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Abstract: The application of microorganisms in azo dye remediation has gained significant atten-
tion, leading to various published studies reporting different methods for obtaining the best dye
decolouriser. This paper investigates and compares the role of methods and media used in obtaining
a bacterial consortium capable of decolourising azo dye as the sole carbon source, which is extremely
rare to find. It was demonstrated that a prolonged acclimation under low substrate availability
successfully isolated a novel consortium capable of utilising Reactive Red 120 dye as a sole carbon
source in aerobic conditions. This consortium, known as JR3, consists of Pseudomonas aeruginosa strain
MM01, Enterobacter sp. strain MM05 and Serratia marcescens strain MM06. Decolourised metabolites
of consortium JR3 showed an improvement in mung bean’s seed germination and shoot and root
length. One-factor-at-time optimisation characterisation showed maximal of 82.9% decolourisation
at 0.7 g/L ammonium sulphate, pH 8, 35 ◦C, and RR120 concentrations of 200 ppm. Decolourisation
modelling utilising response surface methodology (RSM) successfully improved decolourisation
even more. RSM resulted in maximal decolourisation of 92.79% using 0.645 g/L ammonium sulphate,
pH 8.29, 34.5 ◦C and 200 ppm RR120.

Keywords: azo dyes; Reactive Red 120; decolourisation; phytotoxicity; optimisation; RSM

1. Introduction

Azo dyes account for 70% of the 9.9 million tons of industrial dye used annually,
with a global turnover valued at USD 30.42 billion [1,2]. The continued demand for dyes
and pigments causes an increase in the supply rate of 3.5% per annum. Most of the
dyes synthesised contain azo compounds and are predominantly used in textile, paper,
food, printing, cosmetic and leather industries [3]. These azo dyes are extensively used
in fabric manufacturing due to low cost, ease of preparation, fastness, versatility and
intensity of the colours [4]. Certain azo dyes contain chemical groups, which have a high
affinity for metal ions [5]. These enhanced properties provide a high degree of chemical,
biological and photocatalytic stability. Amongst azo dyes, Reactive Red 120 (RR120) is one
of the widely used dyes in the textile industry due to it providing a high degree of chemical,
biological and photocatalytic stabilities [1]. Being a diazo, RR120 is one of the hardest and
most durable of reactive dyes and can resist degradation. Nevertheless, their resistance
to breakdown due to time, exposure to sunlight, detergents, water and microorganisms
results in poor degradation in the environment [6].
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Pollution and poisoning by azo dyes still happen to this day. With an ever-increasing
number of cancers, dye plays important role in contributing as a breakdown product
producing toxic amines and benzene [7]. These toxic metabolics easily get into us through
consuming water and fish exposed to dye waste. Discharge of untreated textile waste
into nearby streams and river can cause anoxic conditions that are lethal to aquatic or-
ganisms [8]. Therefore, chemical treatment of the effluents is often employed to treat the
waste. Chemical processes, such as the oxidative process, Fenton’s reagent, ozonation,
photochemical, cucurbituril and electrochemical destruction, are examples used for de-
colourisation purposes [9]. This method is highly effective, faster, and most importantly
can be done on large scale; but the drawback of this mechanism is quite distressing [9].
Some of these processes are dye-specific, making mix dye eluents take several processes to
completely decolourise them. Moreover, the application of such technologies is usually
applied by high-end industrial producers and is limited to small scale manufacturers due
to the cost of handling and maintenance. Therefore, the removal of azo dyes requires an
alternative cheap and environmentally friendly approach whereby the role of bacteria
could provide such.

The use of microorganisms in treating dye wastes is one of the most favourable
processes in comparison to other applications due to its practicality, productivity, simplicity,
and inexpensiveness [10]. Bioremediation allows the bacteria to consume the available
dye compound during cell propagation. Unlike biosorption, even though the dyes have
been removed from the wastewater, the absorbate still holds the dye compounds which
requires further physio-chemical treatment to reduce it, whereby decolourisation using
bacteria solves both problems by eliminating the dye compound and reducing the need for
chemical exposure [11]. Various azo dye decolourisation using bacteria, such as Reactive
Black 5 [12], Black 5 [13], Methyl Orange [14], Acid Red [15], and Green 19 [16], have been
reported before.

For over a century, microbial decolourisation of azo dyes has been an unsolved puzzle
among scientists. Previously, in microbial azo dye decolourisation, the focus was centred
on isolating bacteria or consortia that have a higher azo dye tolerance level needed as a tool
for bioremediation [17,18]. To achieve this, various additional carbon sources and a higher
concentration of co-substrate were introduced. During the last ten years, the attention
has shifted towards isolating microorganisms with the ability to decolourise azo dyes
with complete mineralisation ability [14]. The focus changed mainly because degraded
metabolites of azo dye were found to be toxic [19].

Improper cleavage of azo dyes during the decolourisation process could result in toxic
metabolites that are far more toxic than the parent compound. As such, these compounds
generally consist of benzene and aniline groups, which are a precursor to carcinogenic
and mutagenic effects [19]. Even though decolourisation has occurred, there is always a
chance that colourless metabolites produced by the bacteria end up being toxic. A race
to find the best strains to solve azo dye pollution ended up manifesting more problems
rather than providing a good solution. This dilemma has been going on for the past few
decades, leading to various methods and media used for the purpose of isolation. However,
the role of method and its influence on media used for azo dye decolourisation has not
been compared nor studied before. Having this understating could provide crucial data
needed to better isolate azo dye consuming bacteria. Since each media composition is
different to the others, the role of media in supporting azo dye decolourisation needs to
be elucidated.

In this study, dye contaminated samples from the heavily polluted industrial waste
site were obtained from Juru River in Malaysia. These samples were examined using a
different method of isolation to identify bacterial strains able to decolourise RR120 as sole
carbon source. The role of different media compositions and co-substrates in sustaining
maximum RR120 decolourisation was also further investigated. The toxic level of the
produced metabolites was assessed using mung beans. Since decolourisation of azo dye
involving diazo as a sole carbon source is a slow process, factors affecting decolourisation
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were optimised to reinforce the process of degradation. Further optimisation was done
using a surface methodology approach (RSM) which utilised a mathematical and statis-
tical approach to develop and study the interaction between two factors. To the best of
our knowledge, this is the first isolation of aerobic decolourisation of RR120 by a novel
bacterial consortium.

2. Materials and Methods
2.1. Chemicals, Reagents, and Equipment

The Reactive Red 120 (RR120) used in this research was purchased from Sigma,
Aldrich, CO, USA. Nutrient agar, yeast extracts and nutrient broth were obtained from
Friedemann Schmidt Shd. Bhd. Malaysia. Tris and acetate buffers were obtained from
Merck KGaA, Germany. Meanwhile, other chemicals used in this study were obtained
from Fisher Malaysia.

2.2. Sample Soil and Water

Juru River was chosen as a prime location for sampling as the state contributed
28.2% of total water pollution originating from the textile industry [20]. Most of these
industrial factories are located near to Juru Riverside. Industrial textile wastewater effluent
was collected in a 20 mL sterilised falcon tube and samples were brought to the lab and
processed within 24 h. For sample preparation, 10 uL cycloheximide was introduced to
prevent fungal growth. The locations of samples collected were recorded using the map
coordinates provided by Google Earth to locate the exact locations from which the samples
were collected (Table 1)

Table 1. GPS location list of sampling area sites.

Location GPS

Sungai Juru, Pulau Pinang 5◦20′47.3” N 100◦25′05.1” E
Sungai Juru, Pulau Pinang 5◦20′46.7” N 100◦25′04.5” E
Sungai Juru, Pulau Pinang 5◦20′42.8” N 100◦25′06.7” E
Sungai Juru, Pulau Pinang 5◦20′38.1” N 100◦25′10.1” E

2.3. Screening for RR120 Dye Decolourising Bacteria

The study was initiated by studying the best for in obtaining bacteria capable of
decolourising Reactive Red 120 as a sole carbon source.

