
SHORT REPORTS

The protease corin regulates electrolyte

homeostasis in eccrine sweat glands

Meiling He1,2, Tiantian Zhou1, Yayan Niu1,3, Wansheng Feng1, Xiabing Gu1,3, Wenting Xu4,

Shengnan Zhang1,3, Zhiting Wang1, Yue Zhang1, Can WangID
1, Liang Dong1, Meng Liu1,

Ningzheng Dong1,3*, Qingyu WuID
1,5*

1 Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of

Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China,

2 Department of Nephrology, the People’s Hospital of Suzhou New District, Suzhou, China, 3 MOH Key

Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of

Soochow University, Suzhou, China, 4 International Peace Maternity and Child Health Hospital of China

Welfare Institute, Shanghai, China, 5 Cardiovascular & Metabolic Sciences, Lerner Research Institute,

Cleveland Clinic, Cleveland, United States of America

* ningzhengdong@suda.edu.cn (ND); wuq@ccf.org (QW)

Abstract

Sweating is a basic skin function in body temperature control. In sweat glands, salt excretion

and reabsorption are regulated to avoid electrolyte imbalance. To date, the mechanism

underlying such regulation is not fully understood. Corin is a transmembrane protease that

activates atrial natriuretic peptide (ANP), a cardiac hormone essential for normal blood vol-

ume and pressure. Here, we report an unexpected role of corin in sweat glands to promote

sweat and salt excretion in regulating electrolyte homeostasis. In human and mouse eccrine

sweat glands, corin and ANP are expressed in the luminal epithelial cells. In corin-deficient

mice on normal- and high-salt diets, sweat and salt excretion is reduced. This phenotype is

associated with enhanced epithelial sodium channel (ENaC) activity that mediates Na+ and

water reabsorption. Treatment of amiloride, an ENaC inhibitor, normalizes sweat and salt

excretion in corin-deficient mice. Moreover, treatment of aldosterone decreases sweat and

salt excretion in wild-type (WT), but not corin-deficient, mice. These results reveal an impor-

tant regulatory function of corin in eccrine sweat glands to promote sweat and salt excretion.

Introduction

A constant normal body temperature is essential in health. In humans, eccrine sweat gland–

mediated sweating is critical for preventing overheating [1,2]. Among all mammals, humans

have the highest density of eccrine sweat glands [3,4], offering an evolutionary advantage to

survive in hot environments and to engage in strenuous physical activities such as hunting and

long-distance running [5–7].

The initial sweat produced in eccrine glands is isotonic to plasma. Ion reabsorption in the

eccrine glands prevents salt loss and electrolyte imbalance. Despite the vital importance of

such a basic skin function, how ion excretion and reabsorption are regulated in eccrine sweat

glands remains poorly understood.
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Corin is a protease that activates atrial natriuretic peptide (ANP), a hormone that regulates

salt–water balance via its receptor, natriuretic peptide receptor-A (NPR-A) [8,9]. In addition

to the heart, corin is also expressed in the kidney, where corin and ANP were reported to

inhibit epithelial sodium channel (ENaC) that is essential for sodium reabsorption [10–12]. In

mouse and tiger skins, corin has been shown to regulate coat color in an agouti-dependent

pathway [13–15]. In humans, corin-positive cells were found in dermal progenitor populations

[16]. Deleterious CORIN variants were also identified in individuals with hypertension [17–

20]. However, there is no evidence to indicate a role of corin in determining human hair color.

In this study, we examined dermal corin expression in humans and mice. Unexpectedly, we

detected corin and ANP expression in the luminal epithelial cells of eccrine sweat glands. We stud-

ied sweat and ion excretion in wild-type (WT) and corin knockout (KO) mice. Our results indicate

that corin plays an important role in the eccrine sweat gland to promote sweat and ion excretion.

Results

Corin expression in human skin

Consistent with previous findings in mice [14], we detected corin staining in human hair folli-

cles by immunostaining (S1 Fig). Unexpectedly, we also found corin staining in both secretory

and ductal epithelial cells of eccrine sweat glands (Fig 1A and 1B). In the secretory coil portion,

corin expression was in the luminal epithelial cells, but not the peripheral myoepithelial cells

that were α-smooth muscle actin (SMA) positive (Fig 1C).

