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Abstract

Sulfolobus islandicus rod shaped virus 2 (SIRV2) infects the archaeon Sulfolobus islandicus at extreme temperature (70uC–
80uC) and acidity (pH 3). SIRV2 encodes a Holliday junction resolving enzyme (SIRV2 Hjr) that has been proposed as a key
enzyme in SIRV2 genome replication. The molecular mechanism for SIRV2 Hjr four-way junction cleavage bias, minimal
requirements for four-way junction cleavage, and substrate specificity were determined. SIRV2 Hjr cleaves four-way DNA
junctions with a preference for cleavage of exchange strand pairs, in contrast to host-derived resolving enzymes, suggesting
fundamental differences in substrate recognition and cleavage among closely related Sulfolobus resolving enzymes. Unlike
other viral resolving enzymes, such as T4 endonuclease VII or T7 endonuclease I, that cleave branched DNA replication
intermediates, SIRV2 Hjr cleavage is specific to four-way DNA junctions and inactive on other branched DNA molecules. In
addition, a specific interaction was detected between SIRV2 Hjr and the SIRV2 virion body coat protein (SIRV2gp26). Based
on this observation, a model is proposed linking SIRV2 Hjr genome resolution to viral particle assembly.
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Introduction

Holliday junction resolving enzymes are structure-specific

endonucleases that catalyze key steps during DNA homologous

recombination and replication [1]. Resolving enzymes have been

identified in all domains of life including bacteria (RuvC), archaea

(Hjc), and eukarya (Human GEN1) [2]. Resolving enzymes have

attracted intense interest as a model to understand the molecular

basis for substrate recognition and cleavage of four-way junctions

[2]. Variations in resolving enzyme sequence bias, cleavage

pattern, and substrate specificity suggest that a variety of

mechanisms have evolved to cleave four-way junctions

[3,4,5,6,7,8,9,10,11]. Sulfolobus islandicus rod shaped virus 2

(SIRV2) infects the archaeon Sulfolobus islandicus at extreme

temperature (70uC–80uC) and acidity (pH 3) and encodes a

14 kD Holliday junction resolving enzyme (SIRV2 Hjr). Hjr

protein sequences are conserved among rudiviruses including

Acidianus Rod-Shaped virus 1 (ARV1), Stygioglobus rod-shaped virus

(SRV), and Sulfolobus islandicus rod-shaped viruses 1 (SIRV1) and 2

(SIRV2), and have been proposed as key enzymes in rudivirus

genome replication [12]. Specifically, during the last stage of

SIRV2 replication, multiple double-stranded SIRV2 genomes are

catenated. At the junctions between genome monomers, opposing

inverted terminal repeats can be extruded to form hairpin four-

way junctions. SIRV2 Hjr is proposed to introduce symmetrical

nicks across this junction to resolve the concatamers, producing

monomer copies with linear hairpin ends [12]. Consistent with its

proposed biological role, SIRV2 Hjr was previously shown to

cleave four-way junctions in vitro [13,14]. SIRV2 Hjr is related to

the well-studied resolving enzymes from Sulfolobus, Hje and Hjc

[4,9,15,16,17,18,19]. Sulfolobus Hje and Hjc are homodimeric

enzymes that recognize and cleave four-way junctions by paired

nicks on four-way junction arms [4,18]. Even though a significant

amount of data is available on Sulfolobus resolving enzymes, much

less is known about the molecular mechanism of SIRV2 Hjr

specificity and cleavage. Therefore, this study demonstrates a

unique SIRV2 Hjr four-way junction cleavage pattern, the

minimal requirements for four-way junction cleavage, and

substrate specificity. Based on the biochemical analysis of SIRV2

Hjr, this study also addresses characteristics that support a role for

SIRV2 Hjr in resolution following genome replication.

Materials and Methods

Terminology
‘‘Hjr’’ will be used throughout to refer to the product of the

allele from S. islandicus SIRV2 Hjr (or the codon-optimized allele

described herein), and ‘‘MBP-Hjr’’ will refer to its fusion to

Maltose Binding Protein below. Where necessary for clarity, the

attribution will be expanded.

Enzymes
All restriction endonucleases, modifying enzymes, DNA poly-

merases, nucleotides, DNA ladders, and expression vectors were
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from New England Biolabs. Purified Sulfolobus solfataricus Holliday

junction endonuclease (Sso Hje) was kindly provided by Dr.

Malcolm White, University of St. Andrew’s, UK.

Strains
E. coli strains for cloning (NEB 5 alpha) and expression (NEB

Turbo and NEB T7 Express) were from New England Biolabs.

MBP-SIRV2 Hjr gene synthesis, cloning and purification
To improve protein expression, a synthetic Hjr gene was codon

optimized to reflect the codon usage of E. coli rather than the

native S. islandicus. Hjr gene was synthesized by PCR amplification

of overlapping oligonucleotides [20].