2.3.1. Method 1: Isolation Using Nutrient Broth

Method number 1 is commonly used to rapidly isolate dye decolourising bacteria.
This involves samples inoculated in nutrient broth containing some sort of azo dye [21–23].
Briefly, a 1 mL of sample was inoculated in 100 mL nutrient broth containing 100 ppm
filter-sterilised RR120 dye. The culture was incubated in a 250 mL conical flask at room
temperature under static conditions for 72. After 72 h of incubation, the sample was
streaked in nutrient agar containing 100 ppm RR120. The morphologically distinct bacterial
isolates showing a clear zone of decolourisation were selected for identification.

2.3.2. Method 2: Isolation through a Straightforward Process

Method 2 is a straightforward method for isolating dye decolourising bacteria without
the process of acclimatisation. This was done by inoculating 1 mL sample in minimal salt
medium (MSM) containing 100 ppm RR120 [24,25]. The composition used MSM in g/L
of dH2O was pH (7.0 to 7.2) yeast extract (1.0) Na2HPO4 (1.0), KH2PO4 (1.0), NaCl (1.0),
MgSO4.7H2O (0.5), CaCl2 (0.01) [26]. A 1 mL sample was incubated in 100 mL sterilised
MSM in a 250 mL conical flask containing 100 ppm filter-sterilised RR120. The culture
medium was incubated for 72 h in shaking condition at 31 ◦C. The dye decolourising strain
was isolated using streaking on MSM agar containing 100 ppm RR120, which showed a
clear zone of decolourisation.
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2.3.3. Method 3: Isolation through Long Acclimatisation Process

Method 3 involves the acclimation of bacterial strains to improve decolourisation
capacity by slowly introducing an increased concentration of RR120 while reducing sub-
strate and carbon availability [27,28]. A 1 mL sample was first inoculated in nutrient
broth containing 25 ppm RR120 and was incubated at 31 ◦C for 72 h in shaking conditions
(150 rpm). A 1 mL of sample was taken from a previously grown culture and incubated in
another 100 mL of MSM-containing 8 g/L glucose, 3 g/L yeast extract and 25 ppm RR120.
The inoculated medium was incubated at 31 ◦C under shaking conditions (150 rpm) for
a week. From this suspension, 1 mL was transferred into fresh MSM-containing 5 g/L
glucose and 3 g/L yeast extract with 50 ppm RR120. A similar successive transfer was
done with 2 g/L glucose, 3 g/L yeast extract and 100 ppm RR120. The next successive
transfer was done with 3 g/L yeast extract and 150 ppm RR120 followed by 1 g/L yeast
extract and 200 ppm RR120. The final successive transfer was done with MSM containing
200 ppm RR120 only. For each successive, the culture medium was incubated at 31 ◦C for
a week in shaking conditions. Those bacterial strains that grew on MSM (no glucose and
yeast extract added) containing 200 ppm RR120 as the sole carbon source was selected for
further identification.

2.4. Analytical Method

Decolourisation of Reactive Red 120 was determined by colourimetric determination.
The absorbance of each solution was determined using a 525 nm wavelength against blank
using a Shimadzu U.V. Mini 1240 spectrophotometer. Meanwhile, bacterial growth was
measured using a colony-forming unit per millilitre technique (CFU/mL) and optical
density (OD) at 600 nm [21].

%Decolourisation =
Initial absorbance− f inal absorbance

Initial absorbance
× 100.

2.5. Identification of Isolates

The biochemical test was done to determine the bacteria species based on physiological
differences. The included test was Gram staining, oxidase/catalase test, indole and nitrate
production, citrate, Voges-Proskauer, urease and sugar test. The genomic DNA of the
selected strains were extracted with the innuPREP extraction kit (Analytik Jena GmbH,
Jena, Germany), following the manufacturer’s recommended procedure. The Polymerase
chain reaction (PCR) product was produced using a Biometra T-Gradient Thermocycler.
The mixture contains 1 µL Template DNA, 14.2 µL dH2O, 1.2 µL of 25 mM MgCl2, 2 µL of
10 × Taq polymerase buffer, 0.5 µL of 10 mM Deoxynucleotide triphosphate mix, 0.5 µL of
10 µM forward primer, 0.5 µL of 10 µM reverse primer, and 0.1 µL Taq DNA polymerase.
PCR universal primer; 27F: 5′-AGA GTT TGA TCC TGG CTC AG-3′ and 1492R: 5′-TAC
GGT TAC CTT GTT ACG ACT T-3′, corresponding to forward and reverse primers of 16S
rRNA, was used to amplify the 16S rRNA gene of the isolates. The thermal cycler protocol
was comprised of an initial 4 min denaturation at 95 ◦C for 1 cycle, followed by 30 cycles
of 1 min denaturation at 95 ◦C, primer hybridisation at 52 ◦C for 1 min and elongation
at 72 ◦C for 1 min with 1 final cycle for a 7 min extension step at 72 ◦C. Successful PCR
product was purified using a GeneJET Gel Extraction and DNA Cleanup Kit (Thermo
Scientific, Waltham, MA, USA) before a sequencing process using an ABI 3730xl DNA
Analyzer (Applied Biosystems, Foster City, CA, USA).

2.6. Phylogenetic Analysis

The top 20 16s rRNA sequence with the highest similarity of the related isolate’s
sequence was obtained from GenBank using BLAST (Basic Local Alignment Search Tools)
(www.ncbi.nlm.nhi.gov/BLAST/bl2seq/, accessed on 10 August 2020). Using Clustal
Omega program (www.ebi.ac.uk/Tools/msa/clustalo/, accessed on 10 August 2020),
the 20 sequence from the GenBank was aligned with a target isolate’s gene. The ob-

www.ncbi.nlm.nhi.gov/BLAST/bl2seq/
www.ebi.ac.uk/Tools/msa/clustalo/
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tained aligned files were analysed using evolutionary analysis software PHYLIP v 3.6.
The neighbour-joining method was used to infer evolutionary history [29]. Bacillus cereus
ATCC 14,579 (Accession no. MG708176) was used as an out-group to construct the phylo-
genetic tree.

2.7. Media Selection for Optimal RR120 Decolourisation

The effect of media composition on the obtained consortium for RR120 decolourisation
was investigated. Five media with different composition was used for the best media
selection (Table 2). Each consortium was inoculated in MSM containing filter-sterilised
50 ppm RR120 and incubated at room temperature in shaking conditions (150 rpm) at 31 ◦C.
The shaking condition was done regardless of the original media condition to prevent
anaerobic decolourisation. Resting cells were used to remove any nutrient residue from
previously cultured medium that could influence dye decolourisation. Reading of dye
decolourisation was taken at 24 h.

Table 2. Different media composition used for finding suitable dye decolourisation medium.

MSM Sample Media Composition (g/L) Trace Element
(mg/L) Dye Reference

1. Textile waste water

• NaCl (1.0)
• CaCl2.2H2O (0.1)
• MgSO4.7H2O (0.5)
• K2HPO4 (1.0)
• Yeast extract (3.0)

Reactive Red 120 [30]

2. Textile waste water

• NaCl (1.0)
• CaCl2.2H2O (0.1)
• MgSO4.7H2O (0.5)
• KH2PO4 (1.0)
• NH4.SO4 (2.0)
• Na2HPO4 (1.0)
• yeast extract (5.0)

-
Direct Red 81,
Acid Red 88,

Reactive Black 5
[31]

3. Waste water

• NaCl (1.0)
• CaCl2.2H20 (0.1)
• MgSO4.7H2O (0.5)
• KH2PO4 (1.0)
• Na2HPO4.2H2O (1.0)
• Yeast extract (1.0)

- Reactive Red 120 [26,32]

5. Waste water

• Na2HPO4.2H2O (31.7)
• KH2PO4 (3)
• KH4Cl (0.5)
• NaCl (0.5)
• MgSO4.7H2O (0.12)
• Glucose (8.0)

• CaCl2 (4.0) Reactive Red 180 [33]

