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Highlights: Impact and implications:
� PPP1R15A is selectively upregulated in M-MDSCs in pa-
tients with fibrosis-associated HCC.

� Knockdown of PPP1R15A suppresses M-MDSC function-
ality to restrict HCC growth and enhance ICB efficacy.

� Suppression of PPP1R15A reduces the immunosuppressive
potential of fibrotic HCC patient-derived M-MDSCs.

� A PPP1R15A+ M-MDSC signature correlates with poor
prognosis and immunotherapy unresponsiveness in pa-
tients with cancer.
https://doi.org/10.1016/j.jhepr.2024.101087
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Our cross-species analysis has identified PPP1R15A as a
therapeutic target governing the anti-T-cell activities of fibrosis-
associated M-MDSCs (monocytic myeloid-derived suppressor
cells). The results from the preclinical models show that specific
inhibition of PPP1R15A can break the immunosuppressive
barrier to restrict hepatocellular carcinoma growth and enhance
the efficacy of immune checkpoint blockade. PPP1R15A may
also function as a prognostic and/or predictive biomarker in
patients with hepatocellular carcinoma.
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Background & Aims: Recent studies demonstrated the importance of fibrosis in promoting an immunosuppressive liver
microenvironment and thereby aggressive hepatocellular carcinoma (HCC) growth and resistance to immune checkpoint
blockade (ICB), particularly via monocyte-to-monocytic myeloid-derived suppressor cell (M-MDSC) differentiation triggered by
hepatic stellate cells (HSCs). We thus aimed to identify druggable targets in these immunosuppressive myeloid cells for
HCC therapy.

Methods: M-MDSC signature genes were identified by integrated transcriptomic analysis of a human HSC-monocyte culture
system and tumor-surrounding fibrotic livers of patients with HCC. Mechanistic and functional studies were conducted using
in vitro-generated and patient-derived M-MDSCs. The therapeutic efficacy of a M-MDSC targeting approach was determined in
fibrosis-associated HCC mouse models.

Results: We uncovered over-expression of protein phosphatase 1 regulatory subunit 15A (PPP1R15A), a myeloid cell-enriched
endoplasmic reticulum stress modulator, in human M-MDSCs that correlated with poor prognosis and ICB non-
responsiveness in patients with HCC. Blocking TGF-b signaling reduced PPP1R15A expression in HSC-induced M-MDSCs,
whereas treatment of monocytes by TGF-b upregulated PPP1R15A, which in turn promoted ARG1 and S100A8/9 expression in
M-MDSCs and reduced T-cell proliferation. Consistently, lentiviral-mediated knockdown of Ppp1r15a in vivo significantly reduced
ARG1+S100A8/9+ M-MDSCs in fibrotic liver, leading to elevated intratumoral IFN-c+GZMB+CD8+ T cells and enhanced anti-tumor
efficacy of ICB. Notably, pharmacological inhibition of PPP1R15A by Sephin1 reduced the immunosuppressive potential but
increased the maturation status of fibrotic HCC patient-derived M-MDSCs.

Conclusions: PPP1R15A+ M-MDSC cells are involved in immunosuppression in HCC development and represent a novel po-
tential target for therapies.

© 2024 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Hepatocellular carcinoma (HCC) represents the most common
primary liver cancer and the second most common cause of
cancer-related death worldwide.1 Approximately 70-90% of
patients with HCC have concurrent liver fibrosis or cirrhosis
which are associated with risk factors including viral hepatitis
infection and non-alcoholic fatty liver disease.1 Treatment of
HCC remains challenging, due to its heterogeneity, lack of early
diagnostic biomarkers, tumor-escape mechanisms, frequent
relapse upon surgery, and marginal effect of the available
molecular therapies. Immunotherapies that inhibit immune-
checkpoints such as cytotoxic T-lymphocyte associated pro-
tein 4, programmed cell death 1 or its ligand 1 (PD-L1), result in
remarkably durable anti-tumor T-cell responses in around 20%
* Corresponding authors. Address: Lo Kwee-Seong Integrated Biomedical Sciences Build
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of patients with advanced HCC.2 Nevertheless, the relatively
low response rates in HCC compared to other ‘hot’ cancers like
non-small cell lung cancer (NSCLC) and melanoma emphasize
the strong immunosuppressive barrier that urgently needs
remediation. Interestingly, these ICB antibodies achieved better
response rates in patients with HCC co-treated with sorafenib
or the VEGF (vascular endothelial growth factor) inhibitor bev-
acizumab, which may be due to its immunomodulatory effects
on reducing immunosuppressive cells, especially myeloid-
derived suppressor cells (MDSCs) in the tumor microenviron-
ment (TME).3–6

