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Abstract: Enabling individuals with complete paralysis to operate devices voluntarily
requires an effective interface; EEG-based P300 event-related potential (ERP) interfaces are
considered a promising approach. P300 is an EEG peak generated in response to specific
sensory stimuli recognized by an individual. Accurate detection of this peak necessitates a
stable pre-stimulus baseline EEG signal, which serves as the reference for baseline correction.
Previous studies have commonly employed either a single-time-point amplitude (e.g., at
100 ms before stimulus onset) or a time-range-averaged amplitude over a specified pre-
stimulus period (e.g., 0–200 ms) as a baseline correction method, assuming these provide the
most stable EEG reference. However, in assistive P300 interfaces, continuous visual stimuli
at 400 ms intervals are typically used to efficiently evoke P300 peaks. Since stimuli are
presented before the EEG stabilizes, it remains unclear whether conventional neuroscience
baseline correction methods are suitable for such applications. To address this, the present
study conducted a P300 induction experiment based on continuous 400 ms interval visual
stimuli. Using EEG data recorded from 0 to 1000 ms before each visual stimulus (sampled at
1 ms intervals), we applied three baseline correction methods—single-time-point amplitude,
time-range-averaged amplitude, and multi-time-point amplitude—to determine the most
effective EEG reference and evaluate the impact on P300 detection performance. The results
showed that baseline correction using an amplitude at a single point in time is unstable
when the basic EEG rhythm and low-frequency noise remain, while time-range-averaged
baseline correction using the 0–200 ms pre-stimulus period led to relatively effective
P300 detection. However, it was also found that using only one value averaged over the
amplitude from 0 to 200 ms did not result in an accurate EEG reference potential, resulting
in an error. Finally, this study confirmed that the multi-time-point baseline correction
method, through which the amplitude state from 0 to 200 ms before the visual stimulus is
comprehensively evaluated, may be the most effective method for P300 determination.

Keywords: EEG; BCI; ERP-P300; baseline

1. Introduction
In the fields of healthcare and welfare, human–machine interfaces (HMIs) that utilize

bio-signals, such as EEG, electromyography (EMG), and electrooculography (EOG), are
essential [1,2]. Among these, interfaces based on EEG signals are known as brain–computer
interfaces (BCIs), which serve as the sole means for individuals with severe conditions
such as amyotrophic lateral sclerosis (ALS), brainstem infarction, cerebral palsy, and spinal
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cord injuries to control a computer [3,4]. BCIs can be categorized as invasive or non-
invasive based on the method of EEG measurement. Examples of invasive BCIs include
electrocorticography (ECoG), which involves placing electrodes on the brain surface, and
local field potentials (LFPs), which require electrodes to be implanted directly in the
brain [5]. These methods necessitate surgery to open the skull and dura mater for electrode
placement, imposing a significant burden on the user. However, they allow for the direct
measurement of brain signals, yielding high temporal and spatial resolutions, which enables
real-time multi-input control [6–8]. In contrast, non-invasive BCIs commonly utilize scalp
EEG [9], in which electrodes are placed on the scalp [10–12]. This approach does not require
surgery, making it more accessible for daily use, though some of the signal strength is
attenuated as it passes through the skull and scalp. Consequently, a single EEG recording is
insufficient to achieve a reliable control input. Instead, non-invasive BCIs typically analyze
40–120 EEG epochs, resulting in one input command approximately every 30–60 s, which
limits real-time control. Although the performance of non-invasive BCIs is generally lower
than that of invasive methods, the ease of use and the non-surgical nature make scalp
EEG-based BCIs promising for practical applications [13].

Scalp EEG-based BCIs can be divided into two categories: those that detect periodic
bio-signals, known as “baseline rhythms”, and those that capture event-related potentials
(ERPs), which are transient signal peaks generated when the brain recognizes specific
sensory stimuli [14]. Among ERPs, P300 is the only waveform with successful applications
in practical scalp EEG-based BCI systems. P300 is an EEG peak that appears as a positive
deflection approximately 300 ms after a person attends to a particular sensory stimulus
presented randomly and at a fixed frequency [15,16]. Leveraging this characteristic, Farwell
and Donchin developed a P300-based speller interface in which 26 letters flash alternately
on a screen. By analyzing the timing of the letter flashes and ERP responses, they were
able to infer the letter the user focused on, creating a keyboard input BCI known as the
P300 speller [17]. Many studies have further developed the P300 speller. One direction of
research has aimed to improve sensory presentation methods to enhance users’ recognition
of the target stimulus. For example, Kirasirova and colleagues found that flashes of letters
surrounding the target letter could negatively affect the P300 peak for the target. By
limiting the visual field, they improved the detection accuracy [18]. Similarly, Kaufmann
et al. achieved higher recognition accuracy by replacing letter flashes with images of
human faces, which are more readily recognizable by users [19]. Another line of research
has focused on refining methods for extracting the P300 peak. The foundation for P300
analysis, proposed by Galambos and Sheatz in 1964 [20], involves the following process:
first, EEG data are segmented into epochs from 1 s before to 1 s after stimulus onset, and
these epochs are categorized by stimulus type. Next, baseline correction is applied, setting
the most stable EEG point within each epoch as the zero-voltage reference (EEG baseline).
Typically, either the amplitude at a specific pre-stimulus time (e.g., 100 ms; single-time-point
baseline correction) or the average amplitude over a pre-stimulus period (e.g., 0–200 ms;
time-range-averaged baseline correction) is used as the zero point, with all the EEG data
adjusted accordingly. Finally, the averaged waveform for each stimulus type is calculated.
This process allows for the cancellation of baseline rhythms (around 50 µV) that obscure
small P300 peaks (around 5 µV) by taking advantage of the phase differences in baseline
rhythms across epochs [21–23].

Thus, P300 detection accuracy improves with longer experiment durations and more
epochs for averaging. However, in scenarios involving continuous sensory presentation,
such as with the P300 speller at 200 ms intervals, achieving a stable baseline reference
may be challenging, potentially reducing detection accuracy. To address this, Tanner
and Norton proposed improving baseline correction by simultaneously recording EEG
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and magnetoencephalography (MEG) during ERP-evoking stimuli. They clarified the
effective high-pass filter settings for baseline correction, assuming MEG as the accurate
reference [24].