4. Sewage

• Na2HPO4.2H2O (12.0)
• KH2PO4 (2.0)
• NH4NO3 (0.50)
• MgCl2.6H2O (0.10)
• Ca (NO3)2.4H2O (0.050)
• FeCl2.4H2O(0.0075)

• ZnCl 3 (50)
• MnCl2.4H2O

(30)
• CoCl2.6H2O

(200)
• NiCl2.6H2O

(20)
•

Na2MoO4.2H2O
(30)

• H3BO3 (300)
• CuCl2.2H2O

(10)

Naphthalene sulfonic
Acid [34]



Int. J. Environ. Res. Public Health 2021, 18, 2424 6 of 26

2.8. Phytotoxicity Study Using Vigna Radiata

The phytotoxicity study was carried out using mung bean (Vigna radiata). All the
mung bean seeds were first sterilised using 70% ethanol for 3 min followed by 5% sodium
hypochlorite for another 3 min [35]. Then those sterilised mung beans were washed 5 times
with sterilised dH2O and soaked for 3 min in sterilised dH2O [36]. Decolourised culture
medium on the 24 h was centrifuged at 10,000× g for 30 min at 4 ◦C and the resulting
supernatant was filter-sterilised using a 0.22 µm pore filter. The sample was given 3 mL of
filter sterilised untreated/treated sample per day. The control set was carried out using
distilled water at the same time. The germination (%) and length of shoot and root was
recorded after day 7.

2.9. Effect of Co-Substrate on Decolourisation of RR120

The role of co-substrate in improving the decolourisation activity of the obtained
consortium was investigated in this study. The purpose of the experiment was to deter-
mine the ability of said bacteria to decolourise RR120 without any available co-substrate.
This was done by removing any glucose and yeast extract from the media composition
based on Table 2.

2.10. Effect of Yeast Extract on RR120 Decolourisation

Decolourisation without any presence of co-substrate is a relatively slow process and
rare. Therefore, to enhance the decolourisation azo dye, the yeast extract is supplemented
as a co-substrate. The yeast concentration of 0 g/L to 5 g/L with an interval of 0.5 g/L was
supplemented into 100 mL of the best MSM in sustaining decolourisation of RR120 as the
sole carbon source.

2.11. Optimisation of RR120 Decolourisation Using One-Factor-At-A-Time

The best medium in sustaining in maximum RR120 decolourisation based on Table 2
and its condition was further optimised in this study. Four different parameters, such as
nitrogen source and concentration, pH, temperature, and dye concentration, were used to
study the growth and decolourisation rates. Five different nitrogen sources were used in the
experiment—0.5 g/L each of ammonia chloride (NH4Cl), ammonium sulphate (NH4SO4),
potassium nitrate (KNO3), urea (CH4N2O) and magnesium nitrate (Mg(NO3)2). A pH
ranging from 5 to 9 was optimised using appropriate buffers. The varied pH was adjusted
using different overlapping buffers systems whereby at pH 5.0 and 6.0, 50 mM a citric buffer
was used, while for pH 6.0, 7.0 and 8.0, 50 mM, phosphate buffer was utilised. For pH
8.0 and 9.0, 50 mM, Tris buffer was used. To study the effect of temperature on RR120
decolourisation, temperature ranging from 20 to 50 ◦C were used. The ability of bacteria to
degrade a high concentration of RR120 was studied to ascertain the optimum concentration
of RR120. RR120 concentrations of 25, 50, 100, 150, 200, 300, 400, and 500 ppm.

2.12. Optimisation of RR120 Decolourisation Using Response Surface Methodology

Statistical optimisation using RSM was carried out based on one-factor-at-a-time
(OFAT) factors range levels. A Design Expert v 13.0 (Trial Version, Stat- Ease Inc., Min-
neapolis, MN, USA) was utilised to optimise the factors. Two stages of optimisation
were done using response surface methodology to understand the interaction between
factors involved in improving RR120 decolourisation by consortium JR3. Significant factors
were screened using Plackett-Burman and further optimisation was done using a central
composite design.

2.12.1. Statistical Optimisation Using Plackett-Burman and Central Composite Design

The Plackett-Burman design was chosen to define the most appropriate parameters
among the different factors. Design Expert v 13.0 was used for this experiment, along with
four parameters selected for a total of 12 experimental runs. Each parameter was analysed
at two different levels (low and high) as shown in Table 3. After a variance analysis was
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conducted, factors with p < 0.05 were considered significant and were further optimized
using a central composite design.

Table 3. Plackett-Burman design for tested factors.

Factor Parameter Unit Low Level (−1) High Level (+1)

A Ammonium
sulphate g/L 0.3 1.0

B pH 6.5 8.5
C Temperature ◦C 31 40
D RR120 ppm 150 300

2.12.2. Optimisation of Significant Factors Using a Central Composite Design

A central composite design was used to analyse the optimal RR120 decolourisation by
consortium JR3 and the interaction among the factors with 30 experimental runs. The levels
of four significant factors and their levels are illustrated in Table 4. Based on the conforma-
tion run resulting from central composite design (CCD) analysis, an experiment was done
to assess the best condition for RR120 decolourisation by consortium JR3.

Table 4. Central composite design for tested factors.

Factor Parameter Unit Low Level (−1) High Level (+1)

A Ammonium
sulphate g/L 0 1.35

B pH 5.5 9.5
C Temperature ◦C 19 43
D RR120 ppm 75 375

2.13. Statistical Analysis

All the experiments were conducted in triplicate. Error bars are used to show exper-
imental errors (standard deviation of three determinations). Data from the experiments
were statistically analysed using GraphPad v3.5 (GraphPad Software Inc, San Diego, CA,
USA) and one-way analysis of variance was done using Tukey’s test.

3. Results
3.1. Determination of Reactive Red 120 Absorbance Pattern

Figure 1 shows the maximum absorbance of RR120 based on the absorption spectrum
at a range of 510 to 550 nm, where the highest peak was at 525 nm. This result is in
agreement with the previously reported RR120 maximum absorbance, which is within
the range of 525 ± 10 nm [26,30]. Hence, the decolourisation of RR120 was measured at
525 nm against the blank.

3.2. Isolation of RR120 Decolourising Bacteria

All three methods result in three different consortia. They are, namely, consortium
JR1 based on method 1, consortium JR2 based on method 2, and consortium JR3 based
on method 3. Initial screening results in 4 isolates (JR1-1, JR1-2, JR1-3 and JR1-4) from
consortium JR1, 2 isolates (JR2-1 and JR2-2) from consortium JR2 and 3 isolates (JR3-1. JR3-
2 and JR3-3) from consortium JR3. Method 1 yields a higher number of isolates followed
by method 3 and then method 2. All this isolate shows the ability to either decolourise
RR120 or simply to be able to proliferate under the presence of RR120. For now, all these
isolates have been clustered together to form a consortium based on the method of isolation.
Since the bacterium was isolated from a single consortium, the role of mutual symbiosis
between the bacteria might have a positive impact on the decolourisation rate of RR120.
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Figure 1. Scanning absorption spectrum of Reactive Red 120 at different wavelength (nm). Maximum
absorption was obtained at 525 nm.

3.3. Identification of Consortium JR1, JR2 and JR3

The results from the bootstrap analysis of 16S rRNA are consistent with the biochem-
ical properties and morphological results (Table 5). The phylogenetic analysis of isolate
JR2-2 and JR3-1 illustrated its similarity with the genus of Enterobacter species, which were
constructed with the foremost 20 sequences, which showed at least 98% in sequence iden-
tity (Figure 2). Isolate JR2-2 showed a sequence similarity of 393 with Enterobacter cloacae
AB2 [JX188069]. Where else, isolate JR3-1 did not closely match with any known subspecies,
thus it was identified as Enterobacter sp. MM05.