MDSCs are a heterogeneous group of immature myeloid
cells characterized by their potent ability to suppress anti-
tumor T-cell responses.7 Two major subsets of MDSCs have
been identified: monocytic (M-MDSC) and polymorphonuclear
ing, Area 39, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
heng).
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PPP1R15A+ M-MDSCs promote fibrosis-associated HCC
(PMN-MDSC), which share phenotypic and morphologic fea-
tures with monocytes and neutrophils, respectively.7 The het-
erogeneity of phenotypic and functional features of MDSCs
among and within different cancer types highlights the impor-
tance of MDSC subset characterization in specific tumor
contexts. Of note, our previous findings have pinpointed that
PMN-MDSCs are mainly accumulated in the TME, while
M-MDSCs are preferably enriched in peritumoral fibrotic livers
induced by pro-fibrogenic hepatic stellate cells (HSCs) in
HCC.8–11 Targeting the HSC-M-MDSC crosstalk could there-
fore release M-MDSC-mediated immunosuppression to restrict
tumor growth in fibrotic livers and enhance ICB responsiveness
in fibrosis-associated HCC mouse models.10 Clinically, this
M-MDSC subset abundance is associated with poor prognosis
in patients with HCC.10 Besides, a high level of circulating
M-MDSCs is reported to be correlated with ICB resistance in
patients with advanced NSCLC or melanoma.12,13 Despite this
substantial progress, key knowledge gaps in identifying
M-MDSC signature genes for specific M-MDSC targeting in
HCC remain to be addressed. Here, we employed integrated
analysis of single-cell RNA-sequencing (scRNA-seq) in tumor-
surrounding fibrotic liver tissues of patients with HCC and
bulk RNA-seq of HSC-induced M-MDSCs to identify M-MDSC
signature genes for HCC therapy.

Materials and methods

Materials

Cell lines: RIL-175 (a generous gift from Prof. Lars Zender and
Prof. Tim Greten) and LX2 cells purchased from Merck Millipore
(#SCC064) were used. All cell lines were cultured in DMEM
(Gibco), supplemented with 10% FBS (Gibco) in a 37 �C hu-
midified chamber with 5% CO2.

Human specimens: Paired tumor and adjacent liver tissues
from patients with HCC were collected for immunohistochem-
ical analyses. Single cells isolated from whole blood, tumor,
and adjacent liver tissues from patients with HCC were
collected for flow cytometry and drug treatment. All HCC pa-
tient specimens were from those who underwent liver resection
at the Prince of Wales Hospital (Hong Kong). Buffy coats from
healthy subjects collected from Hong Kong Red Cross were
used for in vitro generation of M-MDSCs. Parental/guardian
consent was obtained. Studies using human specimens were
approved by the joint CUHK-NTEC Clinical Research Ethics.

Mice: All animal experiments were approved by the Animal
Experimentation Ethics Committee of the Chinese University of
Hong Kong (AEEC-CUHK). C57BL/6 male mice were main-
tained according to standard operating procedures at CUHK
Laboratory Animal Services Centre.

Methods

Integrated analysis of bulk RNA-seq and scRNA-seq datasets

Differentially expressed genes (DEGs) from in vitro-generated
M-MDSCs compared with monocytes were determined from
our previous dataset.10 HCC scRNA-seq processed data of
myeloid cells were downloaded14 and processed using Seurat
4.3.0. M-MDSC were annotated as CD14+ myeloid cells. DEGs
were identified using the Wilcoxon rank sum test.
JHEP Reports, ---
Primary cell isolation and flow cytometry analysis

Peripheral blood mononuclear cells (PBMCs) were freshly iso-
lated from buffy coats of anonymous human healthy donors
using Ficoll-Paque Premium (GE Healthcare). Single cells were
isolated from fresh liver and tumor tissues by chopping
and digested in collagenase D and DNase I (Invitrogen). Cells
were collected then incubated with Fcc blocking antibody
for 15 min at 4 �C and stained with surface markers. The human
M-MDSC is defined by CD45+CD11b+CD33+CD14+HLA-
DR-/low, while mouse M-MDSC is defined by CD45+CD11b+Gr-
1+Ly-6C+Ly6G-. The macrophages are differentiated from
M-MDSC with CD45+CD11b+CD33-F4/80+ (human) and
CD45+CD11b+Gr-1-F4/80+ (mouse). The monocytes are also
differentiated from M-MDSC with CD45+CD11b+CD14+HLA-
DR+ (human) and CD45+CD11b+Gr-1-F4/80-CD11c-Ly-6C+

(mouse). Subsequently, cells were permeabilized and stained
with intracellular markers according to the manufacture’s in-
struction (BD Biosciences). Flow cytometry data were acquired
by BD FACSymphony A5.2 or FACSAria Fusion (BD Bio-
sciences) and analyzed by FlowJo software (Tree Star). The flow
antibodies used in this study were listed in Table S1.

Co-immunofluorescence staining

Tissues from patients or mice were collected and fixed in 4%
paraformaldehyde (Sigma-Aldrich) for 24 h, washed in 70%
ethanol, and embedded in paraffin. Five-millimeter sections
from paraffin-embedded tissues were deparaffinized, rehy-
drated, and rinsed in distilled water. Immunofluorescence
staining was performed manually using the Opal 7-Color IHC
Kits (PerkinElmer) according to the manufacturer’s protocol
against human CD8, CD14, CD33 and PPP1R15A. Nikon Ti2-E
Inverted Fluorescence Microscope was applied for the image
acquisition. The antibodies used in this study were listed
in Table S1.

