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Rapid and dynamic processing of face pareidolia
in the human brain
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The human brain is specialized for face processing, yet we sometimes perceive illusory faces

in objects. It is unknown whether these natural errors of face detection originate from a rapid

process based on visual features or from a slower, cognitive re-interpretation. Here we use a

multifaceted approach to understand both the spatial distribution and temporal dynamics of

illusory face representation in the brain by combining functional magnetic resonance imaging

and magnetoencephalography neuroimaging data with model-based analysis. We find that

the representation of illusory faces is confined to occipital-temporal face-selective visual

cortex. The temporal dynamics reveal a striking evolution in how illusory faces are repre-

sented relative to human faces and matched objects. Illusory faces are initially represented

more similarly to real faces than matched objects are, but within ~250ms, the representation

transforms, and they become equivalent to ordinary objects. This is consistent with the initial

recruitment of a broadly-tuned face detection mechanism which privileges sensitivity over

selectivity.
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Humans are incredibly skilled at both detecting and
recognizing faces, with a significant region of cortex
dedicated to face processing1. Despite this expertise,

sometimes we spontaneously perceive faces where there are none
—for example in inanimate objects, such as in a tree or a piece of
fruit. This phenomenon, known as face pareidolia, can be con-
ceptualized as a natural error of the face-detection system and has
recently been demonstrated behaviorally in macaque monkeys2,3,
suggesting that the perception of illusory faces arises from a
fundamental feature of the primate face-detection system, rather
than being a uniquely human trait. Despite substantial progress in
uncovering the primate face processing system1,4–7 it is still not
understood what constitutes a face for visual cortex, and what
neural mechanism elicits errors of face detection in ordinary
objects.

Here, we combine noninvasive neuroimaging tools with high
temporal (MEG) and spatial (fMRI) resolution as well as beha-
vioral ratings and model-based analyses in order to understand
how illusory faces are processed in the human brain. Critical to
our approach here is the use of a yoked stimulus design. For each
illusory face we found a matched object image, which was
semantically and visually similar, but which did not contain an
illusory face (Fig. 1). The matched set of objects facilitates
examination of how the presence of an illusory face modulates the
brain’s representation of an object. In terms of the spatial dis-
tribution of responses, previous findings suggest a considerable
degree of abstraction in the visual selectivity of face-responsive
brain regions5,6,8–11. The sensitivity of face-selective regions to
abstract faces5,8,9 suggests these regions are likely sensitive to
illusory faces in inanimate objects, but it is an open question
whether this sensitivity is specific to face-selective regions, or
whether it is widespread throughout category-selective cortex,
including regions selective to objects12,13. This makes illusory
faces in objects particularly interesting in terms of their category
membership as they are perceived as both an object and as a face.
Importantly, natural examples of illusory faces are visually diverse
and do not require any assumptions to be made about the key
features that drive the brain’s response to face stimuli. This means
that illusory faces are potentially revealing about the behaviorally
relevant tuning of the face-detection system.

While understanding the spatial organization of responses to
illusory faces will clarify the role of higher-level visual cortex in
face perception, identifying the temporal dynamics of how illu-
sory faces are processed is critical to understanding the origin of
these face-detection errors. Human faces are rapidly detected by
the human brain12,13, but it is not known to what extent illusory
face perception relies upon the same neural mechanisms. One
possibility is that certain arrangements of visual features (such as
a round shape) rapidly activate a basic face-detection mechanism,
leading to the erroneous perception of a face. Alternatively, illu-
sory face perception may arise from a slower cognitive reinter-
pretation of visual attributes as facial features, for example as eyes
or a mouth. If illusory faces are rapidly processed, it would
suggest the face-detection mechanism is broadly tuned and
weighted toward high sensitivity at the cost of increased false
alarms. Here we exploit the high temporal resolution of MEG in
order to distinguish between these alternative accounts in the
human brain.

We find that face-selective regions are sensitive to the presence
of an illusory face in an inanimate object, but other
occipital–temporal category-selective visual regions are not. In
addition to this spatially restricted response, we discover a tran-
sient and rapidly evolving response to illusory faces. In the first
couple of 100 ms, illusory faces are represented more similarly to
human faces than their yoked nonface object counterparts are.
However, within only 250 ms after stimulus onset, this

representation shifts such that illusory faces are indistinguishable
from ordinary objects. In order to enhance our understanding of
what is driving this early face-like response to illusory faces, we
implement a model-based analysis to compare the brain’s
response to behavioral ratings of “faceness” and the output of
computational models of visual features. We find that the brain’s
representation correlates earlier with the visual feature models
than the behavioral model, although the behavioral model
explained more variance in the brain’s response overall than the
computational models. Together, our results demonstrate that
that an initial erroneous face-like response to illusory faces is
rapidly resolved, with the representational structure quickly sta-
bilizing into one organized by object content rather than by face
perception.