Isolate JR3-2 showed a strong bootstrap value associated with Pseudomonas aeruginosa
PJCI [MK802104], which was distinct from other Pseudomonas species, therefore it was iden-
tified and registered as Pseudomonas aeruginosa MM01 (Figure 3). However, both isolates,
JR1-1 and JR1-2, are not in the clade with other subspecies, therefore both are registered as
Pseudomonas sp. MM02 and MM03, respectively.

Table 5. Morphology and biochemical properties of the different isolates (+), strain positive; (-), strain negative.

Isolate Name
Gram
Stain-

ing
Oxidase Catalase VP

Nitrate
Reduc-

tion
Citrate

Indole
Produc-

tion
Urease Methyl

Red

Consortium
JR1

JR1-1 Pseudomonas
sp. MM02 - - - - + + - - -

JR1-2 Pseudomonas
sp. MM03 - - - - + + - - -

JR1-3 Serratia sp.
MM07 - - - + + + - + -

JR1-4 Vibrio sp.
MM09 - + + + + - - - -

Consortium
JR 2

JR2-1 Serratia sp.
MM08 - - - + + + - + -

JR2-2 E. cloacae
MM04 - - + + + + - + -

Consortium
JR 3

JR3-1 Enterobacter sp.
MM05 - - + + + + - - -

JR3-2 P. aeruginosa
MM01 - + + - + + - - -

JR3-3 S. marcescens
MM06 - - + + - + - + -
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examination. Bacillus cereus was the outgroup.

Meanwhile, isolates JR1-3, JR2-1 and JR3-3 illustrated a similarity with the genus
Serratia species, which was constructed from 20 sequences highly analogous in identity.
Isolate JR1-3 was identified as Serratia sp. MM07 and isolate JR2-1 as Serratia sp. MM08,
due to both strains having close similarity to Serratia sp. ZTB29 [MK773873] and Serratia
sp. S119 [JN871231], respectively (Figure 4). Based on the bootstrap value, isolate JR3-3
showed sequence similarity with a value of 598 to Serratia marcescens [KY859808], thus,
it was registered under GenBank as Serratia marcescens strain MM06 (Table 6). In all three
obtained consortia, only one isolate from Consortium JR1 was identified as Vibrio sp. MM09,
which was previously labelled as isolate JR1-4 (Figure 5).
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Figure 4. The cladogram was carried our based-on neighbour-joining technique illustrating the phylogenetic relationship
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Table 6. Identified isolates name based on phylogenetic analysis with registered accession number in
National Center for Biotechnology Information

Isolate Strain Name Ascension No.

JR1-1 Pseudomonas sp. MM02 MW024071
JR1-2 Pseudomonas sp. MM03 MW024072
JR1-3 Serratia sp. MM07 MW031903
JR1-4 Vibrio sp. MM09 MW227497
JR2-1 Serratia sp. MM08 MW031904
JR2-2 Enterobacter cloacae MM04 MW025258
JR3-1 Enterobacter sp. MM05 MW031860
JR3-2 Pseudomonas aeruginosa MM01 MW024070
JR3-3 Serratia marcescens MM06 MW031902
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3.4. Effect of Media Composition on RR120 Decolourisation by Consortium JR1. JR2 and JR3

The nutrient broth compositions of MSM 2 and MSM 5 resulted in higher decolourisa-
tions of RR120 in consortium JR1 compared to the rest of the media (Figure 6). Meanwhile,
for consortium JR2, MSM 1 and MSM 3 resulted in the best media for RR120 decolourisation.
Consortium JR3, which was isolated using method 3, illustrated the best decolourisation
ability in MSM 3 and MSM 4. The method of isolations showed different affinity towards
the media being used. For instance, using the isolation of method 1, the obtained con-
sortium JR1 showed a better decolourisation in media containing nutrient broth, glucose,
and high concentration of yeast extract. Direct isolation using NA containing RR120 only
results in a bacterium that is able to decolourise RR120 in the presence of a carbon source.
Consortium JR1 was unable to grow and decolourise RR120 in MSM 4 as it contains no al-
ternate carbon source. Less than 10% decolourisation was observed in the media containing
lower than 3 g/L of yeast extract in MSM 1 and MSM 3.
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3.5. Effect of RR120 and Decolourised Metabolites on Vigna Radiata

The relative sensitivity of Vigna radiata against treated and untreated RR120 is listed
in Table 7. The untreated RR120 at 50 ppm concentration resulting in 63.3% inhibition of
germination was Vigna radiata. The root and shoot lengths were reduced to 4.23 and 7.76 cm,
respectively. Only consortia JR2 and JR3 showed improvement in seed germinations, and
root and shoot lengths when treated with decolourised samples in all 6 mediums. As shown
in Table 5. JR3 + MSM1, JR3 + MSM2 and JR3 + MSM4 variants significantly (p < 0.005)
reduced phytotoxicity of 50 ppm RR120 compared to untreated samples. Consortium JR2
was the second best as it improved seed germination with an average of 66.21% in all
6 media. MSM4 and MSM5 performed much better in terms of aiding RR120 removal with
probably fewer toxic metabolites produced than in consortia JR3 and JR2. This illustrates
that the resulting metabolites from the treated sample were safe and the toxicity of RR120
had been alleviated. However, when treated with decolourised samples of JR1, a significant
reduction in all three parameters was observed. Even though JR1 reduces RR120 by 67.6%
in the NB medium, the decolourised metabolite did not improve the plant conditions but
further worsened it compared to RR120 alone. In comparison with all three consortia,
only consortium JR3 proved to have a better decolourisation ability than RR120, and the
resulting metabolite was much safer.
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Table 7. Phytotoxicity study of Reactive Red 120 and its metabolite formed after decolourisation
values are the mean of the germinated seeds of the three experiments, SD (±), standard deviation.

Condition Removal (%)
Seed

Germination
(%)

Root Length
(cm)

Shoot Length
(cm)

No dye - 100 ± 0 5.77 ± 0.06 10.37 ± 0.67
50 ppm RR120 0 ± 0.01 63.3 ± 2.52 4.23 ± 0.15 7.77 ± 0.55

JR1 + NB 67.6 ± 4.78 21.3 ± 2.64 1.23 ± 0.59 4.87 ± 0.25
JR1 + MSM1 2.1 ± 0.24 65.3 ± 0.93 4.3 ± 0.26 7.83 ± 0.32
JR1 + MSM2 29.0 ± 1.3 48.7 ± 1.25 3.97 ± 0.12 5.33 ± 0.35
JR1 + MSM 3 2.3 ± 0.01 68 ± 2 4.39 ± 0.01 7.70 ± 0.01
JR1 + MSM 4 0.0 ± 0.01 62.3 ± 3.95 4.27 ± 0.06 7.70 ± 0.53
JR1 + MSM 5 35.2 ± 2.12 25.7 ± 2.52 2.3 ± 0.26 5.10 ± 0.36

JR2 + NB 3.2 ± 0.01 62.7 ± 3.66 4.4 ± 0.17 7.80 ± 1.2
JR2 + MSM 1 11.7 ± 0.02 67.3 ± 2 4.07 ± 0.15 8.10 ± 0.17
JR2 + MSM 2 1.7 ± 0.65 65 ± 0.2 4.40 ± 0.1 7.80 ± 1.05
JR2 + MSM 3 18.7 ± 1.2 69.3 ± 1.51 4.77 ± 0.06 8.13 ± 0.32
JR2 + MSM 4 5.9 ± 0.12 69.7 ± 1.15 4.5 ± 0.3 7.80 ± 0.2
JR2 + MSM 5 0.3 ± 0.01 63.3 ± 1.8 4.2 ± 0.1 7.73 ± 0.85

JR3 + NB 2.3 ± 0.1 66 ± 0.2 4.27 ± 0.06 7.73 ± 0.25
JR3 + MSM 1 8.3 ± 0.8 73.3 ± 0.45 4.33 ± 0.38 8.00 ± 0.1
JR3 + MSM 2 7.0 ± 1.2 71.3 ± 0.06 4.43 ± 0.06 7.87 ± 1
JR3 + MSM 3 34.2 ± 2.5 81.7 ± 0.95 5.17 ± 0.6 9.10 ± 0.69
JR3 + MSM 4 10.8 ± 0.53 75 ± 3.61 4.57 ± 0.21 8.17 ± 0.45
JR3 + MSM 5 0.8 ± 0.2 66 ± 1 4.2 ± 0.36 7.90 ± 1