Corin converts pro-ANP to ANP, which, in turn, activates its receptor, NPR-A [9,21]. We

next examined ANP and NPR-A expression in human eccrine sweat glands. (Here, the term

“ANP” refers to both pro-ANP and ANP, as the antibody used did not distinguish pro-ANP

from mature ANP). By immunohistochemistry, we found ANP and NPR-A staining in the epi-

thelial cells of human eccrine sweat glands (Fig 1D). These results suggest a potential role of

corin and ANP in eccrine sweat glands.

Corin, ANP, and NPR-A expression in mouse eccrine sweat glands

We next examined corin expression in mouse footpad eccrine sweat glands (Fig 1E). By reverse

transcription PCR (RT-PCR) (Fig 1F) and western blotting (Fig 1G), we detected corin mRNA

and protein in footpads and hearts (positive control), but not livers (negative control), in WT

mice. In corin KO mice (S2 Fig), corin expression was not found in the tissues examined (Fig

1F and 1G). By immunohistochemistry, corin, ANP, and NPR-A expression was detected in

eccrine gland epithelial cells in WT mouse footpads (S3A–S3C Fig). In co-immunofluorescent

staining, corin expression was found in the luminal epithelial cells but not the SMA-positive

peripheral myoepithelial cells (Fig 1H). In the luminal epithelial cells, corin staining overlapped

with those of ANP (Fig 1I) and NPR-A (Fig 1J). These results are consistent with the findings in

human skins, suggesting that corin and ANP may have a function in eccrine sweat glands.

Reduced sweat excretion in corin KO mice

To test this hypothesis, we did histological analysis in footpads and found no morphological

differences regarding eccrine sweat gland structure and numbers between WT and corin KO

mice (S3D Fig). We next did an iodine–starch test [22, 23] with pilocarpine (a muscarinic

receptor agonist that stimulates sweat excretion) injection to examine sweat response (S3E

Fig). At 1 min after pilocarpine injection, similar numbers of black dots were found in foot-

pads between WT and corin KO mice (7.7 ± 0.3 versus 7.6 ± 0.3 /mm2 of paw skin, n = 10;

P = 0.969) (S3F and S3G Fig).
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Compared to WT mice, however, corin KO mice had reduced sweat excretion, as indicated

by smaller black-staining areas in footpads, analyzed at 2 min after pilocarpine injection

(3.0 ± 0.3 versus 4.6 ± 0.3% of paw skin area, n = 14 to 17; P< 0.001) (Fig 2A and 2B). Using a

digital camera method to examine the number and size of sweat droplets and calculate sweat

volume [24], we found reduced sweat volumes in corin KO mice compared to those in WT

mice (3.1 ± 0.1 versus 4.0 ± 0.1 nL/mm2 of paw skin, n = 7 to 8; P< 0.001) (Fig 2C and 2D),

indicating that corin deficiency impairs sweat excretion.

To understand if the role of corin in sweat excretion is mediated by the endocrine function

of cardiac corin or a local function of corin in the skin, we examined sweat excretion in heart-

conditional corin KO (hcKO) mice, in which the Corin gene was disrupted specifically in the

heart (Fig 2E). In the iodine–starch test, we found similar sweat excretion in WT and corin

Fig 1. Corin, ANP, and NPR-A expression in human and mouse eccrine sweat glands. (A) Immunohistochemical staining of corin (brown) in human

eccrine sweat glands. IgG was used in negative controls. (B) Co-staining of corin (red) and keratin (an epithelial marker) (green) in ductal and secretory

epithelial cells of human eccrine sweat glands. (C) Co-staining of corin (green) and SMA (red) in the secretory epithelial cells. (D) Immunohistochemical

staining of ANP and NPR-A (brown) in human eccrine sweat glands. (E) HE staining of a mouse paw skin section with eccrine sweat glands. (F and G)

RT-PCR (F) and western blotting (G) analysis of corin expression in WT and corin KO mouse footpads. Hearts (positive) and livers (negative) were

controls. (H–J) Co-staining of corin (green) and SMA (H), ANP (I), or NPR-A (J) (red) in eccrine sweat glands from WT and corin KO mouse footpads.