Additionally, Krusienski et al. explored using additional EEG sites (PO7, PO8, and
Oz) beyond the standard P300 sites (Fz, Cz, and Pz), enhancing the baseline reference
detection across multiple channels [25]. Furthermore, in recent years, several studies have
been conducted on P300 detection using machine learning based on convolutional neural
networks (CNNs) as an advancement of the P300 speller. Kilani et al. demonstrated that by
training a model directly on the EEG waveforms of target and non-target stimuli without
applying conventional baseline correction or averaging, it is possible to detect the presence
or absence of the P300 component in raw EEG signals [26]. However, in order to achieve
a high classification accuracy, subject-specific training (fine-tuning) is necessary due to
inter-individual differences in EEG waveform characteristics. In contrast, Li et al. proposed
a machine learning-based P300 detection method that does not require fine-tuning [27].
Their approach involved training on EEG waveforms after applying time-range averaged
baseline correction and averaging, enabling a high classification performance without
subject-specific training. This indicates that baseline correction and averaging effectively
reduce individual variability in EEG waveforms, highlighting the critical role of these
preprocessing techniques in P300 detection.

Given the continuous 400 ms interval sensory stimuli used in P300-based BCIs, the
characteristics of the EEG baseline potential under such conditions have not been thor-
oughly analyzed. Additionally, the effectiveness of conventional baseline correction meth-
ods, such as single-time-point baseline correction and time-range-averaged baseline correc-
tion, has not been quantitatively validated. Therefore, in this study, we conducted a P300
evoked potential experiment with continuous 400 ms visual stimuli, measuring EEG data
from 0 ms to 1000 ms before stimulus onset (with a 1 ms resolution). Three types of baseline
correction (single-time-point, time-range-averaged, and multi-time-point) are applied to
analyze P300 peaks. We then analyzed a baseline method for calculating EEG reference
potentials that would allow effective P300 detection for continuous stimulation.

In Experiment 1, we performed single-time-point baseline correction for all time points
between 0 ms and 1000 ms before visual stimuli, analyzed all waveforms, and examined
the characteristics of the single-time-point baseline method that can effectively determine
P300. In Experiment 2, we applied time-range-averaged baseline correction using different
baseline durations ranging from 0 ms to 1000 ms before stimulus onset, analyzed all the
waveforms, and examined the characteristics of the time-range-averaged baseline correction
that can effectively determine P300. In Experiment 3, we test our proposed multi-time-point
baseline correction to provisionally determine the P300 for all points in a specific time
range using single-time-point baseline correction, and then evaluate the results of these
judgments comprehensively and make a final judgment. We then analyze all waveforms
and verify that the multi-time-point baseline correction can effectively determine P300.

2. Materials and Methods
2.1. Overview of the EEG Measurement Experiment

Participants were seated on a chair positioned 80 cm away from the PC used for
visual stimulus presentation. EEG signals were recorded using the Polymate Pocket device
(Miyuki Giken Co., Ltd., Tokyo, Japan), with electrodes placed according to the international
10–20 system: a ground electrode on the forehead, a reference electrode on A1 (left earlobe),
and recording electrodes at Cz and Pz. All electrode–skin impedances were maintained
below 30 kΩ (Figure 1a). Additionally, to synchronize the visual stimulus onset with EEG
recordings, the voltage output of a photosensor attached to the display was connected
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to the external input pins of the EEG device. This setup allowed the detection of visual
stimulus timing based on changes in the color of a specified area on the display (Figure 1b).

(a)  (b) 

Figure 1. Electrode placement and overview of the experimental setup. (a) Electrode placement
based on the international 10–20 system, showing the ground electrode on the forehead, the reference
electrode on A1 (left earlobe), and the recording electrodes at Cz and Pz. Red circles indicate the
electrodes used in this study; (b) overview of the experimental apparatus.

During the experiment, participants were instructed to minimize head movements
and to focus on a single designated visual stimulus per trial. The EEG signals measured
from the electrodes first passed through a 0.03 Hz high-pass filter integrated into the EEG
device circuitry. Subsequently, the signals were filtered by an anti-aliasing low-pass filter
with a cutoff frequency of 333 Hz and were recorded onto a PC at a sampling rate of 1 kHz.
Additionally, a second-order Butterworth high-pass filter with a cutoff frequency of 0.05 Hz
was applied via software to prepare the EEG data for further analysis. Regarding the EEG
measurement environment, because this study targets welfare applications, measurements
were conducted in a standard room mimicking a typical home or office environment rather
than an electromagnetic shielded room. However, the placement of electrical devices
powered by commercial electricity was carefully adjusted to prevent the generation of
commercial power line noise.

2.2. Visual Stimulus Presentation Method

Visual stimuli were presented using a Unity program running on a PC with a built-in
GPU, displayed on a 27-inch monitor (resolution: 3840 × 2160). The stimulus consisted
of white digits from 1 to 9 (stimulus numbers) arranged in a 3 × 3 grid against a black
background (Figure 2a). During stimulus presentation, the color of the digit changed from
white to red for 200 ms (Figure 2b). Digits from 1 to 9 flashed randomly at 400 ms intervals,
and the same digit was not repeated consecutively. The experiment was designed so that,
by the end, each digit flashed an equal number of times. To help participants maintain
concentration and minimize blinking and body movement, a 10-s break was provided after
every 36 stimulus presentations (Figure 2c). Area 1⃝ in Figure 2a indicates the location
where the photosensor was placed.
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(a)  (b) 

   
(c) 

Figure 2. Visual stimuli and time chart of the stimulus presentation. (a) Layout of digits presented in a
3 × 3 grid on screen. White digits from 1 to 9 were used as stimuli. The red square (area 1⃝) indicates
the location where the photosensor was placed to detect the timing of stimulus onset; (b) Example
screen displaying the visual stimulus “3”, which changes color from white to red for 200 ms during
stimulus presentation; (c) graph showing the order of visual stimulus presentations and the flow of
the 10-second rest period. Red text and brackets indicate the rest duration (REST10s) and its position
on the time axis (e.g., 14,400 [ms]).

2.3. P300 Peak Analysis Method

P300 peak analysis of EEG and event-related potentials (ERPs) was performed using
a Python-based program. As shown in Figure 3a, EEG data were first segmented from
1000 ms before to 500 ms after visual stimulus onset using the change in voltage detected by
the photosensor as the stimulus timing reference. After segmenting the EEG data, baseline
correction was applied, and averaged ERP waveforms were computed for each type of
visual stimulus to confirm the presence of a P300 peak. This study focuses on baseline
correction, and the following three baseline correction methods were applied:

1. Single-Time-Point Baseline Correction (Conventional Method)

This method treats a specific time point before stimulus onset (e.g., −100 ms) as the
EEG baseline reference voltage. The entire segmented EEG waveform is adjusted so that
the amplitude at this single time point becomes 0 V (Figure 3(b1)).

2. Time-Range-Averaged Baseline Correction (Conventional Method)

In this method, the average amplitude over a specific time range before the stimu-
lus (e.g., −200 ms to 0 ms) is treated as the EEG baseline reference voltage. The entire
segmented EEG waveform is adjusted so that this average value becomes 0 V (Figure 3(b2)).