Quantitative real-time PCR

RNA was extracted by RNA extraction kit (Shanghai Fastagen
Biotechnology, cat#: 220010) and incubated PrimeScript RT
Master Mix (Takara) for cDNA synthesis according to the
manufacturer’s instruction. Power SYBR Green PCR Master
Mix (Takara) and QS7 Real-Time PCR System (Applied Bio-
systems) were utilized for cDNA application and expression
quantification. The primers used for this study were listed
in Table S2.

Western blot

Protein was extracted in protein lysis buffer supplemented with
protease inhibitor and phosphatase inhibitor cocktail (Bimake),
followed by 8-12% SDS-PAGE (Bio-Rad). The immunoblotting
signals were detected with a Chemiluminescence kit (West-
ernBright ECL; or WesternBright Sirius) and ChemDoc Imaging
System (Bio-Rad). Western blot antibodies used in this study
were listed in Table S1.

M-MDSC generation and functionality analysis

Monocytes isolated from healthy donor PBMCs by human
CD14 microbeads were cultured in LX2 conditioned medium
2024. vol. 6 j 1–14 2
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(LX2-CM) at 2*106 cell/ml density for M-MDSC induction, or in
normal medium (DMEM supplemented with 10% FBS) as
control. Gene modulation and drug treatment were conducted
in LX2-CM-induced M-MDSCs followed by phenotypic and
functional analysis. The sequences of human short-hairpin RNA
(shRNA) were listed in Table S3. Reactive oxygen species
(ROS) was detected by measuring CM-H2DCFDA. For T-cell
suppression assay, CD3+ cells were purified by human CD3
microbeads and labeled with CFSE (5 lmol/L; Invitrogen), and
then co-cultured with M-MDSCs (1:1) in the presence of CD3/
CD28 dynabeads (Invitrogen) and human recombinant IL-2
(R&D) for 4 days. T cells with or without dynabeads stimula-
tion were used as the positive or negative control, respectively.
Surface staining for CD3 and CFSE signals on T cells were
acquired by flow cytometry using FACSAria Fusion (BD Bio-
sciences). The percentages of proliferating cells were deter-
mined and calculated by FlowJo software (Tree Star).

Fibrosis-associated HCC mouse models

Orthotopic HCC mouse models. The High-fat-high-
carbohydrate (HFHC) HCC mouse model was established as
previously reported.15,16 Briefly, 4-6-week-old C57BL/6 mice
were fed with HFHC diet plus drinking water enriched with high-
fructose corn syrup for 16 weeks, followed by intrahepatic in-
jection of 1x106 RIL-175 cells. The lentivirus-mediated shRNA
was prepared as previously described,17 and injected into mice
by tail vein (5x107 TU/mouse) 5 days before tumor inoculation.

The carbon tetrachloride (CCl4)-induced HCC mouse model
was established by administering 5-6-week-old C57BL/6 male
mice with CCl4 via gavage for 8 weeks, followed by intrahepatic
injection of 5x105 RIL-175 cells.15,16 Lentivirus-mediated
shRNA was injected to the mice 5 days before tumor implan-
tation. Mice were then subjected to IgG or anti-PD-L1 treat-
ment via intraperitoneal injection (10 mg/kg) on day 5, 11 and
16 after tumor inoculation as described previously.8,10,11

All mice were sacrificed at 3 weeks post-tumor cell im-
plantation or humane endpoint. The sequences of mouse
shRNA were listed in Table S3.

Spontaneous HCC mouse model. 2-day-old C57BL/6 male
mice were intraperitoneally injected with a single dose of
streptozocin (STZ) and fed with HFHC diet from the age of 4 to
19 weeks.15,16 The mice were euthanized at week 19 and the
tumor burden was measured. Tumor and matched non-tumor
liver tissues were collected for flow cytometry and
PCR analyses.

Online patient dataset analysis

mRNA levels and survival data of liver hepatocellular carcinoma
(LIHC) from The Cancer Genome Atlas (TCGA) was obtained
from the University of California, Santa Cruz (UCSC; http://
xena.ucsc.edu/). LIHC samples were stratified into high (30%)
and low (30%) groups according to the mRNA level of
PPP1R15A, CD14, ARG1, S100A8, and S100A9. Patients in the
high or low group were then compared for their overall survival
and plotted in standard Kaplan-Meier curves. To explore the
potential role of PPP1R15A on immunotherapy responsive-
ness, TIDE (tumor immune dysfunction and exclusion) scores
were calculated by the TIDE algorithm (http://tide.dfci.harvard.
edu/), according to the developer’s instructions. The cut-off
value of 0 in the TIDE score was used to predict the
JHEP Reports, ---
immunotherapy response of each tumor sample. To study the
correlation between PPP1R15A+ M-MDSC and survival in
immunotherapy-treated patients, patients were classified into
high and low groups based on the medium cut-off. Overall
survival analysis was then visualized by Kaplan-Meier plots
using publicly available cancer patient datasets.

