [74]. The study citing the negative correlation was carried out in patients
with advanced renal cell carcinoma with a small sub-group of older patients. Furthermore, the study
did not assess infiltrates in the TME. Age-induced senescence might affect other critical immune cells
which could impact responses to checkpoint inhibitors, including the abovementioned TvM cells [70].
The phagocytic function of macrophages/monocytes is decreased during aging and might impair
release of antigens into the micro-environment. Aging also decreases numbers and antigen presenting
functions of APCs, which would impact T cell effector function [75].

It is difficult to conclusively ascertain whether older patients fare better/worse following
immunotherapy treatment given the usually low numbers of elderly patients included in clinical trials.
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Immunotherapy response, particularly to checkpoint inhibitors, is complex, and no successful biomarker
of response has been established. Several biomarkers have been suggested, including neo-antigen
burden, PD-L1 expression, genomic and transcriptomic signatures and immune infiltration [76,77].
While age-induced Tc cell senescence might impact response to immunotherapy treatment, other more
significant factors could over-ride these effects. For example, a recent study reported that tumors
in younger female individuals accumulated more poorly presented driver mutations than those
in older and male patients. Accordingly, these female patients had poorer immune checkpoint
therapy responses [78]. Taken together, it remains to be proven whether age is a predictor of
immunotherapy response

Irrespective of age, patients with accumulated senescent Tc cells within the TME might respond
poorly to checkpoint inhibition, which seeks to de-repress the exhaustive Tc phenotype but does
not target the senescent one. A small pilot study of melanoma patients was able to identify
patients with primary resistance to checkpoint inhibitors by using lymphocyte phenotyping for
senescence markers CD27, CD28, Tim-3 and CD57 [79]. The study tracked senescence markers in the
peripheral blood for 12 weeks post diagnosis of metastatic melanoma. Another study found that in
multiple myeloma, T-cell clones exhibited hypo-responsiveness and a telomere-independent senescent
(KLRG-1+/CD57+/CD160+/CD28−) phenotype. These senescent T cells also expressed low levels of
PD-1 and CTL-4 [24]. Although limited in the numbers of assessed patients, these studies suggest that
senescent Tc impede responses to checkpoint inhibitors.

4.2. CAR-T Cell Therapy

CAR-T cell therapy has the potential to be curative in patients with hematological malignancies
such as leukemia and lymphoma. However, CAR-T cell therapy application to solid tumors whose
targetable antigen repertoire can be difficult to predict will be more challenging. CAR-T cell therapy
depends on the isolation and expansion of a patient’s T cells harvested from the periphery. It is plausible
to speculate that functionally impaired senescent T cells in this context would provide an impediment
to successful T cell expansion and/or CAR activity once in the TME. In vivo, murine studies have shown
that PD-1 upregulation within the tumor microenvironment impeded the function of CD28-CAR-T
cells, which was restored by concomitant treatment with anti-PD-1 antibodies [80]. Furthermore,
introduction of a patient’s expanded T cells into the TME might lead to terminal differentiation of the T
cells caused by TME-induced Tc senescence or exhaustion [81]. Taken together, although this requires
further exploration, there is reasonable correlative evidence to suggest that senescent Tc cells impact
immunotherapy responses.

4.3. Targeting T Cell Senescence

As 40–85 percent of patients treated with checkpoint inhibitors fail to exhibit a sustained clinical
response [82], combinatorial approaches that also reverse Tc cell senescence could be of therapeutic
benefit. As induction of tumor cell senescence can be advantageous in the context of tumor clearance,
strategies to reverse T cell senescence should be carefully considered. While induction of tumor
cell senescence can initially stop uncontrolled proliferation, the SASP profile of senescent tumor
cells can promote tumor relapse, inflammation and recruit immunosuppressive immune cells to
the TME. Agents that induce apoptosis in senescent cells termed “senolytics” (e.g., dasatanib and
quercetin), are currently being tested in pulmonary fibrosis and after radiotherapy to improve clinical
symptoms [83,84]. Whether these agents can be used in neoplastic malignancies to clear senescent
tumor cells and/or senescent Tc cells is an area warranting further exploration.