Results
Recording responses to illusory faces in the human brain. We
recorded neuroimaging data (fMRI and MEG) in two separate
experiments while human participants viewed 96 photographs
including 32 examples of illusory faces in inanimate objects, 32
matched nonface objects, and 32 human faces (Fig. 1a; Supple-
mentary Fig. 1). The nonface objects were yoked to the illusory
face examples, so that each illusory face was paired with a mat-
ched nonface object that was of the same object identity and as
visually similar as possible (see Online methods). The stimulus
set was validated by asking workers on Amazon Mechanical Turk
(n= 20) to “Rate how easily can you can see a face in this image”
on a scale of 0–10. Human faces (M= 9.96, SD= 0.10), were
rated as more face-like than both illusory faces (t(31)= 26.15,
p < 0.001, two-tailed, Bonferroni correction for k= 3 compar-
isons) and matched objects (t(31)= 143.57, p < 0.001). Impor-
tantly, illusory faces (M= 6.27, SD= 0.79) were rated as
significantly more face-like than matched nonface objects (M=
0.70, SD= 0.36), demonstrating that faces are spontaneously
perceived in the images we selected (t(31)= 39.68, p < 0.001;
Fig. 1b).

We collected fMRI and MEG data for the same stimulus set to
benefit maximally from the higher spatial resolution of fMRI and
the finer temporal resolution of MEG (Fig. 1c). Due to the relative
temporal sluggishness of the fMRI BOLD response, in the fMRI
experiment (N= 21), images were shown for 300 ms with a 3.7 s
interstimulus interval and additional randomly inserted blank
trials of 4 s duration. In the MEG experiment (N= 22), images
were shown for 200 ms with a 1–1.5 s variable interstimulus
interval. In order to maintain alertness, in both experiments
participants judged whether the image on each trial was rotated
slightly to the left or right by 3°.

We used a multivariate pattern analysis approach14–17 to
analyze the neuroimaging data and extracted the brain activation
patterns associated with viewing each of the 96 visual images
(Fig. 1d). For the fMRI data, we extracted the spatial patterns
across voxels in response to each of the visual stimuli, providing
finer spatial resolution to complement the high temporal
resolution of the MEG data. For the MEG experiment, we
isolated the neuromagnetic signal from −100 to 1000 ms relative
to stimulus onset on each trial and extracted the spatiotemporal
patterns across the whole brain across all 160 sensors as a
function of time. These patterns across voxels (fMRI) or sensors
(MEG) were then used for the specific analyses detailed below.

Illusory faces modulate responses in face-selective cortex. Our
first aim was to characterize which of the category-selective
regions in higher-level visual cortex are sensitive to the presence
of an illusory face in an inanimate object. In each participant, we
identified the face-selective fusiform face area (FFA) and occipital
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face area (OFA), an object-selective lateral occipital (LO) area,
and the scene-selective parahippocampal place area (PPA) based
on independent functional localizer runs (Fig. 2a). We used a
cross-decoding analysis to test which brain regions had activity
that could distinguish between the three categories of experi-
mental stimuli (Fig. 1d). A linear support vector machine was
trained to classify which category of stimulus a subject was
viewing based on the patterns of BOLD activation across voxels in
a given region of interest. The classifier’s performance was tested
on data from stimulus exemplars of each category not used in the
training set, thus correct classification required generalization to

new stimuli, ruling out an explanation based on visual features
associated with specific images in the training set. Statistical
significance was assessed using one-sample t-tests (one-tailed)
against chance decoding performance (50%). The FDR adjust-
ment was made to all reported p values to control for multiple
comparisons. In all four regions, human faces could be dis-
tinguished from objects with an illusory face (FFA: t(15)= 6.33, p
= 0.00004, d= 1.58, 95% CI: 58.83, Inf; OFA: t(15)= 4.37, p=
0.0005, d= 1.09, 95% CI: 54.20, Inf; LO: t(15)= 5.20, p= 0.0002,
d= 1.30, 95% CI: 56.04, Inf; PPA: t(15)= 4.08, p= 0.0008, d=
1.26, 95% CI: 52.04, Inf) or without an illusory face (FFA: t(15)=
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7.48, p= 0.00001, d= 1.87, 95% CI: 62.53, Inf; OFA: t(15)= 5.13,
p= 0.0002, d= 1.28, 95% CI: 57.15, Inf; LO: t(15)= 4.68, p=
0.0003, d= 1.17, 95% CI: 56.83, Inf; PPA: t(15)= 5.04, p= 0.0002,
d= 1.02, CI: 52.84, Inf) (Fig. 2b). However, illusory faces could
only be discriminated from similar matched nonface objects in
face-selective FFA (t(15)= 2.54, p= 0.015, d= 0.64, 95% CI:
50.64, Inf) and OFA (t(15)= 2.34, p= 0.020, d= 0.59, 95% CI:
50.60, Inf), but not in object-selective LO (t(15)= 1.35, p= 0.11, d
= 0.34, 95% CI: 49.71, Inf) or scene-selective PPA (t(15)= 0.27, p
= 0.40, d= 0.07, 95% CI: 48.92, Inf). Overall, these results show
that the perception of an illusory face in an object modulates the
brain’s response to that object in face-selective cortex only. The
univariate results are also consistent with the role of face-selective
FFA and OFA in distinguishing illusory faces from matched
objects (Supplementary Fig. 2). These results were further sup-
ported by a whole-brain decoding searchlight (Fig. 3), which
showed that the main areas of successful decoding of human faces
from objects (Fig. 3a) and illusory faces from objects (Fig. 3b)
align with functionally defined FFA and OFA, with some addi-
tional area located on the ventral surface between these ROIs.