Scale bars are indicated. Data are representative of at least 3 experiments in each set of the studies. ANP, atrial natriuretic peptide; HE, hematoxylin–

eosin; IgG, immunoglobulin G; KO, knockout; NPR-A, natriuretic peptide receptor-A; RT-PCR, reverse transcription PCR; SMA, smooth muscle actin;

WT, wild-type.

https://doi.org/10.1371/journal.pbio.3001090.g001
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hcKO mice (6.4 ± 0.5 versus 6.1 ± 0.4% of paw skin area, n = 12 to 13; P = 0.908) (Fig 2F and

2G), indicating that cardiac corin is unnecessary for sweat excretion.

Reduced sweat and Na+ and Cl− excretion in corin KO mice on normal- and

high-salt diets

In humans, sweat Na+ levels positively correlate with dietary salt intakes [25–27]. We exam-

ined sweat and ion (Na+ and Cl−) excretion in WT and corin KO mice on normal- (0.3%

NaCl) and high-salt (4% NaCl) diets. Increased sweat excretion was found in WT and corin

KO mice on high-salt diet (Fig 2H). Compared to those in WT mice, levels of sweat excretion

Fig 2. Sweat response in WT, corin KO, and corin hcKO mice. (A and B) An iodine–starch assay was used to measure sweat response in WT and

corin KO mice. Photos were taken before (0 min) and 2 min after pilocarpine (pilocar) injection. Sweat excretion is indicated by black staining.

Areas of black staining were analyzed by computer software. Quantitative data are presented. (C and D) To calculate sweat volume, photos were

taken by a digital camera 10 min after pilocarpine injection. The number and diameter of sweat droplets were analyzed by computer software.

Representative photos and quantitative data are presented. (E) RT-PCR analysis of corin expression in hearts, livers, and footpads (skin) from WT

and hcKO mice. (F and G) Sweat excretion in WT and corin hcKO mice was analyzed by the iodine–starch assay. Representative photos and

quantitative data are shown. (H) Sweat excretion in WT and corin KO mice on 0.3% or 4% salt diet before (−) and 2 min after (+) pilocarpine

(pilocar) injection. (I and J) Sweat Na+ (I) and Cl− (J) levels in WT and corin KO mice on 0.3% or 4% salt diet and with pilocarpine injection. In bar

graphs, data are mean ± SEM. Each dot represents data from 1 mouse, except for sweat Na+ and Cl− data, in which each dot represents data from 8

paws of 2 mice. P values were analyzed by Student t test or 1-way ANOVA, and the original numerical values are in S1 Data. hcKO, heart-

conditional corin KO; KO, knockout; RT-PCR, reverse transcription PCR; WT, wild-type.

https://doi.org/10.1371/journal.pbio.3001090.g002
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were approximately 25% to 35% lower in corin KO mice on both normal- and high-salt diets.

Sweat Na+ (Fig 2I) and Cl− (Fig 2J) levels were also approximately 7% to 14% lower in corin

KO mice, whether on the normal- or high-salt diet, supporting a role of corin in promoting

sweat and ion excretion.

Effects of amiloride on sweat and Na+ excretion

In the kidney, ANP inhibits ENaC activity to increase natriuresis [28,29]. In humans, ENaC

mediates Na+ reabsorption in eccrine sweat glands [30]. By immunohistochemistry (Fig 3A)

and co-immunofluorescent staining (Fig 3B), we detected eccrine gland epithelial β-ENaC

expression in WT and corin KO mice. Levels of Scnn1b (encoding β-ENaC) mRNA and β-

ENaC protein were similar in footpads between WT and corin KO mice, as assessed by quanti-

tative RT-PCR and western blotting, respectively (S4A and S4B Fig). We treated the mice with

amiloride, an ENaC inhibitor. In corin KO mice on normal- and high-salt diets, sweat excre-

tion increased to similar levels in WT mice after amiloride treatment (Fig 3C and 3D). Amilor-

ide treatment also normalized sweat Na+ (Fig 3E) and Cl− (Fig 3F) levels between WT and

corin KO mice. These results indicate that enhanced ENaC activity is likely responsible for the

reduced sweat and Na+ excretion in corin KO mice.