3. Multi-Time-Point Baseline Correction (Proposed Method)

In this method, the amplitudes at multiple time points before the stimulus are each
treated as EEG baseline reference voltages. Baseline correction is performed for each
reference point, and preliminary P300 peak detection is conducted accordingly. Then, all
preliminary detection results are aggregated, and the visual stimulus with the highest
proportion of P300 peak detections is finally determined as the target stimulus in which the
P300 peak is considered to have occurred (Figure 3(b3)). The major difference between this
method and conventional methods is that it does not use only a single amplitude value,
such as that from a single time point or a time-range-averaged value, as the EEG baseline
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reference. Therefore, compared to conventional methods that rely on a single value, this
method can evaluate the amplitude characteristics of the pre-stimulus EEG data in a more
multivariate manner, leading to a more robust estimation of the baseline reference.

(a) 

(b)

Figure 3. Comparison of P300 peak calculation and detection processes based on baseline correction
methods. (a) The process from measurement data to P300 peak calculation; (b) detection processes for
P300 based on conventional single time point and time-range-averaged baseline correction methods
compared to the proposed multi-time-point baseline correction method.

The artifact removal process was performed on the data segments extracted based on
the visual stimulus timing. To eliminate the effects of electrooculographic (EOG) artifacts
and body movements, any extracted data in which the EEG amplitude exceeded the range
of ±100 µV was excluded and not included in the subsequent P300 analysis.

2.4. Participants and Analyzed Data

In this study, EEG measurements were conducted for 27 healthy participants aged 19
to 37 years (seven females and 20 males). In the first trial, visual stimulus number 3 was set
as the target stimulus, and each of the nine visual stimuli was presented 100 times. In the
second trial, stimulus number 5 was set as the target, with each stimulus again presented
100 times. Among the 27 participants, data from five participants were excluded from the
analysis based on the following criteria:

1. The participant fell asleep during the experiment.
2. The EEG data contained excessive noise due to excessive body movements.
3. There was poor electrode contact, or electrode detachment occurred during the mea-

surement.

As a result, data from the remaining 22 participants (seven females and 15 males, aged
19 to 37 years) across both trials were used for analysis.
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3. Analysis 1: Characteristics of Conventional Single-Time-Point Baseline
Correction for P300 Peak Detection

Single-time-point baseline correction, particularly using the baseline 100 ms before
visual stimulus presentation, is the most commonly used method in previous studies for
P300 peak detection. However, other studies have employed baselines from 200 ms or even
1000 ms before the stimulus. We extracted EEG data from 1000 ms before to 500 ms after
the visual stimulus and applied single-time-point baseline correction at each 1 ms interval
from 0 to 1000 ms prior to the stimulus. Baseline-corrected EEG data for each stimulus were
then averaged, and the maximum amplitude within a specific post-stimulus time range
was extracted. By comparing the maximum amplitudes obtained for each stimulus, we
analyzed and discussed the effectiveness of this method for P300 peak detection, aiming to
identify the most effective baseline point for amplitude-based baseline correction.

3.1. Feature Analysis of the Maximum Amplitude in P300 Peak Detection Based on
Single-Time-Point Baseline Correction

To facilitate comparison, we first focused on five representative baseline points used in
single-time-point baseline correction (100, 200, 300, 400, and 500 ms before visual stimulus
presentation) and calculated the P300 peak detection results based on each baseline point.
Figure 4a shows the post-stimulus EEG waveforms after 100 trials of averaging, classified
as “Recognition Difficulty: Low”, “Recognition Difficulty: Moderate”, or “Recognition
Difficulty: High”. The waveform of S5 represents a “Recognition Difficulty: Low” outcome,
where a clear P300 peak appeared during the target stimulus and the waveform stabilizes
near zero during the non-target stimulus. In contrast, for S10 (“Recognition Difficulty:
Moderate”) and S13 (“Recognition Difficulty: High”), some baseline points led to higher
amplitudes during the non-target stimulus than during the target stimulus, making P300
peak detection challenging. This suggests that conventional single-time-point baseline
correction may not provide a stable “EEG baseline voltage” at certain points.

However, this issue could also have arisen due to inadequate suppression of the back-
ground rhythm due to insufficient averaging. To investigate further, Figure 4b illustrates
the results of applying single-time-point baseline correction at 1 ms intervals from 0 to
1000 ms before the visual stimulus. Maximum amplitudes were calculated within the
200–400 ms post-stimulus range (300 ± 100 ms), with the x-axis representing the baseline
point and the y-axis the maximum amplitude. For each baseline point, correctness was
determined if the maximum amplitude during the target stimulus was higher than that
during the non-target stimulus. The lower part of each graph shows correct/incorrect
classification results, and the accuracy rate is displayed. These results are presented for
averaging trials of 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100.

In addition, the top row in Figure 4b illustrates the “Recognition Difficulty: Low”
condition, the middle row the “Recognition Difficulty: Moderate” condition, and the
bottom row the “Recognition Difficulty: High” condition. Across all conditions, non-
target stimulus maximum amplitudes remained high with less than 20 averages, indicating
residual background rhythm. Starting from 40 averages, the impact of the background
rhythm diminished. In the “Recognition Difficulty: Low” condition of S5, target stimulus
P300 peak amplitudes are clearly distinguishable across all baseline points. However,
in the “Recognition Difficulty: Moderate” (S10) and “Recognition Difficulty: High” (S13)
conditions, non-target stimulus amplitudes remained higher, even with 40 or more averages,
and stable P300 peak detection was only achieved after 90 or more averages. Thus, while
averaging 40 or more times reduces background rhythm interference, weak P300 peaks
from target stimuli can result in incorrect judgments due to unstable EEG baseline voltages
at certain baseline points, causing higher maximum amplitudes for non-target stimuli.
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(a) 

(b)

 
(c) 

Figure 4. Feature analysis of P300 detection based on single-time-point baseline correction. (a) P300
peak waveforms for three participants based on five conventional single-time-point baseline correc-
tions (averaged over 100 trials); (b) maximum amplitudes across all baseline points for three partici-
pants using single-time-point baseline correction at each time point (top) and the correct/incorrect
classifications when the maximum amplitude for the target stimulus exceeded that of the non-target
stimulus (bottom), visualized as blue bars labeled “True” for correct and “False” for incorrect classifi-
cations and displayed for different averaging trial counts; (c) box plot of maximum amplitudes for
target and non-target stimuli for all 22 participants. The red horizontal lines within each box indicate
the median values. The black markers and whiskers represent outliers and the data range excluding
outliers, respectively.
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Finally, in Figure 4c, for each of the 22 participants, we applied single-time-point
baseline correction at 1 ms intervals from 0 to 1000 ms before the visual stimulus. Maximum
amplitudes within the 200–400 ms range (300 ± 100 ms) post-stimulus were calculated
from the averaged EEG data of 100 trials. Statistical results of the maximum amplitudes
for the target (one stimulus) and non-target (eight stimuli) stimuli are shown as box
plots. This confirms that the median of the maximum amplitudes from the target stimuli
exceeded that from the non-target stimuli across all participants, although higher maximum
amplitudes from the non-target stimuli were observed at certain points, potentially leading
to misclassification. This suggests the importance of determining a stable EEG baseline
voltage point within the range of 0 to 1000 ms prior to the visual stimulus.