To assemble a template for Hjr gene synthesis, an equimolar

amount (1 mM) of each overlapping oligonucleotide (Table S1) was

combined in 16 Standard Taq Buffer (10 mM TrisHCl, pH 8.3,

50 mM KCl, 1.5 mM MgCl2) and then serially diluted by two-

fold. PCR reactions (50 mL) were assembled as follows: 16
Phusion Master Mix (containing dNTPs, HF reaction buffer, and

Phusion DNA polymerase), 0.5 mM Forward Primer (Table S1,

primer 1), 0.5 mM Reverse Primer (Table S1, primer 10), and Hjr

gene synthesis oligonucleotide template mixtures. Reactions were

cycled in a PCR instrument (98uC 2 minutes followed by 25 cycles

of 98uC 10 seconds, 65uC 15 seconds, 72uC for 30 seconds,

followed by a final extension step at 72uC for 30 seconds). A band

corresponding to the Hjr gene (405 bp) was gel purified. The Hjr

codon optimized PCR product was cloned into expression vector

pMAL-c4X (New England Biolabs) digested with XmnI to create a

construct (pEPD) encoding an N-terminal Maltose Binding

Protein (MBP) – SIRV2 Hjr fusion protein. The sequence of

plasmid pEPD was verified by DNA sequencing.

For MBP-Hjr expression and purification, NEB Turbo E. coli

was transformed with plasmid pEPD. A 1 liter NEB Turbo E. coli/

pEPD culture was grown at 37uC to mid-log phase (OD600 = 0.5),

whereupon protein expression was induced by addition of 0.4 mM

IPTG. Cells were then incubated at 37uC for five hours, and were

collected by centrifugation. The cell pellet was suspended in 0.2 L

Buffer A (20 mM TrisHCl, pH 7.5, 0.2 M NaCl, 1 mM EDTA)

and lysed by sonication. Cell debris was removed by centrifugation

and the supernatant applied to a 15 mL amylose column. The

column was washed with 0.15 L Buffer A. MBP-SIRV2 Hjr was

eluted with 30 mL Buffer A containing 10 mM maltose. MBP-Hjr

purification was monitored by 4–20% SDS-PAGE analysis.

Fractions containing MBP-Hjr were pooled, dialysed against

storage buffer (0.1 M KCl, 10 mM Tris-HCl, pH 7.4 @ 25uC,

1 mM dithiothreitol, 0.1 mM EDTA, 50% Glycerol) and stored at

220uC. A portion of MBP-Hjr was proteolysed by Factor Xa

protein to separate the MBP binding domain from SIRV2 Hjr and

not further purified. Activity at 55uC was comparable between the

intact and proteolyzed proteins, so the MBP-Hjr fusion was used

in most experiments. However, it should be noted that even

though no apparent differences in overall activity were observed

using the MBP-Hjr fusion, steps in the reaction pathway may be

influenced by the presence of the MBP-fusion.

MBP-Sulfolobus islandicus Holliday junction endonuclease
(Sis Hje) gene synthesis, cloning and purification

The gene encoding a Holliday junction endonuclease from

Sulfolobus islandicus strain Y.N.15.51 (Sis Hje) [21] was synthesized

using the methods described above using the overlapping

oligonucleotides presented in Table S1. Sis Hje E. coli codon

optimized PCR product was cloned into expression vector pMAL-

c4X digested with XmnI to create a construct encoding an N-

terminal Maltose Binding Protein (MBP) – Sis Hje fusion protein.

SIRV2gp26 gene synthesis, cloning and purification
A gene encoding the SIRV2gp26 coat protein was synthesized

using the methods described above, with the overlapping

oligonucleotides listed in Table S1. The SIRV2gp26 E. coli codon

optimized PCR product was cloned into expression vector pMAL-

c4X digested with XmnI to create a construct encoding an N-

terminal Maltose Binding Protein (MBP) – SIRV2gp26 fusion

protein. A portion of the MBP-SIRV2gp26 was treated with

Factor Xa protease to separate MBP and SIRV2gp26 and heated

to 65uC for 20 minutes to inactive the protease.

DNA substrates
Two plasmids containing hairpin four-way junctions were

constructed to assay resolving enzyme activity. pUC(AT) is a

derivative of pUC19 containing an inverted repeat of twenty A

and T dinucleotides ((AT)20) between the EcoRI and PstI sites that

forms a hairpin four-way junction upon supercoiling [22,23]

(Figure S1A). Plasmid pEMM2 is derived from pNEB206A (NEB,

Ipswich, MA) and contains an insert corresponding to the

expected four-way junction formed between SIRV2 genome

dimers during genome replication (Figure S1B). pEMM2 was

constructed by annealing overlapping SIRV2 four-way junction

oligonucleotides in 16 Standard Taq Buffer (10 mM TrisHCl,

pH 8.3, 50 mM KCl, 1.5 mM MgCl2). This oligonucleotide

cassette with 39 overhangs was ligated to complementary ends

on pNEB206A vector linearized by XbaI and Nt. BbvCI (New

England Biolabs) to create pEMM2. The correct pEMM2

sequence was confirmed by DNA sequencing.