Corin KO mice develop salt-sensitive hypertension [12]. As reported previously [12] and

verified in this study (S4C Fig), amiloride treatment lowered blood pressure in corin KO mice

on the high-salt diet. To exclude the possibility that the observed effect of amiloride on sweat

excretion in corin KO mice was caused indirectly by blood pressure lowering, we treated WT

and corin KO mice with amlodipine, a calcium channel blocker that lowers blood pressure

[12], which decreased blood pressures in WT and corin KO mice to comparable levels (S4D

Fig). However, sweat excretion remained low in corin KO mice without or with amlodipine

treatment (S4E Fig), indicating that sweat excretion is not directly linked to systemic blood

pressure levels in our experiments.

Effects of CFTR inhibition on sweat and Cl− excretion

In addition to reduced sweat Na+ levels, reduced sweat Cl− levels were observed in corin KO

mice. In humans, cystic fibrosis transmembrane conductance regulator (CFTR) is the primary

Cl− channel in eccrine sweat glands [31]. Consistently, we detected epithelial CFTR expression

in eccrine sweat glands in WT and corin KO mice (Fig 3G and 3H). In quantitative RT-PCR,

similar Cftr mRNA levels were found in footpads between WT and corin KO mice (S4F Fig).

When corin KO mice were treated with CFTR(inh)-172, a CFTR inhibitor [32], sweat excre-

tion increased and became comparable to that in similarly treated WT mice on the normal-

and high-salt diets (Fig 3I and 3J). Sweat Cl− (Fig 3K) and Na+ (Fig 3L) levels also became com-

parable between WT and corin KO mice, indicating that CFTR activity is increased in corin

KO mouse eccrine sweat glands.

Effects of aldosterone on sweat and Na+ and Cl− excretion

Aldosterone promotes Na+ reabsorption in eccrine sweat glands by enhancing ENaC activity

[33]. To test if corin antagonizes aldosterone in promoting sweat and ion excretion, we treated

WT and corin KO mice with aldosterone and examined sweat and Na+ and Cl− excretion.

Decreased sweat excretion was observed in WT, but not corin KO, mice on normal- and high-

salt diets, resulting in similar sweat excretion levels between WT and corin KO mice (Fig 4A

and 4B). Sweat Na+ (Fig 4C) and Cl− (Fig 4D) levels also became similar between WT and

corin KO mice treated with aldosterone. These results support a role of corin in antagonizing

aldosterone, thereby promoting sweat and salt excretion in eccrine glands.
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Discussion

In this study, we examined corin expression in the skin. In agreement with previous reports in

mice and tigers [13–15,34], we detected corin expression in human hair follicles. It remains

unclear if corin plays a role in hair growth and/or pigmentation in humans. Unexpectedly, we

detected corin expression in the luminal epithelial cells of human and mouse eccrine sweat

glands. As a transmembrane protease [35], corin is expected to function at expression sites. In

supporting this hypothesis, we found reduced sweat and salt excretion in corin KO mice on

normal- and high-salt diets. This defect was associated with enhanced ENaC activity, as indi-

cated by the studies with amiloride, which normalized sweat and salt excretion in corin KO

Fig 3. Effects of ENaC and CFTR inhibitors on sweat excretion. (A) Immune staining of β-ENaC (brown) in eccrine sweat glands from WT and corin

KO mouse footpads. IgG was a negative control. (B) Co-staining of corin (green) and β-ENaC (red) in WT and corin KO eccrine sweat glands. (C and D)

Sweat excretion, indicated by black-staining areas, was measured in WT and corin KO mice on 0.3% (C) or 4% (D) salt diet, with (+) or without (−)

amiloride treatment, before (−) and 2 min after (+) pilocarpine (pilocar) injection. (E and F) Sweat Na+ (E) and Cl− (F) levels in WT and corin KO mice on

0.3% or 4% salt diet and treated with amiloride. (G) Immune staining of CFTR (brown) in eccrine sweat glands in WT and corin KO mouse footpads. (H)