Statistical analysis

Data were analyzed using GraphPad Prism 8 and are presented
as mean ± SEM. Statistical comparison between two groups
was evaluated by two-tailed and unpaired Student’s t test.
Paired Student’s t test was used to compare pre-treatment and
on-treatment samples. Non-parametric test was used when
data does not adhere to normal distribution. One-way ANNOVA
was used for the comparison among multiple groups. Two-way
ANOVA was applied for the comparison among multiple groups
on a continuous variable. Correlation analysis was performed
using single-tailed Pearson correlation. Kaplan-Meier survival
analysis was performed by log-rank (Mantel-Cox) test. The
relationship between two categorical variables was computed
by the Chi-square test. A p value smaller than 0.05 was
considered statistically significant.

Results

Transcriptomic analysis identifies PPP1R15A as a novel
signature gene in M-MDSCs from patients with HCC with
liver fibrosis

We have previously established a M-MDSC in vitro generation
assay by culturing human CD14+ cells with CM from an acti-
vated human HSC cell line LX2, which recapitulates major
features of hepatic M-MDSCs from fibrosis-associated patients
with HCC.10 Compared to untreated CD14+ cells, bulk RNA-
seq analysis has uncovered 564 DEGs (p <0.05, log2 fold-
change >1) in these M-MDSCs (Fig. 1A).10 In parallel, we re-
analyzed the scRNA-seq data from patients with HCC14 with
enrichment of the myeloid cell barcodes by Seurat 4.3.0 and
identified 499 DEGs (p <0.05) enriched in CD14+ M-MDSC-like
cell clusters compared to the resting myeloid cell clusters, in
which 65 DEGs were overlapped with those derived from the
LX2-CM-induced M-MDSCs (Table S4). These DEGs contained
well-studied MDSC signature genes that have been reported to
play critical roles in MDSC trafficking and immunosuppression
including CCL2, CCL20, CXCL2, CXCL3, IL-1b, and ARG1,
S100A8, S100A12,7 thus validating the authenticity of our
transcriptomic analysis.

Therefore, we further conducted the analysis on the corre-
lations of these 65 DEGs towards the well-known M-MDSC
marker genes (CD14, ARG1, S100A8, S100A9) in tumor-
adjacent livers from patients with HCC in TCGA (n = 48) and
liver tissues from GETx cohort (n = 110) as well as their
expression profiling in 79 human tissues and cells (GeneAtlas
U133A dataset). Interestingly, we have identified a novel
M-MDSC target gene, i.e. protein phosphatase 1 regulatory
subunit 15A (PPP1R15A), which was not only positively
correlated with the M-MDSC signature (Fig. 1B), but also
showed a specific enrichment in CD33+ myeloid cells
compared to other tissues or cells (Fig. 1C). The upregulation of
PPP1R15A mRNA and protein levels were also verified in
LX2-CM-induced M-MDSCs compared to naïve monocytes
2024. vol. 6 j 1–14 3
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(Fig. 1D,E). Moreover, high PPP1R15A expression correlated
with poor overall survival of patients with HCC (hazard ratio =
1.6, p <0.05; Fig. 1F). Using the TIDE analysis, which integrates
the expression signatures of T-cell dysfunction and T-cell
exclusion to predict ICB response,18 and the HCC TCGA
dataset, we found that patients with HCC and high expression
of PPP1R15A were significantly more susceptible to ICB
resistance than those with HCC and low PPP1R15A expression
(p <0.001; Fig. 1G). PPP1R15A, also known as growth arrest
and DNA damage-inducible protein 34 (GADD34), is an
important modulator of endoplasmic reticulum stress that
controls ROS induction.19 Notably, Ppp1r15a knockout mice
exhibited a significant reduction in tumor incidence in
carcinogen-induced tumor models of both the colon and
liver,19,20 but the mechanisms have yet to be fully elucidated.
Considering the crucial role of ROS in M-MDSC-mediated
immunosuppression,21,22 our integrative analysis indicates that
PPP1R15A may serve as a potential regulator in M-MDSCs.
Our finding also suggests that PPP1R15A may have a dual
biomarker role in both prognosis and ICB response prediction.

To further verify the expression of PPP1R15A in patients
with HCC, tumor-adjacent liver and tumor tissues were
collected from patients with HCC with liver fibrosis and
analyzed by co-immunofluorescence (co-IF) and multi-color
flow cytometry. Consistently, we found that the percentages
of PPP1R15A+ M-MDSCs in CD45+ leucocytes derived from
peripheral blood, tumor, and adjacent liver tissues of patients
with HCC were higher than those of healthy donor monocytes
(Fig. 2A). Moreover, a higher percentage of PPP1R15A+ M-
MDSCs was observed in the livers when compared to blood in
patients with HCC (p <0.05; Fig. 2A). In addition, co-IF staining
demonstrated strong co-localization of PPP1R15A and
MDSC markers CD14 and CD33 in the tumor-surrounding
fibrotic livers of patients with HCC (Figs 2B and S1). Using
sorted CD45+CD11b+CD33+CD14+HLA-DR-/low M-MDSCs,
CD45+CD11b+CD33+CD15+HLA-DR-/low PMN-MDSCs, CD45-

liver cells from patients with fibrosis-associated HCC as well as
monocytes from healthy donors for RT-qPCR (reverse
transcription-quantitative PCR) analysis, we further confirmed
that PPP1R15A was significantly upregulated in M-MDSCs (p
<0.05; Fig. 2C). Since we have demonstrated that M-MDSCs
accumulated in fibrotic livers displayed enhanced immuno-
suppressive activity compared to their counterparts in blood,10

these findings suggest the clinical significance of PPP1R15A
over-expression and its potential role in M-MDSC-medi-
ated immunosuppression.