Synthetic oligonucleotide substrates were also used to charac-

terize resolving enzyme specificity and activity. Four-way Junction

3 (J3) was constructed by annealing strands (25 mM each) b, h, r,

and x in 16 Standard Taq Buffer. In addition, fluorescently

labeled J3 four-way junctions were prepared by annealing one 6-

carboxyfluorescein (FAM)-labeled strand and three unlabeled

strands. A SIRV2 four-way junction was constructed by annealing

strands (25 mM each) 1, 2, 3, and 4.

In addition to four-way junction DNA, Hjr activity was assayed

on alternate DNA structures, including single- and double-

stranded DNA, bulged DNA, hairpin, and three-strand Holli-

day-like junctions. Schematics representing the DNA structures

used in these experiments are depicted in Figure 1. Oligonucle-

otides for DNA substrates are listed in Table S2. Double-stranded

DNA was formed by annealing FAM-labeled top strand to an

unlabeled complement in 16 Standard Taq Buffer. A FAM-

labeled hairpin DNA mimicking the SIRV2 genome end was

formed by self-annealing. Heteroduplex bulged DNA (25 mM

stock) was constructed by annealing two oligonucleotides in 16
Standard Taq Buffer to create an unpaired central region flanked

by complementary base pairing. A three-strand Holliday-like

junction was prepared by annealing four-way junction J3 strands

(FAM)-b, h, r.

Assays for resolving enzyme activity
Four-way junction resolution was monitored by cleavage of either

four-way junction containing plasmids (pUC(AT) or pEMM2) or

fluorescently labeled synthetic four-way junctions. Typically in a

50 mL reaction, plasmids (11 nM) were incubated with 20 nM

resolving enzyme in 16 ThermoPol Buffer (20 mM Tris-HCl,

10 mM (NH4)2SO4, 10 mM KCl, 2 mM MgSO4, 0.1% Triton X-

100, pH 8.8 @ 25uC) at 55uC for one hour. Reaction products were

separated by agarose gel electrophoresis. Synthetic four-way

junctions were constructed as described above and one strand was

fluorescently labeled on its 59 end. In a 20 mL reaction, a synthetic

four-way junction (J3 or SIRV2 at 100 nM) was incubated with

Characterization of SIRV2 Hjr
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20 nM resolving enzyme in 16ThermoPol Buffer (unless otherwise

noted) at 55uC for one hour. FAM-labeled 16-mer and 18-mer were

size standards during electrophoresis (Table S2). Reaction products

were separated by 20% denaturing PAGE and quantified using the

fluorescence detected by a GE Typhoon scanner.

Requirements for SIRV2 Hjr cleavage
Hjr cleavage activity was assayed with synthetic DNA four-way

junction J3 under a variety of reaction conditions to determine

requirements for cleavage. Four-way junction J3 (FAM-labeled on

strand b) (100 nM) and MBP-Hjr (20 nM) were incubated in

reaction buffer at 55uC for 30 minutes. Reaction buffers varied in

pH (4–10), divalent cation (MgCl2, MnCl2, ZnSO4, CaCl2,

CoCl2), or concentrations of NaCl (0–500 mM), NH4SO4 (0–

200 mM), or MgCl2 (0–100 mM). Sodium acetate (10 mM) was

used in the pH range of 4.0–6.0 and TrisHCl (10 mM) was used in

the pH range of 7.0–10. Reactions were halted by addition of 50%

formamide and 5 mM EDTA. Reaction products were separated

by 20% denaturing PAGE and fluorescence detected on a GE

Typhoon scanner.

Hjr substrate specificity
To determine Hjr substrate specificity, a panel of DNA

substrates including single- and double-stranded DNA, bulged

DNA, hairpin, and three-strand Holliday-like junctions were

prepared as described above. MBP-Hjr (20 nM) or T7 endonu-

clease I (7.5 nM) (New England Biolabs) was incubated with

0.10 mM DNA in 16ThermoPol Buffer at 55uC for 30 minutes.

Reaction products were separated by 20% denaturing PAGE and

quantified using the fluorescence detected by a GE Typhoon

scanner.

Characterization of Hjr four-way junction cleavage
products

In a 0.10 mL reaction, pUC(AT) (25 nM) was incubated with

20 nM MBP-Hjr in 16 ThermoPol Buffer at 55uC. Linearized

products were gel purified by QiaPrep PCR purification kit

(Qiagen) and eluted in 0.10 mL of EB buffer. Linearized products

(50 mL) were treated with 400 U T4 DNA ligase in 16T4 DNA

ligase buffer for one hour at room temperature to seal hairpin

nicks. Lambda exonuclease treatment was carried out in a 30 mL

reaction by mixing 3 mL 106 lambda exonuclease buffer, 5 U

lambda exonuclease and 26 mL of linearized products, and

incubated at 37uC for one hour to degrade DNA with free 59

termini. Reaction products were separated by agarose electropho-

resis.