3.6. Effect of Co-Substrate on the Decolourisation of RR120 by Consortium JR3

When glucose and yeast extract were removed from the media composition, the de-
colourisation of Reactive Red 120 by consortium JR3 was significantly reduced (Figure 7).
This shows that the decolourisation of RR120 was heavily dependent on the presence of
additional carbon or co-substrate availability. The highest decolourisation was observed in
MSM 4. Decolourisation was significantly reduced from 34.2% to a mere 5.2% in MSM 3,
when yeast extract was removed from the media composition. This illustrates that MSM
4 can sustain higher RR120 decolourisation in consortium JR3. Unlike MSM 1, MSM 2,
MSM 3, and MSM 5, only MSM 4 contained trace elements. Trace elements are important
macro and micronutrients. As these data strongly support the presence of trace elements
in enhancing azo dye decolourisation, even when no co-substrate was present, therefore,
MSM 4 was chosen as the best media in aiding RR120 decolourisation by consortium JR3.
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3.7. Effect of Yeast Extract on RR120 Decolourisation

The effects of different yeast extract concentrations on the decolourisation of 50 ppm
RR120 and colony growth by consortium JR3 in MSM 4 is depicted in Figure 8. Increas-
ing yeast extract concentration resulted in improved in decolourisation of RR120 and
colony growth till 1.5 g/L. Beyond 1.5 g/L showed a decrease in the decolourisation of
RR120. Highest RR120 removal was observed at 0.75 g/L with 44.5% and colony growth
of 10.18 log colony-forming unit (CFU), followed by 0.5 g/L with 41.1% decolourisation
and colony growth of 9.97 log CFU. Based on ANOVA, there were no significant differ-
ences (p > 0.05) between 0.5 g/L with 0.75 g/L, 1 g/L, 1.5 g/L yeast extract in term of
decolourisation and colony growth, suggesting similar results were obtainable at those
concentrations. Decolourisation remains low at 0 g/L with 4.9% and colony growth of
9.1 log CFU. However, significant improvement was observed at 0.25 g/L with 15.5% de-
colourisation illustrating that the presence of yeast extract improves RR120 decolourisation
rate. However, an increase beyond 1.5 g/L dramatically reduces decolourisation of RR120
despite colony growth remaining high. To understand the effect, consortium JR3 was
exposed to different concentrations of yeast extract without the presence of RR120. It was
found that, without RR120, consortium, JR3 was only able to survive with 2 g/L yeast
extract onwards. This illustrates that there is enough carbon source from yeast extract to
sustain the consortium JR3 growth at 2 g/L.
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3.8. Effects of Different Nitrogen Sources on Decolourisation of RR120

Figure 9 shows the effect of different types of nitrogen sources on the decolourisation
of 50 ppm RR120 and bacterial growth by consortium JR3. Ammonium sulphate aided
the highest decolourisation of 42.5% with colony growth of 10.23 log CFU. Urea followed
second with a decolourisation of 31.8% and a colony growth of 10.67 log CFU. Meanwhile,
ammonium chloride showed a decolourisation of 22.17%, followed by control with 15.4%.
Both ammonium chloride and control demonstrated no significant difference (p > 0.05)
with a mean difference of 4.3. Meanwhile, magnesium nitrate and potassium nitrate were
poor sources of nitrogen as they can only assist RR120 decolourisation by 11.9% and
7.9% respectively. In comparison between urea, potassium nitrate, ammonium chloride,
magnesium nitrate and control, ammonium sulphate showed the best decolourisation with
a significant difference (p < 0.001).
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3.9. Effects of Different Ammonium Sulphate Concentrations on Decolourisation of RR120

Figure 10 illustrates the effects of different ammonium sulphate concentrations on the
decolourisation of 50 ppm RR120 and bacterial growth by consortium JR3. Decolourisation
and bacterial growth steadily increased to 0.7 g/L. Above 0.7 g/L, this resulted in a gradual
decrease in both the decolourisation and bacterial growth. The highest decolourisation was
observed at 0.7 g/L by 54.4% with bacterial growth of 10.46 log CFU. At 1 g/L, RR120 de-
colourisation stood at 42.5% with bacterial growth of 10.23 log CFU, illustrating that an
increase beyond 0.7 g/L resulted in lower decolourisation. Almost no decolourisation
was observed at 2 g/L with 1.2% and bacterial growth at 9.2 log CFU. In comparison with
control, having no nitrogen source resulted in a better decolourisation of RR120 compared
to an excess of 2 g/L ammonium sulphate. A gradual decrease in decolourisation at 1,
1.3 and 1.5 g/L ammonium sulphate was observed with 42.5%, 33.1% and 21.5%, respec-
tively. However, no significant differences were observed in bacterial growth at 1, 1.3 and
1.5 g/L. This illustrates that an increase beyond 0.7 g/L, consortium JR3 completely rely
on ammonium sulphate as a sole nitrogen source.
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3.10. Effects of pH on Decolourisation of RR120

Figure 11 illustrates the effects of pH with different buffers on the decolourisation
of 50 ppm RR120 and bacterial growth by consortium JR3. The highest decolourisation
was observed in pH 8 aided by phosphate buffer. Phosphate buffer improved the de-
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colourisation of RR120 by 66.5% and 53.4% at pH 7 and 8, respectively. The second-best
buffer was Tris base, which results in 44.9% decolourisation at pH 8. Phosphate buffer
improved decolourisation significantly compared to the rest of it, as it recorded the high-
est decolourisation with a mean difference of 0.84 (p < 0.001). Acidic pH of 5.0, 5.5 and
6.0 illustrated low decolourisation and bacterial growth. The lowest decolourisation was
observed at pH 5 with 1.2% removal and bacterial growth of 9.42 log CFU, followed by
pH 5.5 with a decolourisation of 9.3% and bacterial growth of 9.53 log CFU. Alkaline pH
provides a relatively good decolourisation rate compared to acidic pH. Consortium JR3
showed an improvement in decolourisation of RR120 by 41.8% at pH 8.0 compared to
pH 6.0, indicating that an alkaline pH was preferable for better decolourisation of RR120
than acidic conditions.
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3.11. Effects Temperature on Decolourisation of RR120

Figure 12 shows the effects of temperature on RR120 decolourisation and colony
growth by consortium JR3. The optimum temperature demonstrated by this consortium
JR3 in decolourisation was at 35 ◦C. It improved decolourisation by 86.4% with a colony
growth of 10.67 log CFU and 30 ◦C was the second-best by 78.8% decolourisation with
a colony growth of 10.53 log CFU, followed by 37 ◦C with RR120 decolourisation by
72.2% with a colony growth of 10.51 log CFU. Meanwhile, temperatures of 25, 40 and
45 ◦C demonstrated decolourisations of 25.9%, 61.3% and 32.1%, respectively. Almost
no colony growth and decolourisation were observed at 50 ◦C, where else 55 and 60 ◦C
inhibited decolourisation completely by consortium JR3. This illustrates that increasing
temperature beyond 37 ◦C significantly decreases colony growth, thus resulting in poor
RR120 decolourisation.
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3.12. Effects of Different RR120 Concentration on Decolourisation

Figure 13 demonstrates the effects of different RR120 concentrations on its decolourisa-
tion and colony growth rate by consortium JR3. A 25 ppm of RR120 illustrated the highest
decolourisation, which stood 99.3% with bacterial growth of 10.63 log CFU. Followed by
50 ppm with 88.2% decolourisation with 10.58 log CFU colony growth, 100 ppm with
87.3% decolourisation with 10.52 log CFU, 150 ppm with 83.8% decolourisation with 10.51
log CFU and 200 ppm with 82.9% decolourisation with 10.49 log CFU colony growth.
Based on ANOVA, there was no significant difference (p > 0.05) in decolourisation from
50 to 200 ppm. This implies that concentrations ranging from 50 to 200 ppm will result
in similar decolourisation rate at 24 h mark. This shows that consortium JR3 was able to
decolourise 200 ppm RR120 at the same efficiency level as 50 ppm. Lowest decolourisation
was observed at 500 ppm with a rate of 9.2%, which had almost reduced its decolourisation
capability by 10 times compared to 25 ppm.
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Figure 13. Effects of different Reactive Red 120 concentration on decolourisation by consortium JR3. Data represent mean ±
SD, n = 3.