3.2. Feature Analysis of the Time Range for Determining Maximum Amplitude in the
Single-Time-Point Baseline Correction for P300 Peak Detection

As shown in Figure 5a, the position of the P300 peak did not occur exactly at 300 ms
after visual stimulus onset but varied between individuals. Additionally, the P300 peak
width spans approximately 100 to 200 ms, necessitating an appropriately defined detection
time range (P300 peak detection time range) to accurately capture individual differences
in the P300 peak position. Therefore, we analyzed EEG data for the 22 participants by
applying 10 different time ranges around 300 ms post-stimulus, with intervals of ±10 ms
up to ±100 ms. We evaluated both the maximum amplitude used as an indicator for
P300 peak detection and the corresponding time position for the target (one stimulus) and
non-target stimuli (eight stimuli combined) averaged EEG data. The results are presented
as box plots in Figure 5b,c. Regarding the median maximum amplitude in Figure 5a, the
values show an upward trend from 300 ± 10 ms to around 300 ± 60 ms, stabilizing in the
300 ± 70 to 100 ms range. In Figure 5b, after averaging 80 trials or more, the time position
of the maximum amplitude stabilized particularly within the range of 300 ± 70 to 100 ms,
suggesting that 300 ± 70 ms is the most suitable among the 10 time ranges.

Another notable feature is that the maximum amplitude of the target stimulus tended
to occur later than 300 ms, while that of the non-target stimulus tended to appear earlier
than 300 ms. This characteristic can also serve as a useful indicator for P300 peak detection.
Considering these two features—the time range of 300 ± 70 ms and the tendency for the
target stimulus maximum amplitude to occur later than 300 ms—the time range of 300 to
370 ms is estimated to be the most effective for detecting the maximum amplitude of the
target stimulus.

3.3. Detailed Analysis of P300 Peak Detection in the 300–370 ms Time Range for
Single-Time-Range Baseline Correction

In the previous section, it was suggested that detecting the P300 peak as the maximum
amplitude within the 300–370 ms range after the visual stimulus is the most effective
approach. Therefore, in this section, we performed single-time-point baseline correction
at each 1 ms interval from 0 to 1000 ms before the visual stimulus for each of the 22 par-
ticipants. For each baseline-corrected, averaged EEG dataset, the maximum amplitude
within the 300–370 ms range post-stimulus was calculated. A detailed statistical analysis
was conducted on the maximum amplitudes for the target (one stimulus) and non-target
stimuli (eight stimuli) to evaluate the time points that provide a stable EEG baseline voltage
within the 0–1000 ms pre-stimulus range.

First, Figure 6a shows the ratio of the maximum amplitude for the non-target stimuli
to that for the target stimuli (set to 100%) for each baseline time point (horizontal axis),
allowing for easy observation of non-target stimulus influence. The upper section of the
figure displays the results for averaging trial counts of 10, 20, 30, 40, 50, 60, 70, 80, 90,
and 100, while the lower section shows correct/incorrect classifications at each baseline
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time point along with accuracy rates. Additionally, the results for the three representative
participants—S5, S10, and S13—are presented, as in Section 3.1. The findings align with the
trends noted in Section 3.1; however, a key observation is that with 90 or more averaging
trials, all participants showed lower maximum amplitude ratios for the non-target stimuli
compared to the target stimuli within the 0–200 ms range pre-stimulus, indicating a stable
EEG baseline voltage.

(a) 

(b) 

(c)

Figure 5. Feature analysis of the time range and maximum amplitude in P300 detection based on
single-time-point baseline correction (top: target stimuli; bottom: non-target stimuli). (a) Illustration
of the time range and maximum amplitude for P300 peak detection in the EEG data of one participant;
(b) box plot of the maximum amplitudes across the time ranges for P300 peak detection in all
22 participants, displayed for various averaging trial counts; (c) box plot of the time positions of the
maximum amplitudes within the P300 detection time range for all 22 participants.
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(a)
 

 
(b) 

 
(c) 

Figure 6. Detailed comparison of the maximum amplitudes for target and non-target stimuli with
the P300 detection time range set to 300–370 ms (single-time-point baseline correction). (a) Normal-
ized maximum amplitude values for non-target stimuli relative to the target stimulus maximum
amplitude, shown for three participants across different averaging trial counts. The correct/incorrect
classifications based on these values are visualized as blue bars labeled “True” for correct and “False”
for incorrect classifications; (b) statistical representation (mean and standard deviation) of the normal-
ized maximum amplitude values for non-target stimuli relative to target stimuli for all 22 participants;
(c) statistical representation (mean, maximum, and minimum) of the normalized maximum amplitude
values for non-target stimuli relative to target stimuli for all 22 participants.

Subsequently, Figure 6b,c present statistical results across all 22 participants, showing
the ratio of non-target to target maximum amplitude values when the target amplitude was
set to 100%. Figure 6b displays the mean and standard deviation, while Figure 6c illustrates
the mean, maximum, and minimum values within shaded areas. Across all figures, the
non-target maximum amplitude ratio is lower within three specific pre-stimulus ranges:
“0–200 ms”, “400–600 ms”, and “800–900 ms”. Each of these ranges aligns with the initial
0–200 ms range before any visual stimulus.
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This suggests that using a stable EEG baseline voltage, such as within the 0–200 ms
range, rather than relying on a single-time-point baseline, could enable more effective
baseline correction. Consequently, using this stable range as a baseline would likely yield
the highest accuracy in P300 peak detection.

3.4. Summary of Single-Time-Point Baseline Correction for P300 Peak Detection

We demonstrated that using the 0–200 ms pre-stimulus period as a relatively stable
EEG baseline for baseline correction, combined with assuming the time position of the
maximum P300 peak amplitude within the 300–370 ms range, enables effective height-based
judgment of maximum amplitude values in averaged EEG data for target and non-target
stimuli. This approach effectively enhances the accuracy of P300 detection and provides
key insights for improving P300 detection accuracy.

4. Analysis 2: Characteristics of Conventional Time-Range-Averaged
Baseline Correction for P300 Peak Detection

We analyze the characteristics of P300 peak detection based on time-range-averaged
baseline correction—a conventional approach. Prior studies have predominantly used the
average amplitude within the 0–100 ms pre-stimulus period, although some research has
extended this range to the entire 0–1000 ms period before the stimulus. Therefore, we
conducted a feature analysis of P300 peak detection by applying baseline correction using
averaged amplitudes from each 1 ms time range between 0 and 1000 ms before the visual
stimulus, beginning from 0 ms.