PPP1R15A is induced by TGF-b to regulate
immunosuppressive activity of M-MDSCs

To investigate the potential functional significance of
PPP1R15A in M-MDSCs, we introduced a myeloid cell-
competent lentivirus packed with shRNA17 to knockdown
PPP1R15A expression in LX2-CM-induced M-MDSCs,
determined by RT-qPCR and Western blot, respectively. GAPDH served as a loading
mRNA expression were stratified by top and bottom 30% in 369 patients for the
(G) Prediction of potential clinical immunotherapy responsiveness in PPP1R15Ahigh v
HCC samples (p = 0.0001, Chi-square test). DEGs, differentially expressed genes;
myeloid-derived suppressor cell; scRNA-seq, single-cell RNA-sequencing; TCGA, T
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followed by phenotypic and immunosuppressive analysis
(Fig. 3A). The knockdown efficiency of the lentivirus-shRNA
against human PPP1R15A (shPPP1R15A) was confirmed by
RT-qPCR (p <0.05; Fig. 3B). While the M-MDSC proportion
showed a decreasing trend with PPP1R15A knockdown
(Fig. S2), the expression of immunosuppressive markers (ARG1
and S100A8/9) and ROS production in M-MDSCs were signif-
icantly reduced (p <0.05; Fig. 3B,C). More importantly,
M-MDSCs with reduced PPP1R15A expression exhibited a
significantly decreased ability to suppress CD3+ T-cell
proliferation (p <0.01; Fig. 3D), demonstrating that PPP1R15A is
a key player in M-MDSC-mediated immunosuppression.
Accordingly, co-IF demonstrated proximity between
PPP1R15A+CD14+ cells and CD8+ T cells in the tumor-
surrounding fibrotic livers of patients with HCC (Fig. S3).
These results suggest that PPP1R15A+ M-MDSCs may interact
closely with CD8+ T cells, potentially via secretion of T-cell
chemokines such as CCL3 and CCL410,23 (Table S4).

Next, we explored how PPP1R15A is upregulated in HSC-
induced M-MDSCs. Transforming growth factor-b (TGF-b) is
a key pro-fibrotic factor that is reported to be dramatically
elevated in liver fibrosis and to promote M-MDSC differentia-
tion and function.24,25 Since activated HSCs could produce
TGF-b in liver fibrosis,26 we speculated that activated HSCs
may promote M-MDSC generation and immunosuppression
through the secretion of TGF-b. To test this hypothesis, we
treated healthy donor CD14+ cells with human recombinant
TGF-b or LX2-CM-induced M-MDSCs with the TGF-b inhibitor
LY2109761 (Fig. 3E). Of note, we found that activation of the
TGF-b pathway indicated by Smad2/3 phosphorylation could
increase the expression of PPP1R15A in monocytes, leading to
the dephosphorylation of eukaryotic translation initiation factor
2 (eIF2a) on serine 51, a direct downstream target of
PPP1R15A27 (Fig. 3F). Complementarily, inhibition of the TGF-b
pathway resulted in the reduction of PPP1R15A expression and
increase of p-eIF2a in LX2-CM-induced M-MDSCs (Fig. 3G).
Since the expression of PPP1R15A was also positively corre-
lated with TGFB1 in tumor-adjacent livers from patients with
HCC from the TCGA dataset (n = 48) and liver tissues from the
GETx cohort (n = 110) (Fig. S4), our data suggest that TGF-b
may be an upstream signal for PPP1R15A induction in
M-MDSCs. Moreover, TIDE analysis revealed that the signature
scores for TGFB1, MDSCs, and fibrosis (as reflected by cancer-
associated fibroblasts) were significantly higher in predicted
ICB non-responders compared to responders (Fig. S5), thus
supporting their roles in ICB resistance.