Immunoprecipitation
Protein extracts of SIRV2-infected S. islandicus were prepared

from 0.25–0.5 L cultures after concentration of the cells by

centrifugation, suspension of the cells in 25 mL of 150 mM NaCl,

20 mM TrisHCl, pH 7.5, and 1 mM EDTA and lysis by

sonication. Cell debris was removed by centrifugation and the

supernatant centrifuged a second time to further remove cell

debris. The resulting clarified cell-free lysate was used for further

studies. In a 0.5 mL reaction, 10 mg MBP-Hjr and incubated with

,1 mg SIRV2-infected S. islandicus extract at 4uC for 16 hours

with shaking in NEBuffer 3 (100 mM NaCl, 50 mM Tris-HCl,

10 mM MgCl2, 1 mM dithiothreitol, pH 7.9 @ 25uC). Anti-MBP

magnetic beads were added and affinity complexes were

magnetically separated and washed five times with 1.0 mL of

NEBuffer 3 to elute non-specifically bound protein. The remaining

specific protein complexes were eluted by boiling in 16 SDS-

PAGE loading buffer for 5 minutes and analyzed by SDS-PAGE.

Identification of interacting proteins by Mass
Spectrometry

Proteins eluted from MBP-Hjr capture experiments were

digested into peptides with trypsin and run on an LC/MS-MS

for peptide analysis at the New England Biolabs Proteomic

Facility. Peptide masses were compared to a database of S.

islandicus strain Y.N.15.51 (accession: NC_012623 [21]) and

Figure 1. SIRV2 Hjr cleavage is specific to four-way junction DNA. Substrates (A: single-stranded DNA, B: double-stranded DNA, C:
heteroduplex double-stranded DNA, D: hairpin DNA, E: four-way junction J3, F: three-way Holliday-like junction) were constructed as described in
Materials & Methods and 59 labeled with fluorescence for detection (as indicated by a black circle). Distilled water (-), Hjr (S) (20 nM) or T7
endonuclease I (T7) (7.5 nM) was incubated with 100 nM substrate in 16ThermoPol Buffer at 55uC for 30 minutes. Reaction products were separated
by 20% denaturing PAGE and fluorescence detected by a GE Typhoon scanner.
doi:10.1371/journal.pone.0023668.g001
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SIRV2 protein sequences using Spectrum Mill software (Agilent

Technologies). Peptides that did not exactly match the amino acid

sequences in the database, had alternatively charged states, or

were modified by phosphorylation or glycosylation were not

scored as positives. The sequence of host S. islandicus LAL 14/1 is

not publicly available, forcing the use of data from closely related

strains, so the list of identified proteins is expected to be an

underestimate of true positive interactors in the actual extract.

Data was filtered for quality with an MS/MS Score cut off of 15.

Proteins from S. islandicus or SIRV2 were identified by sequence

comparison using a BLAST [24] similarity score cut off of E,0.1.

Interacting proteins identified by mass spectrometry were

tabulated and grouped according to their presumed functional

role.

Interaction between Hjr and SIRV2gp26 coat protein
To directly test the interaction between Hjr and SIRV2gp26

coat protein in vitro, anti-MBP::MBP-Hjr magnetic beads (hereaf-

ter called MBP-Hjr affinity beads) were prepared by mixing 10 mg

MBP-Hjr with 0.1 mg anti-MBP magnetic beads pre-equilibrated

in NEBuffer 3 (New England Biolabs). Bead complexes were

mixed thoroughly and incubated at 4uC with shaking for 1 hour.

A magnet was applied and supernatant was decanted and bead

complexes were washed 5 times with 16NEBuffer 3. These MBP-

Hjr affinity beads (10 mg) were incubated with approximately

10 mg SIRV2gp26 prepared as described earlier at 25uC for

2 hours with shaking in 0.5 mL 16 NEBuffer 3. Affinity

complexes were separated by a magnet and washed five times

with 1.0 mL of NEBuffer 3 to remove any non-specifically bound

protein. Protein complexes were eluted by boiling in 16 SDS-

PAGE loading buffer for 5 minutes and analyzed by SDS-PAGE.

Background binding was assessed using MBP affinity beads

prepared with unfused MBP (anti-MBP::MBP5).

Results

SIRV2 Hjr cleaves four-way junction but not branched
DNA

Previously described viral resolving enzymes cleave a variety of

branched DNA structures formed during replication [11,25,26].

To test if Hjr substrate requirements parallel those of other viral

resolving enzymes, Hjr and bacteriophage T7 endonuclease I

activities on the panel of DNA substrates depicted in Figure 1 were

compared. In contrast to T7 endonuclease I, Hjr only cleaves four-

way junction DNA and is inactive on single- or double-stranded

DNA, hairpin DNA, heteroduplex loops (bulges), and three-way

Holliday-like junctions (Figure 1). S. solfataricus Hje shows a

similarly narrow substrate range and only cleaves four-way

junction DNA structures [9].