4.1. Feature Analysis of the Maximum Amplitude in P300 Peak Detection Based on
Time-Range-Averaged Baseline Correction

Figure 7a illustrates the P300 peak detection results based on baseline correction using
averaged amplitudes across five representative pre-stimulus time ranges: “0–100 ms”,
“0–200 ms”, “0–300 ms”, “0–400 ms”, and “0–500 ms” (averaged over 100 trials). The top
row shows data from participant S5 (“Recognition Difficulty: Low”), the middle row from
S14 (“Recognition Difficulty: Moderate”), and the bottom row from S18 (“Recognition
Difficulty: High”). In the case of S5, a prominent P300 peak waveform appeared, clearly
distinguishing EEG data from the target and non-target stimuli. However, for S14 and S18,
a wider baseline time range led to higher maximum amplitudes for the non-target stimuli
than for the target stimuli, resulting in incorrect P300 detection. This discrepancy likely
occurred because, as indicated in Section 3.3, the 0–200 ms range is the most stable EEG
baseline voltage.

 
(a) 

Figure 7. Cont.
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(b) 

(c) 

Figure 7. Feature analysis of P300 detection based on time-range-averaged baseline correction.
(a) P300 peak waveforms for three participants based on five representative time-range-averaged base-
lines (conventional method), averaged over 100 trials; (b) maximum amplitudes across all baseline
points for three participants using time-range-averaged baseline correction (top) and correct/incorrect
classifications when the maximum amplitude for target stimuli exceeds that of non-target stimuli
(bottom), visualized as blue bars labeled “True” for correct and “False” for incorrect classifications
and displayed for various averaging trial counts; (c) box plot of maximum amplitude values for target
and non-target stimuli for all 22 participants. The black markers and whiskers represent outliers and
the data range excluding outliers, respectively.

Next, following the methodology in Figure 4 from Section 3.1, we calculated the
average amplitude across each 1 ms interval from 0 to 1000 ms pre-stimulus for baseline
correction. We then extracted the maximum amplitude within the 200–400 ms range post-
stimulus (300 ± 100 ms). These results are displayed as a graph, with the x-axis representing
the baseline time range (showing the endpoint) and the y-axis representing the maximum
amplitude. Below this graph, we show correct/incorrect classification results and accuracy
rates for each baseline time range. The results are presented for averaging trial counts of
10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. Overall, the findings indicate that, when baseline
correction was performed using the 0–200 ms time range, the maximum amplitudes of the
target stimuli tended to be higher than those of the non-target stimuli. However, when
the baseline correction included time ranges beyond 200 ms, the maximum amplitudes of
both the target and non-target stimuli increased as the baseline range widened. This trend
can be attributed to baseline bias errors caused by EEG amplitude fluctuations induced
by other stimuli, particularly within the 200–400 ms and 600–800 ms ranges pre-stimulus,
as discussed in Section 3.3. These fluctuations are assumed to accumulate as baseline bias
errors, contributing to the observed increase in maximum amplitude values.
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Finally, Figure 7c shows a statistical summary (box plot) of the maximum amplitude
values for the target (one stimulus) and non-target stimuli (eight stimuli) based on EEG
data averaged over 100 trials for all 22 participants. Upon comparing Figures 4c and 7c
(from single-time-point baseline correction), it is evident that the range of the maximum
amplitude values is narrower in Figure 7c. This outcome suggests that using the average
amplitude over a time range for baseline correction results in smoother data compared
to single-time-point baseline correction. However, because the mean only represents a
central value, it does not necessarily indicate an optimal EEG baseline voltage within
the 0–200 ms range before the stimulus. Conversely, these findings indicate that there
is room to explore alternative methods beyond simple mean amplitude calculation to
enhance the effectiveness of P300 peak detection based on insights from single-time-point
baseline correction.

4.2. Detailed Analysis of P300 Peak Detection in the 300–370 ms Time Range for
Time-Range-Averaged Baseline Correction

Based on the findings in Section 3.3, where detecting the P300 peak as the maximum
amplitude within the 300–370 ms post-stimulus range was identified as the most effective
approach, this section applies this time range to the time-range-averaged baseline correction
for P300 peak detection.

First, Figure 8 displays the ratio of maximum amplitude values for non-target stimuli
relative to target stimuli (set to 100%) across different baseline time ranges (x-axis), facil-
itating the observation of non-target stimulus influence. The upper section of the figure
shows the results for averaging trial counts of 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100,
while the lower section presents correct/incorrect classifications and accuracy rates for
each baseline time range. Similar to Section 4.1, results are presented for participants S5,
S14, and S18. The results generally follow the trends discussed in Section 3.3; however, a
notable finding is that with 30 or more averaging trials, all participants exhibited lower
maximum amplitudes for the non-target stimuli than for the target stimuli within the
0–200 ms pre-stimulus range, indicating a stable EEG baseline voltage.

Next, Figure 8b,c present statistical analyses across all 22 participants, showing the
ratio of maximum amplitude values for non-target stimuli to those for target stimuli (set
to 100%). Figure 8b displays the mean and standard deviation, while Figure 8b illustrates
the mean, maximum, and minimum values within shaded areas. Across all figures, the
non-target maximum amplitude ratio is lower within the pre-stimulus range of “0–250 ms”,
indicating that, similar to the single-time-point baseline correction, the 0–200 ms pre-
stimulus period represents a relatively stable EEG baseline voltage.

However, when using the average amplitude over a time range for baseline correction,
it merely smooths the signal rather than confirming the effectiveness of the baseline correc-
tion. Therefore, it remains uncertain whether this approach consistently achieves effective
baseline correction compared to single-time-point baseline correction.

4.3. Detailed Analysis of Baseline Range Start Time Variation

In the previous section, baseline correction was performed for all time ranges starting
at 0 ms and ending at 1000 ms. As a result, the most stable time range for detecting P300
was found to be 0 ms to 200 ms. However, since a time range of 200 ms may be effective, we
fixed it in this section at this value and performed baseline correction in 10 ms increments
from 0 ms to −300 ms as the starting point. Then, we evaluated the results regarding
P300 detection.
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(a) 

 
(b) 

 
(c) 

Figure 8. Detailed comparison of the maximum amplitudes for target and non-target stimuli with
the P300 detection time range set to 300–370 ms (time-range-averaged baseline correction). (a) Nor-
malized maximum amplitude values for non-target stimuli relative to the target stimulus maximum
amplitude across different averaging trial counts for three participants. The correct/incorrect classifi-
cations based on these values are visualized as blue bars labeled “True” for correct and “False” for
incorrect classifications; (b) statistical representation (mean and standard deviation) of the normalized
maximum amplitude values for non-target stimuli relative to target stimuli for all 22 participants;
(c) statistical representation (mean, maximum, and minimum) of the normalized maximum amplitude
values for non-target stimuli relative to target stimuli for all 22 participants.