Ppp1r15a inhibition suppresses M-MDSC functionality to
restrict HCC progression

To further evaluate the effect of PPP1R15A in M-MDSC-
mediated immunosuppression and HCC development in vivo,
we utilized our established fibrosis-associated orthotopic
HCC mouse model15,16 and the myeloid cell-competent
control. (F) TCGA HCC samples with high (n = 109) and low (n = 109) PPP1R15A
analysis of Kaplan-Meier curves of overall survival (data generated on GEPIA2).
s. PPP1R15Alow patients with HCC was shown using the TIDE signature in TCGA
HCC, hepatocellular carcinoma; HSC, hepatic stellate cell; M-MDSC, monocytic
he Cancer Genome Atlas; TIDE, tumor immune dysfunction and exclusion.
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lentivirus packed with shRNA against mouse Ppp1r15a
(shPpp1r15a). The knockdown efficiency of lentivirus-
shPpp1r15a was confirmed in bone-marrow-derived M-
MDSCs before in vivo use24 (p <0.05; Fig. S6A). Mice fed a
HFHC diet for 16 weeks and then treated with lentivirus-
shPpp1r15a or lentivirus expressing shRNA against
control (shCtrl), were then inoculated with RIL-175 tumor cells
via intrahepatic injection (Fig. 4A). The development of
liver fibrosis and M-MDSC accumulation were confirmed by
H&E/Sirius Red staining and flow cytometry analysis
(Fig. S6B,C). As expected, selective upregulation of Ppp1r15a
expression was observed in MDSCs compared to other
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myeloid cells, T cells, or liver stromal cells in the fibrotic livers
(Fig. S6D). We found that lentivirus-shPpp1r15a effectively
downregulated Ppp1r15a expression in M-MDSCs sorted
from fibrotic livers without influence on mouse body weight
(p <0.05; Fig. 4B,C). Of note, knockdown of Ppp1r15a in
M-MDSCs significantly restricted HCC growth in fibrotic livers
(p <0.05; Fig. 4D). Using a spontaneous HCC model induced
by STZ injection and HFHC diet,15 we also showed elevated
Ppp1r15a expression in fibrosis-associated M-MDSCs that
were correlated with tumorigenicity (Fig. S7), thus supporting
an important role of Ppp1r15a in fibrosis-associated
HCC development.
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Research article
We next analyzed the single immune cells isolated from
fibrotic livers and tumors of the HFHC diet-induced HCC
model mice by multi-color flow cytometry (Fig. S8A). Consis-
tent with our in vitro data (Fig. 3B), Ppp1r15a knockdown
reduced the proportion of immunosuppressive ARG1+S100A9+

M-MDSCs in the liver microenvironment (p <0.05), while
JHEP Reports, ---
increasing the number of IFN-c+Granzyme B (GZMB)+CD8+

T cells in tumors (p <0.05; Fig. 4E,F). The proportions of
hepatic ARG1+S100A9+ M-MDSCs were not only positively
correlated with tumor weight (r = 0.7741, p = 0.0004), but also
negatively correlated with IFN-c+GZMB+CD8+ T cells from
tumors (r = -0.6803, p = 0.0037; Fig. 4G,H). Moreover,
2024. vol. 6 j 1–14 7
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PPP1R15A+ M-MDSCs promote fibrosis-associated HCC
IFN-c+GZMB+CD8+ T cells were associated with tumor
suppression, indicating a critical role in anti-tumor function
(r = -0.5271, p = 0.0359; Fig. 4I). We also observed an in-
crease of hepatic CD11b+GR-1-F4/80+CD206- M1 macro-
phages in the mice receiving lentivirus-shPpp1r15a injections
(p <0.05, Fig. S8B). Since M-MDSCs are reported to show the
JHEP Reports, ---
possibility of differentiating into M1 macrophages,28 our data
implied that PPP1R15A may also function in maintaining
M-MDSC status in the tumor-supportive liver microenviron-
ment. Taken together, these data suggest that PPP1R15A is
crucial for M-MDSC-mediated immunosuppression and HCC
growth in fibrotic liver.
2024. vol. 6 j 1–14 8
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Ppp1r15a inhibition promotes an inflamed TME to enhance
ICB efficacy

To further investigate whether targeting Ppp1r15a could
modulate HCC immunotherapy, we established another
fibrosis-related HCC mouse model induced by CCl4 as previ-
ously described16 (Fig. 5A). Our data showed that lentiviral-
mediated Ppp1r15a knockdown could improve the anti-tumor
efficacy of PD-L1 blockade without affecting the body weight
of the treated mice (Fig. 5B,C). Consistent with the HFHC diet-
induced fibrosis-related HCC model, Ppp1r15a knockdown
could efficiently reduce the proportion of ARG1+S100A9+ M-
MDSCs in fibrotic liver, leading to an elevation of tumor-
infiltrating IFN-c+GZMB+CD8+ T cells when combined with
ICB therapy (Fig. 5D,E). Likewise, the proportions of hepatic
ARG1+S100A9+ M-MDSCs were not only positively correlated
with tumor weight (r = 0.6158, p = 0.0005), but also negatively
correlated with IFN-c+GZMB+CD8+ T cells (r = -0.3569,
p = 0.06; Fig. 5F,G). Moreover, IFN-c+GZMB+CD8+ T cells
were also correlated with tumor growth inhibition (r = -0.6147,
p = 0.0006; Fig. 5H). Collectively, these findings suggest that
Ppp1r15a knockdown markedly decreased the number and
immunosuppressive activity of M-MDSCs, resulting in an
inflamed TME with a high level of cytotoxic CD8+ T cells
conducive to anti-tumor immune responses with ICB therapy.