Co-staining of corin (red) and CFTR (green) in eccrine sweat glands in WT and corin KO mouse footpads. (I and J) Sweat excretion, indicated by black-

staining areas, was measured in WT and corin KO mice on 0.3% (I) or 4% (J) salt diet, with (+) or without (−) CFTR(inh)-172 (CFTR-Inh) treatment,

before (−) and 2 min after (+) pilocarpine (pilocar) injection. (K and L) Sweat Cl− (K) and Na+ (L) levels in WT and corin KO mice on 0.3% or 4% salt diet

and treated with (+) CFTR-Inh. In bar graphs, data are mean ± SEM. Each dot represents data from 1 mouse, except for sweat Na+ and Cl− data, in which

each dot represents data from 8 paws of 2 mice. P values were analyzed by 1-way ANOVA, and the original numerical values are in S1 Data. CFTR, cystic

fibrosis transmembrane conductance regulator; ENaC, epithelial sodium channel; IgG, immunoglobulin G; KO, knockout; WT, wild-type.

https://doi.org/10.1371/journal.pbio.3001090.g003
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mice on normal- and high-salt diets. ANP is known to inhibit ENaC activity via NPR-A signal-

ing [21,28,29,36]. In eccrine sweat glands, ENaC mediates Na+ reabsorption [30]. Consistently,

we detected overlapping corin, ANP, and NPR-A expression in the epithelial cells of eccrine

sweat glands. Possibly, the lack of corin in the KO mice prevents ANP activation and hence

ENaC inhibition, resulting in increased ENaC activity and reduced sweat and salt excretion.

Previously, we and others reported a potential role of corin and ANP in the kidney to inhibit

ENaC activity, thereby promoting salt and urine excretion [10,12]. The results in this study

indicate that a similar corin–ANP-mediated ENaC inhibitory mechanism operates indepen-

dently in the eccrine sweat glands to regulate sweat and salt excretion. Additional studies with

eccrine sweat gland–specific KO mice will be important to verify our results.

The natriuretic peptides were evolved in early vertebrates to regulate salt–water balance

[37,38]. In marine birds, nasal salt glands expel excessive salt [39]. Similar nasal salt glands are

preserved in aquatic birds. ANP antigen was detected in the nasal salt glands in Pekin ducks

[40], in which circulating ANP was shown to modulate the angiotensin–aldosterone system

[41]. In humans, ANP is part of the cardiac endocrine function [42,43]. Previously, ANP-like

immunoreactivity was reported in the nerves around human eccrine sweat glands, but not the

epithelial cells in the glands [44]. NPR-A (also called guanylyl cyclase-A) activity was also

detected in epithelial cell membranes of human eccrine sweat glands [45].

Fig 4. Effects of aldosterone on sweat and salt excretion. (A and B) Quantitative data (mean ± SEM) of black-

staining areas in the iodine–starch test in WT and corin KO mice on 0.3% (A) or 4% (B) salt diet without (−) or with

(+) aldosterone treatment and pilocarpine (pilocar) injection. (C and D) Sweat Na+ (C) and Cl− (D) levels in WT and

corin KO mice on 0.3% or 4% salt diet and treated with (+) aldosterone. Data are mean ± SEM. Each dot represents

data from 1 mouse, except for sweat Na+ and Cl− data, in which each dot represents data from 8 paws of 2 mice. P
values were analyzed by 1-way ANOVA, and the original numerical values are in S1 Data. KO, knockout; WT, wild-

type.

https://doi.org/10.1371/journal.pbio.3001090.g004
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In this study, we found reduced sweat and salt excretion in corin KO mice, but not in corin

hcKO mice that lacked cardiac corin, indicating that the circulating ANP generated by cardiac

corin in unnecessary for sweat and salt excretion in the skin. These results suggest that the

corin function in the skin, likely mediated by local ANP activation, is part of an autocrine

mechanism in promoting salt excretion in mammalian eccrine sweat glands. Salt reabsorption

occurs mostly in the sweat duct. At this time, the significance of corin expression in the sweat

secretory portion remains to be determined. Previously, intradermal introduction of exoge-

nous ANP, through microdialysis fibers, into the interstitial fluid did not alter sweating and

cutaneous vasodilatation in men [46]. The reason for the lack of response is unclear. Possibly,

exogenous ANP in the interstitial space cannot reach the eccrine sweat gland lumen and the

microvasculature to activate NPR-A on the surface of epithelial and endothelial cells [46]. Fur-

ther studies are needed to verify such a possibility.