Figure 9a shows the baseline EEG data before and after visual stimulation for subject
S5 with a high P300 detection rate in the specified time ranges, while Figure 9b shows
the baseline EEG data before and after visual stimulation for subject S18 with a low P300
detection rate in the specified time ranges. As shown in the result for S5, if the period of
the waveform is within the specified time range, the baseline variation is small, even if the
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time range shifts. However, as shown in the result of S18, when there are waveforms with
periods that exceed the specified time range, shifting the time range results in large baseline
fluctuations. Comparing the maximum amplitude values of the P300 peak for each specified
time range (Figure 9c), it was confirmed that subject S5, who has a high P300 detection rate,
has a peak amplitude variation of approximately 1 µV, while subject S18, who has a low
P300 detection rate, has a peak amplitude variation of approximately 4 µV. These results
indicate that the waveforms used for P300 analysis so far should be eliminated not only for
sudden fluctuations such as eye electric signals, but also for waveform characteristics with
a period exceeding the specified time range of 200 ms.

 

 
(c) 

Figure 9. Comparison of subjects with high (S5) and low (S18) baseline stabilities in time-range-
averaged baseline correction. The baseline range was fixed at 200 ms, and its starting point was
shifted from 0 ms to −300 ms in 10 ms increments. (a) EEG baseline waveforms before and after
visual stimulation for subject S5 (high detection accuracy); (b) EEG baseline waveforms for subject
S18 (low detection accuracy); (c) comparison of P300 peak amplitude variations across the specified
time ranges for both subjects.

4.4. Summary of Time-Range-Averaged Baseline Correction for P300 Peak Detection

We conducted a detailed analysis of P300 peak detection results based on time-range-
averaged baseline correction. Consistent with the previous section, we confirmed that the
EEG baseline potential in the 0 ms to 200 ms pre-stimulus period was relatively stable. It
was also confirmed that evaluating whether the waveform period falls within this 200 ms
time range is important. The reason for this is that when waveforms with periods longer
than the specified time range exist, there is a drift in the 0 to −200 ms portion of the visual
stimulus, making it difficult to calculate an appropriate EEG reference potential.
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5. Analysis 3: Feature Analysis of the Proposed Multi-Time-Point
Baseline Correction for P300 Peak Detection

Conventionally, P300 peak detection is performed using a single EEG baseline potential
value obtained through either single-time-point baseline correction or time-range-averaged
baseline correction. In this section, we validate an alternative multi-time-point baseline
correction method. In this approach, multiple EEG baseline potential values are calculated
within a specific time range, preliminary P300 peaks are detected for each value, and then
all preliminary detection results are integrated to determine the final P300 peak.

5.1. Workflow of the Proposed Multi-Time-Point Baseline Correction for P300 Peak Detection

The workflow of the proposed multi-time-point baseline correction is shown in
Figure 10. Using each 1 ms interval from 0 to 200 ms before the visual stimulus, we
applied single-time-point baseline correction at each time point and calculated the max-
imum amplitude within the 300–370 ms post-stimulus range for the averaged EEG data
(Figure 10a). We then identified the EEG data with the highest maximum amplitude among
the nine different visual stimuli presented (Figure 10b) and tentatively designated it as
the target stimulus (Figure 10c). Next, we aggregated the preliminary P300 peak detection
results (a total of 200 points) based on single-time-point baseline correction for each interval
from 0 to 200 ms pre-stimulus. The stimulus with the highest number of preliminary
target identifications was ultimately classified as the final target stimulus (Figure 10d).
The determined P300 peaks were classified as correct/incorrect by comparing the final
identified target stimulus (based on the highest number of preliminary target identifications
across 200 baseline-corrected signals) with the actual target stimulus presented during
the trial. If the identified stimulus matched the actual target, it was considered a correct
classification; otherwise, it was counted as incorrect. The overall classification accuracy
was then calculated by dividing the number of correct classifications by the total number
of trials. In summary, in this method, baseline correction and preliminary P300 detection
are performed at different amplitude values within a specific time range, incorporating the
EEG baseline potential width characteristics obtained from these 200 time points into the
P300 detection process.

To clarify the processing steps of the proposed method, we provide the following
formal description.

1. Baseline Correction:

The baseline is evaluated at multiple time points within the baseline period (e.g., –200
to 0 ms). Let i ∈ {1, 2, . . . , N} be the index of each visual stimulus, where N is the total
number of stimuli (e.g., nine in this study). For each time point tbaseline in this period, the
baseline-corrected EEG signal corresponding to stimulus i is computed as:

Scorrected,i(t) = Si(t)− Si(tbaseline), (1)

where tbaseline ∈ [−200, 0].

2. Frequency of Maximum Amplitude:

For each time point tbaseline, the stimulus it with the highest P300 amplitude within
the expected time window (300–370 ms) is identified using:

it = arg max
i

(
max

t∈[300,370]
Scorrected,i(t)

)
. (2)

Then, the frequency Ci of each stimulus is selected as the maximum is determined
over the entire baseline period:
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Ci = ∑
t∈[−200,0]

δ(it, i) (3)

where the Kronecker delta function is defined as:

δ(it, i) =

{
1, i f it = i,
0, otherwise.

(4)

3. Target Stimulus Identification:

Finally, the stimulus with the highest frequency is identified as the target:

i∗ = argmax
i

Ci (5)

 

Figure 10. Analysis procedure for the proposed multi-time-point baseline correction method for
P300 detection. (a) EEG waveforms for each visual stimulus after averaging at baseline points of
−50, −100, −150, and −200 ms; (b) the maximum amplitude values for each stimulus after single-
time-point baseline correction across all time points are shown. The red dashed lines ( 1⃝, 2⃝, 3⃝, 4⃝)
in (b) correspond to the baseline points at −50 ms, −100 ms, −150 ms, and −200 ms, respectively,
as shown in (a); (c) identification of the visual stimulus type that exhibited the highest maximum
amplitude across nine types of visual stimuli, based on single-time-point baseline correction for all
time points; (d) a cumulative count of the maximum amplitude detections for each visual stimulus
across all time points, as derived from (c).
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5.2. Performance Comparison of P300 Peak Detection Based on Three Baseline
Correction Approaches