Hjr activity on four-way junction DNA
To identify DNA structural elements and sequences required for

Hjr cleavage, activity on a variety of four-way junction DNAs was

examined. First, Hjr was tested on plasmid substrates containing

junctions that resemble hairpin four-way junction substrates

formed during SIRV2 replication in vivo. Plasmid pUC(AT)

contains an AT-rich hairpin four-way junction and has been used

as a substrate to study T7 endonuclease I and fowlpox resolving

enzyme (Figure S1A) [23,27]. Plasmid pEMM2 includes a hairpin

four-way junction that mimics the sequence formed at the SIRV2

concatamer junctions during replication (Figure S1B). Hjr cleaves

the pUC(AT) four-way junction to convert closed circular

pUC(AT) to a linear form (Figure 2A). Hjr also cleaves the four-

way junction structure in plasmid pEMM2 to a linear form (data

not shown). The Hjr-cleavage site was mapped by restriction

fragment length analysis using XmnI and HindIII and shown to be

specific for the DNA four-way junction (Figure S2). Relaxed

nicked and linear pUC(AT) and pEMM2 are not substrates,

presumably because the four-way junctions do not form in the

absence of supercoiling (data not shown). In addition, plasmids

lacking four-way junctions are also not substrates (data not shown).

Hjr cleavage was then tested on a synthetic four-way junction

designed to mimic possible structures formed during SIRV2

replication. The SIRV2 cruciform sequence allows four-way

junction motion along the duplex and as the four-way junction

migrates along the substrate, the crossover points may vary. The

Hjr dimer recognizes four-way junction structures and makes a

nick on pairs of four-way junction strands [2]. Hjr nicks strands 1

and 3 (Lanes 1, 3) at three paired sites and makes two paired nicks

on the strands 2 and 4 of SIRV2 four-way junction DNA (Lanes 2,

4) (Figure 2B, C). The observed multiple cleavage sites could

reflect different four-way junction configurations due to migration,

each cleaved at a fixed distance from a crossover point but at

different positions relative to the end or alternatively multiple

cleavage sites at a single crossover point.

After initial characterization of Hjr activity with the mobile

SIRV2 four-way junction, an alternate well-characterized fixed

four-way junction DNA substrate (Junction 3 (J3)) was used for

further detailed characterization. By utilizing the well-defined

junction J3 as a substrate for Hjr cleavage, comparisons can be

made to other resolving enzyme cleavage patterns described in the

literature that use the same J3 substrate [9,28,29]. J3 is composed

of four hybridized DNA strands: two DNA strands are

continuously stacked and the other two strands base pair with

one continuous strand then switch to base pair with the other

continuous strand on the adjacent helix (Figure 3A) [30]. The pair

of DNA strands that maintain base stacking through the junction

are referred to as the continuous strands (strands h and x) while

strands that exchange between helices are the exchange strands

(strands b and r) (Figure 3A), and bases at the junction are stacked

with different strands on the two faces [31]. Local sequence

properties change the probability of adopting the stacking switch.

The four-way junction J3 favors an isoform conformation with

strands h and x as continuous strands and strands b and r as

exchange strands [31].

Four-way junction J3 was fluorescently labeled on either the b,

h, r, or x strand. Both Sso and Sis Hje cleave preferentially on the

continuous strands (h, x) of the J3 four-way junction (Figure 3B). In

contrast, Hjr preferentially cleaves the exchange strands (b, r) of

this same four-way junction (Figure 3B).

Requirements for SIRV2 Hjr four-way junction cleavage
The reaction conditions for Hjr cleavage were investigated in

detail using the synthetic J3 four-way junction. Despite the acidic

growth environment, the internal pH of Sulfolobus islandicus is

neutral. The pH optimum for Hjr activity reflects its native

cytosolic environment with optimal activity between pH 7 to 9,

partial activity at pH 6 and 10 (80% or 70% activity, respectively)

and no activity below pH 5 (Figure S3A). Consistent with previous

studies, a divalent cation (MgCl2 or MnCl2) is required for

resolving enzyme activity (Figure S3C) [28]. Hjr activity is optimal

between 0.5 and 20 mM MgCl2 (Figure S3B). Hjr is minimally

active with CaCl2 and not active with cofactors ZnSO4 or CoCl2
(Figure S3C). NaCl or (NH4)2SO4 are not required for Hjr activity

and do not stimulate cleavage (Figure S3D, E). However, Hjr

activity is inhibited by higher concentrations of NaCl (.250 mM)

and (NH4)2SO4 (.10 mM) (Figure S3D, E).

Characterization of SIRV2 Hjr
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SIRV2 Hjr four-way hairpin junction cleavage results in
linear DNA with hairpin termini

The last stage of SIRV2 replication is envisioned as a

concatamer joined by a hairpin four-way junction. Hjr is proposed

to introduce symmetrical nicks across this junction to resolve the

concatamers, producing single molecules with linear hairpin ends

[12]. To test this model, a plasmid-encoded hairpin four-way

junction was cut with SIRV2 and the nature of the ends was

determined as schematically depicted in Figure 4A. First, the four-

way junction containing plasmid, pUC(AT), was cleaved with Hjr

to generate a linear fragment and then incubated with buffer alone

or with T4 DNA ligase (Figure 4A). Lambda exonuclease was

added to digest DNA with free 59 ends. As predicted, linear

fragments are sensitive to lambda exonuclease digestion in the

absence of ligation due to free 59 ends (Figure 4B). However, linear

fragments treated with T4 DNA ligase are resistant to lambda

exonuclease cleavage suggesting that ends are nicked hairpins that

can be ligated to form contiguous covalently closed linear DNA.