CFTR mediates sweat Cl− reabsorption. In patients with cystic fibrosis, CFTR mutations

cause high sweat Cl− levels, which, in turn, inhibit ENaC-mediated Na+ reabsorption [31]. In

corin KO mice, both sweat Na+ and Cl− levels were reduced. Amiloride or CFTR(inh)-172

treatment increased sweat Na+ and Cl− levels in corin KO mice, reflecting the functional cou-

pling of Na+ and Cl− regulation in eccrine sweat glands [30]. Previously, exogenous ANP treat-

ment up-regulated intestinal CFTR expression in rats and stimulated CFTR activity in

Xenopus oocytes [47,48]. In our study, we found similar Scnn1b (encoding β-ENaC) and

Cftr mRNA levels in footpads between WT and corin KO mice, but increased sweat gland

ENaC and CFTR activities in corin KO mice. These results indicate that the function of endog-

enous corin and ANP in mouse footpads is mediated primarily by regulating ENaC and CFTR

activity but not expression levels. Further studies are required to understand if the apparent

different results in rat intestines and Xenopus oocytes were due to different experimental

settings.

In sweat glands, aldosterone-enhanced ENaC activity and Na+ reabsorption are important

for salt conservation [33]. Physiologically, hormonal actions are tightly controlled. To date,

how aldosterone action in sweat glands is counterbalanced remains unknown. We showed

that aldosterone treatment reduced sweat excretion in WT mice but not corin KO mice. Possi-

bly, salt excretion promoted by corin and salt reabsorption promoted by aldosterone were in

equilibrium in WT mice. Exogenous aldosterone treatment tilted the balance, increasing salt

reabsorption and reducing sweat and salt excretion. In corin KO mice, on the other hand,

endogenous aldosterone apparently reached the maximal effect in sweat glands. As a result,

exogenous aldosterone treatment had little effect on sweat and salt excretion in corin KO

mice. These results indicate that corin functions as an aldosterone-antagonizing mechanism in

eccrine sweat glands. Additional studies will be important to verify this hypothesis.

In summary, sweating is an important skin function. Regulation of Na+ and Cl− excretion

in sweat glands prevents excessive salt loss and electrolyte imbalance. Corin is known for its

role in the cardiac endocrine function to regulate blood volume and pressure. By studying

human skin tissues and mouse models, we have uncovered a crucial role of corin in eccrine

sweat glands to promote salt and sweat excretion. Our results indicate that this corin function

serves as an aldosterone-antagonizing mechanism in eccrine sweat glands. These findings pro-

vide new insights into the physiological mechanism that regulates skin function.

Materials and methods

Human tissues

Normal scalp tissues from anonymous donors were from a biobank from the Pathology

Department, which was approved by the Ethics Committee of Soochow University (ECSU-
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201800052) and conducted according to the principles of expressed in the Declaration of Hel-

sinki. The experiments were done according to the approved guidelines.

Mice

Experiments in WT C57BL/6 mice and corin KO and hcKO mice, as described in S1 Text,

were approved by the Animal Use and Care Committee of Soochow University (201708A105)

and conducted in accordance with the guidelines for the ethical treatment and handling of ani-

mals in research.

Immune staining

Paraformaldehyde-fixed tissues in paraffin were cut and stained with primary antibodies

against corin, pro-ANP/ANP, NPR-A, β-ENaC, CFTR, SMA, and cytokeratin 18. Horseradish

peroxidase (HRP)-conjugated or Alexa 488 (green)- or 594 (red)-labeled secondary antibodies

were used for immunohistochemistry and immunofluorescent staining, respectively. Experi-

mental details are described in S1 Text. Stained sections were examined with light (Leica

DM2000 LED, Leica Microsystems, Wetzlar, Germany) and confocal (Olympus FV1000,

Olympus, Tokyo, Japan) microscopes.

RT-PCR

RT-PCR and quantitative PCR were used to analyze Corin, Scnn1b (encoding β-ENaC), Cftr,
Npr1, and Pcsk6 expression in mouse tissues. Glyceraldehyde 3-phosphate dehydrogenase
(Gapdh) expression was analyzed in parallel as a control. Experimental conditions and primer

sequences are described in the Supporting information Methods and Table A in S1 Text,

respectively.