Finally, Figure 11 presents a comparison of the proportion of correct respondents
for P300 peak detection at different averaging counts using the three baseline correction
methods: single-time-point baseline correction, time-range-averaged baseline correction,
and multi-time-point baseline correction. The results show that single-time-point baseline
correction greatly affected the accuracy of P300 peak detection when oscillations such
as basic rhythm remained in the averaged EEG data from 0 ms to 200 ms before the
visual stimulus. On the other hand, time-range-averaged baseline correction and multi-
time point baseline correction achieved over 90% correct responses when averaging was
performed at least 40 times. In the case of the time-range-averaged baseline correction,
even if the oscillations of the basic rhythm remained in the averaged EEG data from 0 ms to
200 ms before stimulation, the average amplitude value was an appropriate EEG reference
potential. In multi-time-point baseline correction, provisional P300 peak detection results
were calculated after the EEG reference potential was calculated from each time point, and
the final result was almost the same as that obtained via time-range-averaged baseline
correction, based on the overall judgment of all time point results. In addition, statistical
analysis was conducted using the Wilcoxon signed-rank test to evaluate the significance of
the differences in P300 detection rates obtained from the three baseline correction methods.
The samples were paired because the comparisons involved the application of different
analysis methods to the same EEG data; however, the normality of the differences could
not be assumed. Accordingly, the Wilcoxon signed-rank test, a non-parametric method
commonly used in recent P300 research [28–31], was deemed appropriate. As a result,
it was found that the multi-time-point baseline correction yielded a significantly higher
correct detection rate compared to the single-time-point baseline correction (W = 13.5, Holm-
adjusted p = 0.016, effect size r = 0.56). On the other hand, no significant difference was
observed between the multi-time-point baseline correction and the time-range-averaged
baseline correction (W = 2.5, Holm-adjusted p = 0.089, r = 0.36), indicating that both methods
demonstrated comparable performance.

 

Figure 11. Comparison of the proportion of correct respondents (%) using single-time-point baseline
correction (conventional method), time-range-averaged baseline correction (conventional method),
and multi-time-point baseline correction (proposed method), using data from all 22 participants.
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Although the utility of both the multi-time-point and time-range-averaged baseline
correction was validated, based on the results shown in Figure 11, it can be inferred that the
time-range-averaged baseline correction is effective when dealing with EEG oscillations
whose periods are shorter than the specified time range. However, when oscillations with
periods longer than the specified range are present, it is likely that the calculated baseline
value deviates from the appropriate baseline, potentially leading to errors. In contrast, the
multi-time-point baseline correction, which calculates multiple baseline values within the
0 ms to 200 ms pre-stimulus window and comprehensively evaluates provisional P300
peak detections, achieved performance comparable to the time-range-averaged baseline
correction under the experimental conditions. Therefore, it is suggested that further im-
provements in P300 peak detection accuracy may be achievable by introducing a more
versatile calculation method for EEG baselines based on the oscillatory characteristics of
the averaged EEG data in the 0–200 ms pre-stimulus window.

6. Discussion
Detailed analyses were performed using two conventional methods: single-time-point

baseline correction and time-range-averaged baseline correction. The results demonstrate
that, firstly, single-time-point baseline correction is not stable because differences in fun-
damental rhythm amplitudes arise depending on the chosen time point. Secondly, the
time-range-averaged baseline correction method utilizes a single averaged amplitude
within a specified time range. As a result, if waveforms with periodicities longer than the
averaging window are present, it may fail to accurately estimate the waveform’s center
axis, thereby resulting in an inappropriate baseline. Therefore, in this paper, we propose a
multi-time-point baseline correction approach that comprehensively evaluates waveform
characteristics within a specified time range. This method successfully demonstrated a
performance comparable to that of the time-range-averaged baseline correction method.
Additionally, since the proposed method can be regarded as a multivariate analysis of
waveform characteristics within a certain time range, future enhancements to waveform
evaluation methods within specific time windows have the potential to improve the perfor-
mance further compared to traditional average-amplitude baseline correction.

However, a major drawback of the multi-time-point baselining approach is its higher
computational cost. In this study, single-time-point correction, averaging processes, and
P300 peak detection were performed at every millisecond interval from 200 ms to 0 ms
before stimulus onset. It was inferred that the computational cost is greater than that of
the conventional single-time-point baseline correction and time-range-averaged baseline
correction methods. To further quantify these computational costs, additional experiments
comparing calculation costs among the three baseline methods were conducted. Given that
PC conditions can influence the computation time, each P300 analysis was performed ten
times. Table 1 presents the results regarding computational costs related to the number
of averaged epochs used for P300 peak detection based on each of the three baseline
methods. Defining a single trial as an EEG data analysis for P300 detection following visual
presentation of one target stimulus and eight non-target stimuli, the computation time per
trial was approximately 0.85 ms for single-time-point baseline correction, 1.00 ms for time-
range-averaged baseline correction, and 150.0 ms for multi-time-point baseline correction.
Clearly, multi-time-point baseline correction entails significantly greater computational
costs. Nevertheless, considering that each trial lasts 3.6 s (nine stimuli each presented
sequentially for 400 ms), the 150 ms multi-time-point baseline correction process can still
be executed concurrently. Thus, it is feasible to develop a real-time analysis algorithm that
outputs final trial results approximately 150 ms after the last stimulus.
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Table 1. Average processing time (in milliseconds) required for each baseline correction method
across different averaging counts. The values represent the mean ± standard deviation, calculated by
repeating the same computation 10 times per subject and averaging across 22 participants.

Additive Count Multi Time Point (ms) Single Time Point (ms) Time Range Averaged (ms)

10 1395.6 ± 25.9 8.3 ± 0.3 9.5 ± 0.3
20 2590.6 ± 33.9 14.1 ± 0.4 16.4 ± 0.5
30 3757.3 ± 65.7 19.9 ± 0.6 23.1 ± 0.7

40 4998.9 ± 79.3 25.5 ± 0.6 30.0 ± 0.7
50 6418.4 ± 101.3 31.7 ± 0.7 37.3 ± 0.6

60 7997.7 ± 143.2 43.8 ± 1.2 50.1 ± 1.3
70 9766.9 ± 151.4 52.0 ± 1.1 60.0 ± 1.5
80 11,672.6 ± 185.5 59.0 ± 1.0 67.9 ± 1.3
90 13,067.9 ± 224.8 65.2 ± 1.4 74.9 ± 1.5

100 15,137.4 ± 232.1 78.4 ± 1.7 90.0 ± 2.0

In conclusion, real-time P300 detection is achievable following detailed waveform
analyses within specific time windows, emphasizing the importance of enhancing process-
ing methods within these time windows beyond simplistic averaging approaches such as
traditional time-range-averaged baseline correction.