Selective inhibition of PPP1R15A suppresses the identity
and immunosuppression in patient-derived M-MDSCs

We next investigated the clinical potential of PPP1R15A in-
hibition by treating fibrotic HCC patient-derived PBMCs
with a specific PPP1R15A inhibitor Sephin1, which can
selectively disrupt the formation of the functional PPP1R15A
complex.27 We first tested the dose and efficacy of Sephin1 in
HSC-induced M-MDSCs (Fig. 6A). Perturbation of the
PPP1R15A pathway by Sephin1 treatment (Fig. 6B) could
significantly reduce M-MDSC proportion (p <0.001; Fig. 6C)
and ROS production (p <0.001; Fig. 6D), which resulted in
impaired M-MDSC-mediated immunosuppression of T-cell
proliferation (Fig. 6E). More importantly, treatment of HCC
patient-derived PBMCs with Sephin1 (Fig. 6F) also decreased
expression of the immunosuppressive marker ARG1 in
M-MDSCs (p <0.05; Fig. 6G, while treatment increased
the expression of maturation markers CD80 and CD86
(p <0.05; Fig. 6H). In summary, our findings demonstrate
the susceptibility of HCC patient-derived M-MDSCs to
PPP1R15A inhibition.

PPP1R15A+ M-MDSC signature is associated with poor
overall survival and predicted low responsiveness to
immunotherapy in patients with cancer

Given the crucial role of M-MDSCs as the Achilles’ heel of ICB
responsiveness in HCC,10 we finally evaluated the significance
of PPP1R15A on patients’ response to ICB therapy. Using the
mRNA levels of PPP1R15A, CD14, ARG1, S100A8, S100A9,
we generated a PPP1R15A+ M-MDSC signature for analysis.
Firstly, we found that patients with HCC with a high
PPP1R15A+ M-MDSC signature displayed poor overall survival
rates compared to those patients with a low PPP1R15A+ M-
MDSC signature in the HCC TCGA dataset (p <0.05; Fig. 7A).
We next explored the potential associations of the PPP1R15A+
JHEP Reports, ---
M-MDSC signature towards ICB responsiveness in cohorts of
patients with HCC,11 melanoma29,30 and renal cell carcinoma
(RCC).31 Of note, patients with melanoma receiving an ICB
antibody and grouped as responders displayed a lower
PPP1R15A+ M-MDSC signature compared to those grouped
as non-responders in two independent patient cohorts
(Fig. 7B). Moreover, a similar pattern was observed in RCC and
HCC patient cohorts, in which non-responders displayed a
higher PPP1R15A+ M-MDSC signature compared to re-
sponders (Fig. 7B). Finally, we further grouped patients with
high or low baseline PPP1R15A+ M-MDSC signatures to
analyze the survival benefit of patients under ICB treatment.
Consistently, we found that a higher baseline PPP1R15A+

M-MDSC signature was associated with worse overall survival
of patients with melanoma, RCC and HCC11,32,33 (Fig. 7C).
Taken together, these data implicate the potential predictive
role of PPP1R15A+ M-MDSCs in ICB responsiveness of pa-
tients with cancer.

Discussion
The liver is an immunologic organ that modulates the immune
response to cancer arising within it. Accumulating studies
have focused on investigating the variable effects of the
tumor-surrounding liver microenvironment in modulating tu-
mor immunity, progression, and sensitivity to immuno-
therapy.2,34 Since the majority of HCC arises in the context of
liver fibrosis,1 we have established fibrosis-associated HCC
models and demonstrated the crucial role of the peritumoral
fibrotic liver microenvironment in driving aggressive tumor
growth via inducing M-MDSCs through interaction with pro-
fibrogenic HSCs.10 Accordingly, therapeutic approaches that
target MDSC expansion, immunosuppression, or recruitment
have shown great potential in both preclinical HCC
models8–11 and clinical trials (NCT04123379; NCT02868255;
NCT01839604). By integrative analysis of the transcriptomes
from liver fibrosis-associated M-MDSCs, we identified
PPP1R15A as a critical determinant of M-MDSC-mediated
immunosuppression and HCC progression in the fibrotic
liver microenvironment. Inhibition of M-MDSC-intrinsic
PPP1R15A could restrict tumor growth and potentate ICB
responsiveness by releasing M-MDSC-mediated immuno-
suppression, which in turn potentiated T-cell responses with
dramatic production of the cytolytic cytokines IFN-c and
GZMB. Mechanistically, TGF-b induced the upregulation of
PPP1R15A in M-MDSCs which in turn triggered the expres-
sion of ARG1, S100A8/9, and ROS to potentiate immuno-
suppression on T cells. Furthermore, PPP1R15A expression
was markedly enriched in hepatic M-MDSCs of patients with
HCC, in which a PPP1R15A+ M-MDSC signature was asso-
ciated with both poor survival and ICB non-responsiveness.
Taken together, we surmise that inhibition of PPP1R15A
offers an opportunity for M-MDSC targeting in can-
cer immunotherapy.