Therefore, these data support a model in which Hjr cleaves

genome concatamers at hairpin four-way junctions to produce

single genome copies having nicked hairpin ends that can then be

sealed by DNA ligase to form covalently closed molecules.

SIRV2 Hjr interacts with host DNA binding proteins and
SIRV2 coat protein (gp26)

To investigate what protein partners might function with Hjr,

immunoprecipitation was used. MBP-Hjr was incubated with a

cell-free extract of SIRV2-infected S. islandicus, containing protein,

lipid, and nucleic acids. Components bound to the resolving

enzyme were captured by magnetic anti-MBP beads and washed

to reduce non-specific binding. Treatment of the washed beads

with Factor X protease released Hjr and bound proteins. Several

proteins in the 10–20 kD range and the 40–50 kD range were

observed by SDS-PAGE (data not shown).

Proteins captured by MBP-Hjr immunoprecipitation were

identified by mass spectrometry and are listed according to their

presumed functional role (Table S3). MBP-Hjr forms complexes

with proteins including the DNA binding proteins, Sso10b, Sso7d,

Cren7 and Alba (Table S3). Interactions between MBP-Hjr and

these DNA binding proteins could be a result of direct

protein:protein interactions or may result from binding between

MBP-Hjr and a nucleic acid that is in turn bound by a DNA

binding protein. Most strikingly, an interaction between Hjr and

the coat protein, SIRV2gp26 was identified with a high confidence

value (Table 1). Further studies using purified proteins were

implemented to verify this interaction with the SIRV2 coat

protein.

SIRV2 Hjr and SIRV2 coat protein (gp26) interact in vitro
The putative direct interaction between purified MBP-Hjr and

SIRV2gp26 was tested in vitro. As detected by SDS-PAGE,

magnetic anti-MBP::MBP-Hjr beads pulled down SIRV2gp26

(Figure 5). Control reactions with MBP5 alone did not pull down

SIRV2gp26 suggesting that the interaction is specific for Hjr

rather than for the MBP domain of the fusion protein.

Discussion

To address the molecular basis for substrate recognition and

cleavage, we characterized the resolving enzyme from the

Figure 2. SIRV2 Hjr cleaves four-way DNA junctions. (A) Cleavage of plasmid pUC(AT) by Hjr was monitored over time by agarose gel
electrophoresis. The mobility of nicked pUC(AT) was established by treating the plasmid with the nicking enzyme Nt. BstNBI (Lane N), and that of the
linear form by digestion with HindIII (Lane L). The NEB 1 kb DNA ladder (M) was used as a reference. (B) A four-way junction sequence and structure is
shown with uppercase nucleotides correspond to native SIRV2 sequence. Strands are designated 1–4. SIRV2 Hjr cleavage sites are noted by triangles.
(C) A four-way junction DNA substrate corresponding to the SIRV2 concatamer junction sequence (shown in B) was constructed by annealing four
oligonucleotides, three unlabeled and one FAM-labeled; differently-labeled substrates are designated 1, 2, 3, or 4. MBP-Hjr was incubated with these
(Lanes 1–4 respectively) at 55uC for 1 hour in 16ThermoPol Buffer. Reaction products were separated by denaturing 20% PAGE and quantified using
a phosphoimager. Fragment sizes are indicated.
doi:10.1371/journal.pone.0023668.g002
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Figure 3. S. solfataricus and S. islandicus Hje and SIRV2 Hjr cleaves of four-way junction J3 with opposite polarity. (A) Resolving enzyme
cleavage sites are shown on a schematic representation of four-way junction J3 with continuous strands colored blue (x) and black (h) and exchange
strands colored red (b) and green (r). Sso Hje and Sis Hje cleave four-way junction J3 junction two base pairs 39 from the junction in a symmetrical
fashion on the h and x continuous strands while Hjr cleaves two base pairs 39 from the junction in a symmetrical fashion on the b and r exchange
strands. (B) Four-way junction J3 DNA (100 nM) 59 FAM-labeled either on the h, b, r, x strand was incubated with 20 nM S. solfataricus (Sso Hje), S.
islandicus Hje (Sis Hje), or Hjr in 16ThermoPol Buffer at 55uC for 60 minutes. Reaction products were separated by denaturing 20% PAGE. S and P
represent substrate (34-mer) and product (18-mer) bands, respectively.
doi:10.1371/journal.pone.0023668.g003