This study focuses on the research of P300 interfaces for welfare applications. The
primary motivation for this focus is that, for individuals with complete quadriplegia (such
as patients with Locked-in Syndrome), who are unable to move any motor organs and can
only recognize information through sensory inputs processed in the brain, brain-computer
interfaces (BCIs) represent the only viable means of life support [32]. Among various BCIs,
non-invasive BCIs that do not require surgical procedures have advanced significantly,
with P300 interfaces utilizing event-related potentials (P300) measured by EEG being one of
the most practically realized technologies to date [33]. The P300 Speller is a representative
system based on the elicitation of P300 event-related potentials through visual stimuli. In its
standard configuration, multiple characters are displayed on a screen and randomly flash
one by one at 400 ms intervals. By focusing their gaze on a specific target stimulus, users
can generate a P300 response that can be analyzed to identify the intended selection [17].
Previous studies have not only employed simple character stimuli but also explored the use
of various visual designs to enhance practical usability [34]. Other studies have compared
the detection performance of P300 potentials under variations in flash intensity, flash color,
flash shape, and flash duration [35–38]. Furthermore, efforts have been made to improve
the efficiency of the P300 signal analysis process itself by modifying baseline correction and
signal averaging procedures traditionally based on stimulus timing. Specifically, methods
that omit baseline correction and average in favor of frequency-domain analysis [25],
as well as machine learning-based approaches for direct P300 peak detection [39], have
been proposed.

However, in frequency analysis approaches, it becomes difficult to accurately identify
P300 peaks because variations in the EEG baseline reference can cause low-frequency
components to be erroneously interpreted as signal peaks. Similarly, machine learning-
based methods have been reported to yield better performance when applied after baseline
correction [40], underscoring the importance of identifying an appropriate “EEG baseline
reference” for reliable P300 detection. Moreover, for welfare applications, EEG measure-
ments must often be conducted in office environments rather than shielded rooms typically
used in neuroscience laboratories, making them more susceptible to commercial power
line noise. Therefore, establishing a baseline reference suitable for real-world measurement
environments is crucial [41].
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Against this background, the present study aims to clarify the relationship between
continuous visual stimuli and the EEG baseline reference used in conventional P300 spellers.
One distinctive feature of the P300 speller is that more than 80 flashes of visual stimuli
are necessary to determine a single selection. To mitigate user fatigue and maintain
concentration, the flashing interval is shortened to 200–400 ms, which is shorter than those
generally used in conventional neuroscience studies. This raises concerns regarding the
stability of EEG signals under such continuous stimulation conditions. Previous research
has typically adopted methods where the amplitude at a single point in time (100 ms
or 200 ms before stimulus onset) is used as the baseline reference, or where the average
amplitude over a time window from 0 to 200 ms before stimulus onset is used. However,
no studies have quantitatively validated the effectiveness of these baseline correction
methods under continuous stimulation conditions. Therefore, in this study, experiments
were conducted with 21 participants, using nine visual stimuli that flashed randomly at
400 ms intervals. The P300 detection performance was evaluated through comparison of
the following three baseline correction methods:

1. A method based on the amplitude at each individual time point;
2. A method based on the average amplitude over specific time windows;
3. A novel method is proposed in this study, which performs a comprehensive evaluation

by individually correcting the baseline across all time points from 0 to 1000 ms prior
to stimulus onset.

The experimental results revealed that baseline correction based solely on a single-
point amplitude is highly susceptible to fluctuations in basic EEG rhythms, leading to
unstable P300 detection performance. In contrast, the method based on the average ampli-
tude over a time window demonstrated that using the average amplitude between 0 and
200 ms before stimulus onset provided the most stable baseline reference and yielded high
P300 detection performance. However, it was also observed that the stability of the baseline
reference deteriorated when artifacts with periods longer than 200 ms were present.

Moreover, the proposed method involving multi-time-point baseline correction and
comprehensive evaluation achieved a comparable high P300 detection performance when
focusing on the 0–200 ms pre-stimulus window. From these results, it is suggested that
under continuous visual stimulation with 400 ms intervals, baseline correction using the
average amplitude over the 0–200 ms pre-stimulus period is most appropriate. Baseline
correction based on a single-point amplitude is considered unsuitable due to the increased
risk of erroneous P300 detection caused by fluctuations in basic EEG rhythms. Future
work should include the prior assessment of waveform characteristics during the 0–200 ms
pre-stimulus window. If only basic rhythms are present, calculating the central axis of
the waveform may be appropriate. If artifacts with longer periods are detected, it may be
preferable to either expand the time window or utilize the baseline reference obtained from
the immediately preceding stimulus presentation. Nonetheless, because the optimal time
window for evaluating a stable EEG baseline may vary depending on the visual stimulation
interval, further detailed analyses of the relationship between the EEG baseline and P300
peaks under different continuous stimulation conditions are necessary.

7. Conclusions
In this study, we analyzed the performance of baseline correction methods for P300

analysis in order to improve the detection accuracy of EEG-based P300 event-related
potentials for continuous sensory stimulations with durations of 400 ms that are used in
welfare applications. The experimental method consisted of shining light, one at a time,
on nine types of numbers aligned on a screen in 400 ms intervals and in a random order,
and subjects were asked to focus on one type of number and view it 100 times. EEG data
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from 1000 ms before the visual stimulation to 500 ms after the visual stimulation were
extracted and classified, and three baseline correction methods (single-point amplitude,
time-range-averaged amplitude, and multiple-point amplitude correction) were applied.
Characteristic evaluation was attempted based on the P300 peak detection accuracy after
additive averaging. The results show that the P300 peak detection rate was highest when
EEG data from 0 ms to 200 ms before visual stimulation were used for all three baseline
types of stimuli. It was also found that the maximum amplitude of the target stimulus
statistically occurred between 300 ms and 370 ms and that the maximum amplitude of the
non-target stimulus appeared before 300 ms. In addition, we confirmed that the one-time
baseline method tends to exhibit differences in detection accuracy because the amplitudes
of the basic rhythm at different phase positions are selected. In addition, the maximum
position of the P300 peak after additive averaging tends to fluctuate. Since time-range-
averaged baseline correction was performed over a specified time range, the center voltage
of the fundamental rhythm is calculated, and the maximum position of the P300 peak
after additive averaging was stabilized. The latter could be used as an appropriate EEG
reference potential. However, although it is effective for basic rhythms in the time range
of 0 to 200 ms, it is not an appropriate EEG reference potential when oscillations with a
period of longer than 200 ms are included, reducing the accuracy of P300 peak detection.
Finally, we confirmed that the newly proposed multi-time-averaged baseline correction
method, through which 200 provisional P300 peak estimates can be evaluated by applying
single-time-point baselining to 200 time points from 0 ms to 200 ms before the visual
stimulation, shows a similar performance to time-range-averaged baselining. In particular,
this method can be used to evaluate the amplitude characteristics within a specified time
range, with more variables than a single average value, and future improvements should
lead to more accurate calculation of EEG reference potentials.
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