Western blotting

Corin protein in tissues was examined by western blotting. Tissues were homogenized in 1%

Triton X-100 (v/v), 50 mM Tris-HCl, pH 8.0, 150 mM NaCl, and a protease inhibitor mixture

(Roche Diagnostics, Indianapolis, Indiana, United States of America, 1:100 dilution). Proteins

were quantified using a BCA protein assay (Thermo Fisher Scientific, Waltham, Massachu-

setts, USA) and analyzed by SDS-PAGE and western blotting with an anti-corin antibody

(1:1,000 dilution) [17] or anti-β-ENaC antibody (1:1,000 dilution).

Sweat response

An iodine–starch method [22,23] was used to examine sweat response. Mice were anesthe-

tized. A hind paw was painted with an iodine solution (Fluka, Ronkonkoma, New York, USA)

and starch (Adamas, Emeryville, California, USA) in mineral oil, as described in S1 Text. Pilo-

carpine (5 mg/kg of body weight), an agonist that acts on muscarinic receptor M3 subtype to

stimulate sweat excretion, was injected, s.c. When sweat is excreted and encounters iodine–

starch, it turns into black color. At different times, photos were taken. Black dot counts (for

eccrine sweat gland numbers at 1 min) and black-staining areas (for sweat excretion at 2 min)

were quantified using Image-Pro-Plus software. To measure sweat volume, a stereomicroscope

(Olympus, SZX16) and digital camera method were used [24]. A hind paw was immersed in

water-saturated mineral oil. At 10 min post-pilocarpine injection, photos were taken, and

sweat droplet numbers and diameters were quantified by Image-Pro-Plus software to calculate

sweat volume.
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Sweat Na+ and Cl−

Mice were injected with pilocarpine. After 10 min, sweat droplets on footpads immersed in

water-saturated mineral oil were mixed with double distilled water (30 μL/per 8 paws) and col-

lected. Na+ and Cl− concentrations were measured by an electrolyte analyzer (Shelf Scientific,

Los Angeles, California, USA, 6230M). Data from each 30-μL diluted sweat collection were

recorded as 1 data point.

Treatment of ENaC and CFTR inhibitors and aldosterone

Mice (males and females, 8 to 10 weeks old) were fed 0.3 or 4% NaCl diet. After 2 weeks, the

mice were treated with amiloride (ENaC inhibitor) (Abcam, Cambridge, Massachusetts, USA,

3 mg/kg of body weight, i.p.; daily × 5), CFTR(inh)-172 (CFTR inhibitor) (MedChemExpress,

Monmouth Junction, New Jersey, USA, 0.3 mg/kg of body weight, i.p.; daily × 3), or aldoste-

rone (APExBIO, Houston, Texas, USA, 0.2 mg/kg of body weight, i.p.; daily × 3). After the

treatment, sweat responses and levels of Na+ and Cl− were analyzed.

Blood pressure

A computerized tail-cuff system (Visitech Systems, Apex, North Carolina, USA, BP-2000) was

used to measure blood pressure [49]. Mice were acclimated to the instrument. Tails were

inserted in the cuff for blood pressure measurements, which included 5 preconditioning cycles

and 20 regular cycles with 5 s between 2 cycles and maximal cuff pressure of 150 mmHg.

Statistical analysis

Data were analyzed using SPSS 17.0 and Prism 8.0 (GraphPad) software. Two-tailed Student t
test was used to compare 2 groups if the data passed the normality and equal variance tests. If

the data did not pass the normality or equal variance test, Mann–Whitney test was used for 2

independent sample comparisons. One-way ANOVA followed by Tukey post hoc analysis was

used to compare 3 or more groups. Data are presented as means ± SEM. P values of<0.05

were considered to be significant.

Supporting information

S1 Fig. Corin expression in human hair follicles. (A) Immunohistochemical analysis of corin

expression in human scalp sections. Positive corin staining (brown) was detected in hair folli-

cles. A boxed area is shown below in a higher magnification. Scale bars are indicated. (B) HE,

corin, and cytokeratin staining in serial human scalp sections. A normal IgG was used as a neg-

ative control in immunohistochemical analysis. Boxed areas are shown below in a higher mag-

nification. Scale bars are indicated. Data are representative of at least 3 experiments. HE,

hematoxylin–eosin; IgG, immunoglobulin G.