Figure 4. SIRV2 Hjr cleaves hairpin four-way junctions to produce linear fragments with nicked hairpin ends. (A) Hjr was used to cleave
the hairpin four-way junction containing plasmid, pUC(AT), to generate linear fragments with nicked hairpin ends. The linear fragments were then
incubated with either buffer alone or T4 DNA ligase to seal nicks. Lambda exonuclease (gray shape) was then added to degrade DNA having free 59
ends (dotted lines). (B) Hjr cleaved pUC(AT) products were incubated with buffer alone (-) (Lane 1), with lambda exonuclease (Lane 2), with T4 DNA
ligase (Lane 3) or with T4 DNA ligase then lambda exonuclease (Lane 4) and separated by agarose gel electrophoresis.
doi:10.1371/journal.pone.0023668.g004
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hyperthermophilic virus, SIRV2. Hjr cleaves four-way junctions

without cleaving other related DNA structures and contrasts with

the bacteriophage resolving enzymes T4 endonuclease VII and T7

endonuclease I that recognize a wide range of DNA structures

including four-way junctions, Y-structures, heteroduplex loops,

single-strand overhangs, nicks, gaps, apyrimidinic sites, and base

mismatches [32,33,34]. T4 endonuclease VII and T7 endonucle-

ase I have large electropositive areas on the protein surface that

bind to the four-way junction DNA backbone over a large area

and are flexible and broad enough to allow binding and cleavage a

variety of branched DNA substrates [35,36]. Unlike bacteriophage

resolving enzymes, Sso Hje, Sso Hjc, and SIRV2 Hjr substrate

specificity is narrow and limited to X-shaped four-way junctions.

The Sso Hje three-dimensional structure provides a model to

explore elements that determine the narrow substrate range of Sso

Hje and SIRV2 Hjr. Electropositive patches are arranged on the

Sso Hje and Sso Hjc DNA binding surface in an X-shaped pattern

[4,18]. Presumably, this pattern of electropositive residues favors

binding of X-stacked four-way junctions by Sso Hje and Hjc (and

by extension, SIRV2 Hjr). Further structural studies of SIRV2 Hjr

in complex with DNA will further reveal if positively charged

surface amino acids are arranged in a pattern to bind X-stacked

four-way junction substrates to confer substrate specificity.

SIRV2 Hjr has a unique strand cleavage preference that may

reflect fundamental differences in Holliday junction recognition

and cleavage. This preference is observed even while sharing

sequence similarity with Sso Hje and Sso Hjc. Sso Hje is specific

for cleavage of continuous strands in four-way junction J3 while

Sso Hjc cleaves both continuous and exchange strands. SIRV2

Hjr presents a third cleavage pattern by nicking exchange strand

pairs. Previous studies of Sso Hje and Hjc have suggested a

structural basis to account for differences in resolving enzyme

specificity and cleavage patterns (1). Sso Hje and Sso Hjc are both

homodimers stabilized along the dimer interface by interactions

between monomer amino acids (Figure 6A). Even thought the

dimer interface is distal to the DNA binding region, Middleton

and coworkers have argued that positioning of the dimers

influences positioning of adjacent catalytic residues on the DNA.

When Sso Hje and Sso Hjc three-dimensional structures are

superimposed, the main chain Ca positioning is structurally well

conserved with the largest differences observed at the dimer

interface (Figure 6A). Specifically, an insertion of three large

hydrophobic residues (M77, F78, M80) in a loop between helix a2
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Figure 5. SIRV2 Hjr interacts with SIRV2gp26 coat protein in
vitro. The interaction of MBP-Hjr and SIRV2gp26 coat protein was
confirmed by immunoprecipitation. Protein complexes were eluted and
analyzed by SDS-PAGE stained with Coomasie Blue dye: Lane 1:
SIRV2gp26. Lane 2: MBP-Hjr. Lane 3: anti-MBP beads:MBP-Hjr. Lane 4:
anti-MBP beads. Lane 5: anti-MBP beads:MBP5+SIRV2gp26. Lane 6: anti-
MBP beads:MBP-Hjr+SIRV2gp26.
doi:10.1371/journal.pone.0023668.g005
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and beta strand bE of each Sso Hje monomer shifts the dimer

conformation and may position catalytic residues for cleavage of

continuous strands of a four-way junction. In contrast to Sso Hje, a

relatively short Sso Hjc loop connecting helix a2 and beta strand

bE may confer additional flexibility to allow cleavage of both

exchange and continuous strands in a four-way junction. SIRV2

Hjr, like Sso Hje, also contains an insertion in the equivalent loop

although the sequences diverge. Most notably, SIRV2 Hjr

contains three cysteines (C77, C82, C84) in the insertion loop.

These cysteines may form intra- or inter-monomer disulfide bonds

to alter resolving enzyme conformation and thereby position

adjacent catalytic residues to favor cleavage of exchange rather

than continuous strands (Figure 6B). Therefore, variations in

resolving enzyme dimer interfaces may uniquely position catalytic

residues for pairwise nicking on either the continuous (Sso Hje),

exchange (SIRV2 Hjr), or both (Sso Hjc).

The SIRV2 Hjr substrate cleavage specificity has the charac-

teristics to function as a replication resolving enzyme in a poxvirus-

like mode of viral DNA replication. In such a mechanism, linked

genome concatamers are resolved via cleavage during replication

[12]. SIRV2 Hjr action on such hairpin four-way junction

concatamer DNA would produce linear DNA products with

nicked hairpin termini, which in turn could serve as nicked

templates for further replication. Therefore, the SIRV2 resolving

enzyme likely plays a central role in the final stages of SIRV2

replication and functions in the general mechanism for separating

concatamers during replication of linear viral genomes.