3.13. Plackett-Burman Design

The Plackett-Burman design used to screen for significant factors affecting decolouri-
sation by consortium JR3 resulted in RR120 decolourisation levels from 36.7% to 85.71%
in 12 runs. The highest decolourisation was obtained at run 1 with the following setup:
0.3 g/L ammonium sulphate, pH of 8.5, 31 ◦C and RR120 concentrations of 150 ppm.
Meanwhile, the lowest decolourisation was observed at 0.3 g/L ammonium sulphate,
pH 8.5, 40 ◦C and RR120 concentration of 300 ppm (Table 8).

Table 8. Experimental design and results of Plackett-Burman on Reactive Red 120 decolourisation by
consortium JR3.

Run A B C D Actual
Value

Predicted
Value

1 0.30 8.5 31 150 85.71 86.00
2 0.30 6.5 31 150 84.41 83.83
3 0.30 6.5 40 300 56.39 56.68
4 1.00 6.5 31 150 83.02 83.31
5 1.00 8.5 40 150 48.05 48.34
6 0.30 6.5 31 300 51.51 51.80
7 1.00 8.5 31 300 80.69 80.17
8 0.30 8.5 40 150 44.43 43.85
9 1.00 6.5 40 300 45.98 45.40

10 1.00 6.5 40 150 62.89 63.18
11 1.00 8.5 31 300 79.94 80.17
12 0.30 8.5 40 300 36.74 37.03

A: ammonia sulphate concentration (g/L), B: pH, C: temperature (◦C), D: RR120 concentration (ppm).
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ANOVA indicated that ammonia sulphate concentration (A), temperature (C), and RR120
concentration (D) were found to be significant (p < 0.05), meanwhile pH (B) was found
to be insignificant (p > 0.05) in model terms (Table 9). However, pH interactions with
ammonia sulphate concentration (AB), temperature (BC) and RR120 concentration (BD),
the model results were significant (p < 0.05). Therefore, in this stipulation, all four factors
were considered as significant model provisions in yielding a positive interaction. The
analysis of variance of the quadratic regression model illustrated that the model was highly
significant as the evidence from the F-test had a low probability value (F value = 428.70).
Also, the analysis suggests that the “Predicted R-squared” value of 0.9972 is in reasonable
agreement with the “Adjusted R-squared” of 0.9329 clarifying the impact of the model.
Hence, all four factors were used in constructing a central composite design.

Table 9. Analysis of factors for Plackett-Burman on RR120 decolourisation by consortium JR3.

Source Sum of Square dF Mean Square F Value Prob > F

Modal 3695.08 9 410.56 428.70 0.0023 significant
A 7.31 1 7.31 7.63 0.0199
B 1.59 1 1.59 1.66 0.3262
C 1249.32 1 1249.32 1304.50 0.0008
D 700.87 1 700.87 731.82 0.0014

AB 115.42 1 115.42 120.52 0.0082
AC 53.72 1 53.72 56.10 0.0174
BC 581.87 1 581.87 607.57 0.0016
BD 55.74 1 55.74 58.20 0.0168
CD 94.32 1 94.32 98.49 0.0100

Residual 1.92 2 0.96
Lack of Fit 1.63 1 1.63 5.81 0.2504 Not significant
Pure Error 0.28 1 0.28
Cor Total 3696.99 11
Std. dev. 0.98 R-squared 0.9995

Mean 63.31 Adj R-squared 0.9972
C.V 1.55 Pred R-squared 0.9329

PRESS 248.19 Adeq Precision 54.816

A: ammonia sulphate concentration (g/L), B: pH, C: temperature (◦C), D: RR120 concentration (ppm).

3.14. Central Composite Design

The central composite design was used to study the interaction between four signifi-
cant factors in RR120 decolourisation by consortium JR3. The highest decolourisation was
observed to be at 89.9%, while the lowest was observed at 12.5% in Table 10. The following
conditions, 0.65 g/L ammonium sulphate, pH 7, 37 ◦C and 75 ppm RR120, aided the high-
est decolourisation; meanwhile, 0.65 g/L ammonium sulphate, pH 7, 19 ◦C and 225 ppm
RR120 results in the lowest dye removal. ANOVA (Table 11) illustrates that the model was
highly significant (p < 0.0001) and reproducible.

Figure 14a explains the effects of ammonium sulphate concentration and pH on the
decolourisation of RR120 while maintaining the concentration of RR120 at 225 ppm and
temperature at 31 ◦C. The high percentage of RR120 decolourisation was found to occur
within nitrogen concentrations (0.48–0.82 g/L) and pH range (7.0–8.5) as stated. When the
pH was increased to 8.5, Consortium JR3 was able to decolourise up to 76.58% RR120 when
ammonium sulphate was maintained at 0.3 g/L. An increase of 28% decolourisation ability,
due to these strains’ ability to maintain better homeostasis in alkaline conditions. However,
when the nitrogen source is given in excess, the decolourisation rate dropped significantly
no matter in pH 5.5 or 8.5. This is due to the fact that the Consortium JR3 completely uses
ammonia sulphate as the sole nitrogen source, thus leaving incomplete mineralisation of
RR120. This leads to improper cleavage of the azo bond, therefore the dye loses less colour
as the chromosphere remains intact.
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Table 10. Experimental design and results of central composite design on Reactive Red 120 decolouri-
sation by consortium JR3.

Run A B C B Actual Value Predicted Value

1 0.30 8.50 25.00 300.00 38.62 37.45
2 0.65 7.00 43.00 225.00 50.2 49.76
3 1.00 8.50 25.00 300.00 45.21 45.47
4 0.30 8.50 25.00 150.00 46.5 45.36
5 0.30 8.50 37.00 150.00 79.3 79.64
6 0.65 10.00 31.00 225.00 73.3 73.62
7 1.00 5.50 25.00 150.00 35 32.55
8 0.65 7.00 31.00 375.00 64.5 66.87
9 1.00 8.50 25.00 150.00 42.2 43.32

10 0.65 7.00 31.00 225.00 85.2 83.7
11 0.30 5.50 25.00 150.00 47.2 48.42
12 0.30 8.50 37.00 300.00 72 71.03
13 0.65 7.00 31.00 225.00 85.2 85.9
14 0.65 7.00 31.00 225.00 85.2 85.9
15 0.65 7.00 31.00 225.00 85.2 85.9
16 0.65 7.00 31.00 225.00 85.2 85.9
17 1.00 5.50 25.00 300.00 27.12 27.19
18 0.65 7.00 31.00 225.00 85.2 85.9
19 1.00 5.50 37.00 300.00 29 29.56
20 1.00 8.50 37.00 150.00 75.2 76.76
21 0.30 5.50 25.00 300.00 32.3 30.16
22 1.00 5.50 37.00 150.00 36.9 38.48
23 0.30 5.50 37.00 150.00 53.2 52.36
24 0.65 7.00 31.00 75.00 89.9 83.7
25 1.35 7.00 31.00 225.00 35 32.55
26 1.00 8.50 37.00 300.00 79 78.19
27 0.30 5.50 37.00 300.00 34.1 33.39
28 0.65 4.00 31.00 225.00 28.2 28.05
29 −0.05 7.00 31.00 225.00 35.8 38.42
30 0.65 7.00 19.00 225.00 12.5 13.11

A: ammonia sulphate concentration (g/L), B: pH, C: temperature (◦C), D: RR120 concentration (ppm).