PPP1R15A, also known as GADD34, is a regulatory sub-
unit of protein phosphatase 1 (PP1) that directly targets eIF2a,
thus serving a critical role in the regulation of protein trans-
lation.27 The upregulation of PPP1R15A is commonly re-
ported in tumor cells that are associated with cancer
progression and poor clinical prognosis in patients with
breast cancer, anaplastic thyroid carcinoma, lung carcinoma,
colorectal cancer, and HCC.19,20,35–37 In parallel, tumoral
2024. vol. 6 j 1–14 9
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proportions of hepatic ARG1+S100A9+ M-MDSCs (p = 0.0396) and (E) intratumoral IFN-c+GZMB+CD8+ T cells in different groups (combo vs. control, p = 0.0179; vs.
anti-PD-L1, p = 0.0360). Data were analyzed by one-way ANOVA and shown as mean±SEM. *p <0.05. (F-G) Correlations of hepatic ARG1+S100A9+ M-MDSCs towards
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relation). CCl4, carbon tetrachloride; HCC, hepatocellular carcinoma; ICB, immune checkpoint blockade; M-MDSC, monocytic myeloid-derived suppressor cell.

PPP1R15A+ M-MDSCs promote fibrosis-associated HCC
PPP1R15A knockdown has been reported to sensitize HCC
cells to sorafenib in vitro and in xenograft models.36 Using a
diethylnitrosamine-induced HCC mouse model, Chen et al.
JHEP Reports, --- 2
showed that the increased expression of PPP1R15A in tumor
cells induced by DNA damage and endoplasmic reticulum
stress promotes hepatic damage and inflammation to
024. vol. 6 j 1–14 10
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Research article
advance hepatocarcinogenesis.20 Since the tumor nodules
are remarkably reduced in the whole-body Ppp1r15a
knockout mice, this report provides solid evidence that
JHEP Reports, ---
PPP1R15A enhances HCC development.20 In addition to the
tumor cell-intrinsic effect, our findings further pinpointed
that PPP1R15A is also highly expressed in M-MDSCs in the
2024. vol. 6 j 1–14 11



PPP1R15A+ M-MDSCs promote fibrosis-associated HCC
tumor-supportive liver microenvironment. Suppression of
PPP1R15A in M-MDSCs not only decreases their immuno-
suppressive ability but also restricts HCC growth in fibrotic
liver. Therefore, given both the tumor- and M-MDSC-intrinsic
effects, our data highlighted the multiple facets of PPP1R15A
in promoting tumor immunosuppression and hepatic carci-
nogenesis, suggesting that PPP1R15A is an exploitable
druggable target for HCC therapy.
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We and others have interrogated the crosstalk between
HSCs and MDSCs in promoting cancer progression, metas-
tasis, and immunotherapy resistance.10,38,39 The activated
HSC has been established as a central driver of liver fibrosis
that also contributes to liver immune tolerance through
interaction with monocytes.38,39 Mechanistically, the acti-
vated HSCs could polarize monocytes to immunosuppressive
M-MDSCs via physical interaction by CD44-CD44L, or
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soluble factors including cyclooxygenase-2, IL-6, TNF-a and
TGF-b.38,39 We have observed a gradual increase and sig-
nificant accumulation of PPP1R15A expression upon LX2-CM
stimulation. Among different soluble factors in LX2-CM, we
further identified TGF-b as the main driver of PPP1R15A
upregulation in M-MDSCs. Of note, apart from HSCs, TGF-b
can also be derived from other cells such as tumor cells.
Interestingly, Liu et al. pointed out that tumoral PPP1R15A
expression could promote the secretion of VEGF A and TGF-b
in Lewis lung carcinoma mouse model,37 suggesting that the
TGF-b/PPP1R15A axis may function as a self-reinforcing
signaling. In addition, PPP1R15A is reported to be required
for optimal transcription and production of the cytokines IFN-
b and IL-6 as well as iNOS.40 Our data further showed that
PPP1R15A functioned in promoting M-MDSC immunosup-
pression by upregulating the expression of immunosuppres-
sive molecules such as ARG1 and S100A8/9 as well as ROS
production. Taken together, these data suggested that
PPP1R15A may promote cancer progression by inducing the
JHEP Reports, ---
expression of pro-inflammatory cytokines and immunosup-
pressive factors from both tumor cells and M-MDSCs.

One of the limitations of the current study is the orthotopic
mouse model using a hepatoma cell line. We are aware
that insights from the orthotopic HCC mouse model may not
fully recapitulate the heterogenous immune features of patients
and have provided limited predictions for outcomes in
the clinic. In parallel, the molecular basis of modulation of
ARG1/S100A/ROS production by PPP1R15A in M-MDSCs is
also unknown. Nevertheless, our data suggest that specific
inhibition of PPP1R15A could reduce M-MDSC development
and immunosuppression, which in turn could break the
immunosuppressive barrier to restrict tumor progression and
enhance the efficacy of immunotherapies in HCC and poten-
tially other M-MDSC-enriched cancers. Further investigations
on dosage optimization and efficacy testing of selective
PPP1R15A inhibition27 in combination with ICB should
provide proof-of-concept for preclinical studies and future
human translation.
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