(PDF)

S2 Fig. Generation of corin KO mice. (A) Illustration of the strategy to disrupt the Corin gene

by inserting 2 loxP sites flanking exon 4. PCR primers used in genotyping are indicated. (B–D)

PCR analysis using indicated oligonucleotide primers to identify mice with Corflox and Cordel4

alleles before (B and C) and after (D) exon 4 was deleted by crossing with mice expressing Cre.
KO, knockout.

(PDF)

S3 Fig. Corin, ANP, and NPR-A expression and analysis of eccrine sweat glands in mouse

footpads. (A and B) Immunohistochemical staining of corin (A), ANP, and NPR-A (B) in
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footpad sections from WT and corin KO mice. In (A), eccrine sweat glands are indicated by

red arrowheads. In (B), positive ANP and NPR-A staining in epithelial cells are indicated by

black arrowheads. Normal IgG was used as a negative control. Scale bars are indicated. (C)

Levels of Npr1 mRNA levels in footpads from WT and corin KO mice, analyzed by quantita-

tive RT-PCR. n = 8 mice per group. (D) Footpad sections from WT and corin KO mice were

stained with HE. Eccrine sweat glands are indicated by red arrowheads. No changes in eccrine

sweat gland structure and numbers were observed between WT and corin KO mice. Data are

representative of at least 3 experiments. (E) Illustration of the iodine–starch test used in this

study. Mouse paws were cleaned and coated with iodine and starch. Pilocarpine, a sweat stim-

ulant, was injected, s.c., in paws. Photos were taken at 0 (control), 1 (for sweat gland numbers),

and 2 min (for sweat excretion) after the injection. (F) Representative photos taken at 1 min

after pilocarpine injection in WT and corin KO mice. (G) Quantitative data of black-staining

areas in WT and corin KO mouse paws are presented as mean ± SEM. n = 10 mice per group.

Data in C and G were analyzed with 2-tailed Student t test and Mann–Whitney test, respec-

tively, and the original numerical values are in S1 Data. ANP, atrial natriuretic peptide; HE,

hematoxylin–eosin; IgG, immunoglobulin G; KO, knockout; NPR-A, natriuretic peptide

receptor-A; RT-PCR, reverse transcription PCR; WT, wild-type.

(PDF)

S4 Fig. ENaC and CFTR expression and effects of amiloride and amlodipine on blood pres-

sure and sweat excretion. (A) Quantitative RT-PCR analysis of Scnn1b mRNA, encoding β-

ENaC, in footpads from WT and corin KO mice on 0.3% salt diet. (B) Western blotting of β-

ENaC protein in footpads from WT and corin KO mice (n = 4 per group) on 0.3 salt diet. Pro-

teins expression levels were quantified by densitometric analysis of the western blot. (C) Sys-

tolic BP in WT and corin KO mice on 0.3% or 4% salt diet treated with vehicle or amiloride.

(D) Systolic BP in WT and corin KO mice on 0.3% salt diet treated with vehicle or amlodipine.

(E) Sweat excretion was analyzed by the iodine–starch test in WT and corin KO mice on 0.3%

salt diet and treated with (+) or without (−) amlodipine and pilocarpine (pilocar). (F) Quanti-

tative RT-PCR analysis of Cftr mRNA, encoding CFTR, in footpads from WT and corin KO

mice on 0.3% salt diet. All data are mean ± SEM. P values were analyzed by 2-tailed Student t
test (in A, C, and E) or 1-way ANOVA (in B and D). In bar graphs, each dot represents data

from 1 mouse, and the original numerical values are in S1 Data. BP, blood pressure; CFTR,

cystic fibrosis transmembrane conductance regulator; ENaC, epithelial sodium channel; KO,

knockout; RT-PCR, reverse transcription PCR; WT, wild-type.

(PDF)

S1 Text. Supporting information Materials and methods and Tables A and B. Detailed

experimental procedures are described in the Supporting information Materials and methods.

Primers used in the study are listed in Table A. Antibodies used in the study are listed in

Table B.

(DOCX)

S1 Data. Original data used for bar graphs. Original numerical data underlying bar graphs

in Figs 2–4 and S3 and S4 Figs.

(XLSX)

S1 Original Blots and Gels. Original western blot and gel images. Raw images used for pan-

els in Figs 1 and 2 and S2 and S4 Figs.

(PDF)
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