Table 11. Analysis of factors for central composite design on Reactive red 120 decolourisation by consortium JR3.

Source Sum of Squares dF Mean Square F Value Prob > F

Model 15774.23 14 1126.73 398.84 <0.0001 Significant
A 51.6 1 51.6 18.26 0.0007
B 3114.71 1 3114.71 1102.55 <0.0001
C 2015.75 1 2015.75 713.54 <0.0001
D 424.62 1 424.62 150.31 <0.0001
A2 4236.93 1 4236.93 1499.79 <0.0001
B2 2024.44 1 2024.44 716.61 <0.0001
C2 4955.37 1 4955.37 1754.1 <0.0001
D2 168.51 1 168.51 59.65 <0.0001
AB 120.84 1 120.84 42.77 <0.0001
AC 0.73 1 0.73 0.26 0.6194
AD 101.05 1 101.05 35.77 <0.0001
BC 920.97 1 920.97 326.01 <0.0001
BD 107.17 1 107.17 37.94 <0.0001
CD 0.51 1 0.51 0.18 0.6776

Residual 42.38
Lack of fit 42.38 4.238 4.01 0.0322 Not significant
Pure Error 0.000
Cor total 15816.60
Std dev. 1.68 R-Squared 0.9973
Mean 55.65 Adj R-Squared 0.9948
C.V 3.02 Pred R-Squared 0.9846

PRESS 244.08 Adeq Precision 60.660

A: ammonia sulphate concentration (g/L), B: pH, C: temperature (◦C), D: RR120 concentration (ppm).
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Figure 14b demonstrates the effects of RR120 concentration and ammonium sul-
phate concentration while keeping a temperature of 31 ◦C and a pH of 6.5 at constant.
The highest decolourisation of RR120 was observed at 85.2% when RR120 concentration
and ammonium sulphate concentration was at 225 ppm and 0.6 g/L, respectively. Reducing
ammonium sulphate concentration has significantly improved RR120 decolourisation in
which Consortium JR3 was able to decolourise 20% more 150 ppm RR120 at 0.3 g/L ammo-
nium sulphate compared to 1 g/L, in which it was able to decolourise only 55% at 1 g/L.
However, when RR120 concentration increased to 300 ppm, decolourisation remained
at 60 ± 1.2% when ammonium sulphate stood at 0.3 and 1.0 g/L. Decolourisation only
increased significantly when ammonium sulphate was maintained at 0.65 g/L, regardless
of the azo dye concentration.

Figure 14c explains the effect of pH and temperature on the decolourisation of RR120
while maintaining RR120 concentration at 225 ppm and ammonium sulphate concentration
at 0.65 g/L. The interaction between temperature and pH illustrates that at 31 ◦C and pH
7.75, maximal decolourisation of RR120 at 91.31% was observed. In this term, the effect of
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pH has outweighed the effect of temperature. At pH 5.5, decolourisation of RR120 almost
reduced its efficiency by half. This is because in pH 5.5, when the temperature at 25 ◦C and
37 ◦C, decolourisation was observed at 50.13% and 53.35% respectively. Based on ANOVA,
when the temperature ranges from 25 ◦C to 37 ◦C, decolourisation remained insignificant in
pH 5.5. Where else, when pH was increased to 8.5, huge differences in the decolourisation
of RR120 was observed. As such, when pH remained at 8.5, decolourisation of RR120
was observed at 57.8% at a given temperature of 25 ◦C. However, when the temperature
was raised to 37 ◦C, an increase of 34.12% in decolourisation capability was observed.
This suggests that, when ammonium sulphate concentration remains at 0.65 g/L, the effect
of pH is far greater than temperature. When pH remains at 5.5, decolourisation was
observed to be lower regardless of the temperature.

Figure 14d illustrates the effect of temperature and RR120 concentration while main-
taining ammonium sulphate concentration at 0.65 g/L and pH of 6.5. The result shows
that, as temperature and RR 120 concentration increased, decolourisation increased until
the optimum condition was obtained. Low decolourisation of RR120 was observed at 25 ◦C
regardless of the dye concentration. As such, the least decolourisation was recorded at a
temperature of 25 ◦C and a dye concentration of 300 ppm, with 53.01%. An increase in dye
concentration to 300 ppm significantly reduces decolourisation. As temperature increases,
the rate of enzymatic activity increases proportionally to a certain point. This trend can
be seen when an increase in temperature improves decolourisation by 21.5% from 25 ◦C
to 37 ◦C at 150 ppm RR120. However, when dye concentration increased to 300 ppm,
decolourisation remained low despite increasing the temperature. This suggests that an in-
crease in dye concentration from 150 ppm, at pH 6.5 and ammonium sulphate concentration
of 0.65 g/L, decolourisation remains low regardless of the temperature.

3.15. Validation of CCD Prediction

According to the numerical solution provided by CCD, the best factors for maximum
RR120 decolourisation was an ammonium sulphate concentration of 0.645 g/L, pH of
8.293 and a temperature of 34.532 ◦C, which yields a theoretical 93.66% decolourisation
of 200.058 ppm RR120 concentration. A confirmation experiment was organised with
suggested optimal parameters from CCD to verify the result. Consortium JR3 was able
to decolourise 92.79% of 195.058 ppm RR120 in a period of 24 h, which illustrated high
similarity with the predicted decolourisation rate. Moreover, Tukey analysis showed no
significant difference (p > 0.05) between the CCD predicted result and the validation result.
This is in line with the model prediction.

4. Discussion

A dye obtains its colour through chromophores and auxochromes. By altering the
overall electron energy system, the dye loses its colour, hence decolourisation occurs [4,32].
However, the term decolourisation is often confused with degradation among researchers.
Decolourisation only breaks down the electron system, meanwhile, degradation breaks
down the electron system and the resulting compounds are used as energy or nitrogen
source [37]. This has led to various researchers using different media compositions for
isolating dye degrading bacteria. Certain media promotes decolourisation while others
inhibit degradation.

This is the first study comparing the role of several media in the isolation method and
their influence on RR120 decolourisation. Only consortium JR3 was able to decolourise
RR120 maximally without the aid of additional carbon sources and co-substrates as com-
pared to consortia JR1 and JR2. This is the first study to report a combination of Pseudomonas
aeruginosa, Serratia marcescens and Enterobacter sp. that were able to degrade and consume
RR120 as the sole carbon source without the aid of co-substrate. Even though the observed
decolourisation was lower than with the addition of extra carbon sources, the consortium
can completely mineralise the dye. Bacillus lentus B1377 [38] was able to achieve com-
plete mineralisation of RR120 when supplemented with NB, on other hand, Pseudomonas
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gualiconensis [39] was reported to produced toxic metabolite in similar condition. Most of
RR120 decolouriser needs glucose/yeast extract more than 3 g/L to achieve significant
decolourisation [16,26,30,39,40]. Consortium JR3 was able to do so with the least amount
of co-substrate.

The process of acclimatisation is more beneficial as it improved the decolourisation
capability of JR3. This can be illustrated in MSM 4 when JR3 outperformed JR2 in de-
colourisation term. Meanwhile, in MSM 3, supplementing a yeast concentration of 1 g/L
significantly improved decolourisation ability of JR3 followed by JR2. However, no no-
ticeable decolourisation was observed in JR2 and JR3 when RR120 was supplemented
with NB as compared to JR1. Under this condition, RR120 is rather being absorbed by the
consortium than being degraded (data not shown). A similar effect was also observed in
MSM 2 and MSM 5. Both consortia grow on readily available carbon source and the dye
are not being consumed.