Finally, we have shown that in addition to cleaving four-way

junctions, Hjr may have a role in viral assembly. It is tempting to

speculate that an interaction between Hjr and coat protein could be the

signal for assembly of the coat protein into a superfilament that

surrounds the resolved SIRV2 genome, thereby forming the virion

body. Known signals for viral packaging include DNA sequences,

RNA structures, and non-structural proteins that recruit viral structural

proteins to initiate assembly [37,38,39,40,41,42,43,44,45,46,47,48,49].

For instance, vaccinia virus nucleates virion assembly via a transient

interaction between a hairpin terminus-binding protein, I6, and the

vaccinia virus coat protein [48,49]. Therefore, like vaccinia virus I6

protein, the interaction between Hjr and coat protein could ensure that

resolved, single genome copies rather than concatamers are packaged

into virus particles. In addition, because both Hjr and coat protein

sequences are highly conserved among rudiviruses, this nucleation

model could also serve as a general strategy for virion packaging in

related rudiviruses, Acidianus Rod-Shaped virus 1 (ARV1), Stygioglobus

rod-shaped virus (SRV), and Sulfolobus islandicus rod-shaped virus 1

(SIRV1). Given the similarity between archaea and eukarya, it is also

conceivable that similar encapsidation mechanisms may also exist in

eukaryotic viruses.

Supporting Information

Figure S1 Four-way junction DNA structures and se-
quences. (A) A poly(AT)20 cassette in pUC(AT) can form a four-

way junction structure. (B) pEMM2 contains a four-way junction

sequence at the junction of SIRV2 concatamers. These figures

represents one of many conformations of possible mobile four-way

junction structures. The four-way junction center may shift from

what is represented. Gray regions are vector sequence.

(PDF)

Figure S2 Mapping resolvase cleavage site on plasmid
pEMM2. Plasmid pEMM2 contains a four-way junction

sequence mimicking the four-way junction formed at SIRV2

concatamer junctions. pEMM2 (100 nM) was incubated with T7

endonuclease I (7.5 nM) (Lane 2), MBP-Hjr (20 nM) (Lane 3), or

MBP-Hjr (2 nM) (Lane 4) at 37uC (T7 endonuclease I) or 55uC
(MBP-Hjr) for 30 minutes. Then reaction products were then

digested with 10 Units of XmnI at 37uC for one hour and

separated by agarose gel electrophoresis. As a control (Lane 1),

1 mg pEMM2 was digested with 10 Units of XmnI and HindIII

(proximal to the four-way junction) to generate a 921 bp and

1851 bp fragment. pEMM2 was digested with XmnI alone (Lane

5), XmnI and HindIII (proximal to the four-way junction).

Plasmid not cleaved by T7 endonuclease I or SIRV2 Hjr and then

cleaved with XmnI will generate a linear 2772 bp band. As

expected, a double stranded break generated from T7 endonu-

clease I and MBPNSIRV2 Hjr cleavage mapped to the cruciform

region of pEMM2 to generate a ,875 bp and 1897 bp fragment

(Lanes 2, 3, 4). (B) A plasmid map of pEMM2 illustrating HindIII,

XmnI and cruciform cleavage site.

(PDF)

Figure S3 Requirements for SIRV2 Hjr four-way junc-
tion cleavage. Hjr cleavage activity was assayed with DNA four-

way junction J3 under a variety of reaction conditions to

determine requirements for cleavage. Four-way junction J3

(FAM-labeled on strand b) (100 nM) and Hjr (20 nM) were

incubated in reaction buffer at 55uC for 30 minutes. Reaction

buffers varied pH (4–10), divalent cation (MgCl2, MnCl2, ZnSO4,

CaCl2, CoCl2), concentration of NaCl (0–500 mM), NH4SO4 (0–

200 mM), or MgCl2 (0–100 mM). Reactions were quenched by

addition of 50% formamide and 5 mM EDTA. Reaction products

were separated by 20% denaturing PAGE and fluorescence

quantified using a GE Typhoon scanner. S and P represent

substrate (34-mer) and product (18-mer) bands, respectively.

(PDF)

Figure 6. Structural variation at the Sso Hje and Hjc dimer
interface modulates cleavage specificity. (A) Sso Hje (accession:
1OB8) and Sso Hjc (accession: 1HH1) three-dimensional structures were
aligned using MacPymol. Sso Hje monomers (red and blue) are
visualized by a surface view to highlight the dimer arrangement. A
domain formed by helix alpha-2 and beta strand beta-E form part of the
dimer interface (arrow). In insertion in the loop between helix alpha-2
and beta strand beta-E (arrow) (Sso Hje: red and blue; Sso Hjc: green)
shifts dimer conformation and may confer strand cleavage specificity.
(B). The amino acid sequence of the Sso Hje, Sso Hjc, and SIRV2 Hjr
dimerization interface helix alpha-2 and beta strand beta-E were aligned
by Clustal W and the insertion loop is underlined. Amino acids
conserved between Sso Hje, Sso Hjc, and SIRV2 Hjr are shaded in black
and those conserved between Sso Hje and SIRV2 Hjrare shaded in gray.
doi:10.1371/journal.pone.0023668.g006
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