Agents such as ralimetinib that target p38 MAPK, which are safe and have already being used
in clinical trials [85], are an attractive option as they could dually target Tc senescence signaling and
tumor proliferation. In addition to their direct anti-tumoral effects, other inhibitors of the MAPK
pathway already approved for the treatment of metastatic melanoma are also promising. These include
the B-Raf-targeting inhibitor vemurafenib or MEK1/2 targeting inhibitor trametinib. These drugs have
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already been shown to increase the number of CD8+ TILs and enhance checkpoint inhibition in murine
models [86,87]. During senescence, upregulation of BCL-2 family members (BCL-XL, BCL-W) have
been reported in several studies, across various cell types [84]. Of note, inhibitors targeting the BCL-2
protein family, including novitoclax, are selectively senolytic in some cell types [88]. Moreover, several
other pro-survival pathways have been implicated in eliminating senescence, including the p53/p21
axis, receptor tyrosine kinase, HIF-1α and serpine anti-apoptotic pathways [84,89]. HSP90, a member of
the chaperone protein family, was identified as a new class of senolytics [90,91]. HSP90 is upregulated in
several tumor types and promotes the stabilization of PI3K/Akt, ERK and other pro-survival signaling
pathways upregulated during cellular senescence [92]. Therefore, downregulation of pro-survival
signaling pathways upon HSP90 inhibition may be responsible for its senolytic activity [90]. Whether
these inhibitors also reverse Tc senescence and enhance checkpoint inhibition in the clinical setting
remains to be elucidated. However, combinatorial therapy is paramount in achieving clinical success.
Therefore, these strategies might present good therapeutic opportunities. They also have the advantage
of using already approved therapies.

Combining checkpoint inhibitors with other activators of the immune system such as TLR8
agonists could maximize the benefits of immunotherapy. TLR8 agonists have already been shown to
reverse the T cell tumor-induced senescence in mouse models of cancer [41]. They have the added
benefit of increasing immune infiltration and activating other anti-tumoral immune cells such as
dendritic and NK cells. The TLR8 agonist motolimod (VTX-2337) has been evaluated in clinical trials,
is well tolerated and shows promise activating the immune system in cancer patients [93,94]. Other
approaches exist, such as the reprogramming of senescent Tc cells from pluripotent stem cells (T-IPSCs).
However, this approach is complicated by the unpredictable re-arrangement of the TCR [81].

Taken together, as our molecular understanding of the pathways governing Tc cell senescence
increases, so will the ability to effectively target this dysfunctional subset of T cells, reverse their
immunosuppression and augment currently used immunotherapies. Furthermore, assessing senescent
T cell accumulation following treatment with currently used therapies in cancer patients might help to
optimize treatment strategies and uncover novel bio-markers of immunotherapy response.

5. Conclusions

Senescent Tc cells are phenotypically distinct from exhausted Tc cells. Their immunosuppressive
function brings new obstacles to successful immunotherapy. Regardless of whether the tumor-specific
T cell senescence is of replicative or premature origin, a deeper molecular understating of the molecular
pathways driving this process is needed. This will open new therapeutic options to eradicate challenges
imposed by a suppressive TME. Currently, MAPK pathway inhibitors and TLR8a agonists are amongst
the most clinically promising candidates to reverse T cell senescence. They can potentially be used in
combinatorial approaches with checkpoint inhibitors to target many levels of immune dysfunction
and maximize anti-tumor immunity. Much progress has been made in defining T cell senescence as
a distinct dysfunctional state. However, clinical evidence showing the functional importance of T
cell senescence in solid tumors and hematological malignancies is largely correlative and needs to be
further explored.
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