The results are in agreement with Brilon et al. [34]. When no glucose and yeast extract
was given to the culture medium, degradation of naphthalenesulfonic acids was extremely
poor in Pseudomonas sp. A3 [34]. When yeast extract was introduced at a concentration of
0.05% (w/v), degradation is improved. They also illustrated that Pseudomonas sp. C22 that is
unable to grow on naphthalenesulfonic acids, is able to grow when the same concentration
of yeast extract is introduced [34]. Thus, it could be summarised that the presence of
co-substrate significantly improves decolourisation of RR120 consortium JR3, and without
the addition of co-substrate, decolourisation appears to be slow. Consortium JR3 was
chosen as the best consortium to decolourise RR120 as it requires less co-substrate and is
able to consume RR120 without the presence of any additional carbon source, which is
extremely rare in the field of azo dye bioremediation.

Similarly, when co-substrate is not available, the presence of trace elements improves
the decolourisation condition. The availability of these nutrients for microbes responsi-
ble for aerobic digestion and substrate toxicity. The most important trace elements in
micronutrients mostly involved in aerobic digestion efficiency are cobalt, nickel, molybde-
num, zinc and magnesium [41]. Molybdenum functions as cofactors for various enzymes,
nickel is needed for the synthesis of coenzymes, zinc is known for stimulating cell growth,
iron acts as an electron acceptor, calcium is needed for membrane permeability and both
copper and cobalt for metallic enzyme activator [42].

The role of yeast extract is considered essential for the regeneration of NADH,
which acts as the electron donor for the reduction of azo bonds [43]. Yeast extract comprised
components such as riboflavin, thiamine and pyridoxine, which enhance and improve
bacterial growth and azo dye decolourising activity. However, the right amount of yeast
extract to be used in dye decolourisation remains debatable among researchers. Some re-
searchers found that increasing yeast extract concentration enhances decolourisation rate
while others report the opposite [12,44]. Consortium JR3 falls into the latter category.
This behaviour might be attributed to the fact that bacterial strains consume yeast extract
as readily available carbon and nitrogen source for their growth instead of targeting the
destruction of azo dye bond. The role of the electron donor taken by RR120 is a result of the
fortuitous process [45]. When this occurs, RR120 are not broken down properly, thus the
colour loss will be lower.

Eskandari et al. [12] reported that ammonium dihydrogen phosphate improved Re-
active Blue 5 decolourisation better compared to peptone and yeast extract in both cold-
adapted and mesophilic consortium. Organic nitrogen metabolism is crucial for the regen-
eration of NADH, as it plays an important role as an electron donor [46]. Organic nitrogen
sources, such as peptone, yeast and beef extract, have been found effective in improving
dye removal rate in a mesophilic microorganism [30]. However, excess of this nitrogen
source will result in the dye not being properly mineralised, as bacteria start consuming
available carbon to grow [37]. This finding is consistent with the result of Fouda et al. [47],
who reported that ammonium sulphate significantly improved decolourisation of Disperse
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Blue, Disperse Yellow and Reactive Red Syozol compared to rest of the nitrogen sources in
Pseudomonas stutzeri SB13.

Additionally, dye decolourisation does not indicate that resulting metabolites are
less toxic and safe compared to that parent compounds [48]. An assessment on resulting
metabolite should be done to determine the safety of remediated dyes. Seed germination
percentage, seedling survival and seedling height have been taken as important criteria
to assess plant response to specific pollutants [7,35,39]. The presence of azo dye could
directly affect the role of chlorophyllase and abscisic acid (ABA), therefore impeding the
growth of the plant [49]. The severity of dye toxic effect depends on metabolite(s) produced
during the decolourisation process. Rawat et al. [4] found that treating Acid Orange
7 decolourised metabolites significantly reduced the overall shoot biomass of Allium cepa
because of poor uptake and transfer of the nutrient. These metabolites were later detected
to be aniline, 1-amino-2-naphthol, naphthalene, and phenyl diazene, the consequences of
improver azo dye decolourisation by halophilic microbial consortium. On the other hand,
Nouren et al. [50] reported a better improvement in Zea mays seed germination, shoot and
root length when exposed to treated Direct Yellow 4 compared to untreated samples,
which result in a 50% inhibition rate. Similarly, Santana et al. [51] also observed an increase
in lettuce and clove seed germination when exposed to a treated sample of Reactive Red
195 compared to the parent compound as a result of complete mineralisation of the azo dye.
The finding of Santana et al. [51] also supported by the work of Roy et al. [52] who reported
significant improvement in chickpea seed germination when exposed to a treated sample
of Reactive Yellow. Therefore, it can be summarised that a proper decolourisation of a dye
compound will result in total mineralisation, which significantly reduces the toxicity of
the dye.

The nature of the role of pH on dye decolourisation is influenced by the location of the
strain obtained. Bacteria that are isolated from the acidic environment are able to degrade
dye better in pH less than 7 [53], meanwhile, those from alkaline environment perform
exceptionally well in pH more than 7 [24]. Previous repeated exposure to acidic or alkaline
environment allowed the azoreductase enzyme to acclimatise to their appropriate environ-
ment pH; thus, having a distinct affinity towards substrate in different pH environments.
Since consortium JR3 was isolated from a contaminated site near to a fabric manufactur-
ing factory, frequent exposure to alkaline effluents from washing activity (detergent and
soap) allowed the enzyme to acclimatize to an alkaline condition. Similarly, Halomonas sp.
isolated from textile wash water showed an optimal pH of 9–12 for maximal removal of
Reactive Red 152 [54]. Meanwhile, Enterococcus casseliflavus RDB4 had an optimal pH of
7 and better decolourisation of Reactive Red 195 is observed under alkaline conditions com-
pared to acidic medium [55]. Pseudomonas aeruginosa strain HF5 was able to decolourise
90.9% and 82.5% RR120 at pH values of 7.5 and 8.5 at 24 h, respectively [30]. In most
of the reactive red decolourisation works occurring under aerobic alkaline conditions,
the detected metabolite is 6-hydroxy cyclohexa 2, 4-dienone, which is a very common
desulphonation reaction [38,56].

Temperature influences bacterial growth rate and enzymatic reaction. In this study,
the optimum temperature was 35 ◦C. In other studies, the optimum temperature for RR120
removal was 35 ◦C in Shewanella haliotis RDB1 [37]. No decolourisation was observed
beyond 55 ◦C in our result, similar to Shewanella haliotis RDB1. Consortium RV2 was able to
decolourise 87.05% of 100 ppm Reactive Red 31 at the optimal temperature of 37 ◦C within
12 h under microaerophilic conditions [57].

The ability of Pseudomonas sp. SUK1 to decolourise RR120 has been reported [58].
The strain was able to achieve 97% decolourisation of 150 ppm RR120 at 100 h. However,
since nutrient broth and static conditions were used for Pseudomonas sp. SUK1 decolouri-
sation conditions, resulting in toxic metabolites needing to undergo radiation treatment
to breakdown those by-products. Meanwhile, Pseudomonas guariconensis was able to de-
colourise a maximum of 48% RR120 at 70 h [39]. Even in fungal species, decolourisation of
RR120 was reported at 100 ppm with the aid of glucose [59], whereby consortium JR3 was
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able to decolourise even better without the need for glucose and still achieved significant
decolourisation at 400 ppm.

In terms of decolourisation efficiency, RSM resulted in a better decolourisation capabil-
ity compared to the one-factor-at-a-timeresult. This study also shows similar improvement
observed in other degradation optimisation works [60,61]. Although both OFAT and RSM
showed almost similar values, minor changes in RSM value have significantly improved
the decolourisation rate of RR120.

5. Conclusions

This study illustrates that a long period of slow acclimation process led to the isolation
of bacterial strains capable of utilising RR120 as a sole carbon source without the presence
of additional carbon or co-substate. The presence of yeast extract significantly improves
decolourisation rate in azo dyes; however, the concentration should be limited to a smaller
amount as an increased available carbon source will lead to the decolourisation of azo dyes
as a non-assimilatory process and this will not reduce the toxicity of the existing dye. This is
the first study to successfully compare the role of isolation method in influencing decolouri-
sation ability based on different media composition. The use of nutrient broth should be
limited as the decolourisation under this medium produces toxic metabolites in which
significant inhibition of Vigna radiata germination, shoot and root length was observed.
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