To further characterize the brain’s response to illusory faces,
we applied representational similarity analysis (RSA)18,19. We
constructed dissimilarity matrices by correlating the patterns of
fMRI BOLD activation between each pair of stimuli and taking 1-
correlation to convert to a measure of pattern dissimilarity
(Fig. 2c). For visualization, we applied multidimensional scaling
(MDS) to the resulting matrices for each region of interest and
plotted the first two dimensions (Fig. 2d). Note that in FFA and
OFA, human faces are represented similarly to each other, and
illusory faces are more similar to human faces than matched
objects are (see blue regions in Fig. 2c). In comparison, in LO and
PPA, all objects are grouped together regardless of whether they
contain an illusory face or not. This grouping is consistent with
the lack of illusory face cross-decoding in these regions. Overall,
this analysis demonstrates that illusory faces are represented
uniquely compared to both human faces and nonface objects in
face-selective cortex. In contrast, illusory faces are not distinct
from ordinary objects in either object or scene-selective cortex.

Illusory faces are rapidly decoded from whole-brain activity.
One of our primary goals was to determine whether illusory faces
are processed rapidly based on activation of a broadly tuned face-
detection mechanism by their low-level visual features, or alter-
natively, whether they result from a slower cognitive process
requiring the reinterpretation of the image. Individual stimuli
were readily decodable from the MEG whole-brain activation
patterns after stimulus onset with similar decoding within each

category (Supplementary Fig. 3). To address the processing of
illusory faces, we focused on the category level and evaluated how
quickly illusory faces could be distinguished from both human
faces and matched objects from time-varying whole-brain activity
measured with MEG. We used a cross-decoding approach
(training and testing on different exemplars), so that successful
classification required the classifier to generalize to new stimuli.
We generated predictions for the cross-decoding results based on
the two possible accounts (Fig. 4). If illusory faces activate a rapid
neural pathway based on low-level visual features, we would
expect peak decoding at a similar time to that for human faces
(green line, Fig. 4). Alternatively, if illusory face perception
requires a slower cognitive process based on reinterpreting the
image, peak decoding should occur later relative to stimulus onset
(orange line, Fig. 4). In both cases, we would expect reduced
performance for cross-decoding illusory faces from matched
objects compared to decoding real faces vs. objects because the
illusory faces share many more visual and semantic features with
the objects; and consequently their brain activation patterns will
be more similar, making the classification problem more
challenging.

To reveal at what time the presence of an illusory face in an
object could be decoded from the brain activation patterns, we
trained a separate binary LDA classifier to discriminate between
each of the three pairs of our three stimulus categories (i.e.,
human faces vs. objects, illusory faces vs. objects, and illusory
faces vs. human faces). Importantly, here we used a cross-
decoding approach, training the classifier on brain activation
patterns in response to a subset of the 96 stimuli, and testing the
classifier’s performance on generalizing to brain activation
patterns elicited by a new subset of stimuli not used in training
(Fig. 1d). This means that successful classifier performance in
discriminating each of the three stimulus categories (human faces,
illusory faces, nonface objects) from the time-varying activity
across MEG sensors could not be explained by sensitivity of the
classifier to brain signatures associated with the visual properties
of particular images, since successful performance requires
generalizing to new examples of each category.

All three categories could be decoded from each other within
the 200 ms stimulus presentation duration (Fig. 5a). As outlined
in Fig. 4, we were interested in the relative time course of
decoding for illusory faces vs. objects in comparison to that for
human faces vs. objects. Human faces could be discriminated
from nonface objects soon after stimulus onset (red line), with
two peaks in classifier performance at ~160 and ~260 ms.
Importantly, decoding of illusory faces from objects also peaked
at ~160 ms (blue line). This is consistent with rapid processing of

Fig. 1 Experimental design and analysis. a Example visual stimuli from the set of 96 photographs used in all experiments. The set included 32 illusory
faces, 32 matched objects without an illusory face, and 32 human faces. Note that the human face images used in the experiments are not shown in the
figure because we do not have the rights to publish them. The original face stimuli used in the experiments are available at the Open Science Framework
website for this project: https://osf.io/9g4rz. The human faces shown in this figure are similar photographs taken of lab members who gave permission to
publish their identifiable images. See Supplementary Fig. 1 for all 96 visual stimuli. Full resolution versions of the stimuli used in the experiment are available
at the Open Science Framework website for this project: https://osf.io/9g4rz. b Behavioral ratings for the 96 stimuli were collected by asking N= 20
observers on Amazon Mechanical Turk to “Rate how easily can you can see a face in this image” on a scale of 0–10. Illusory faces are rated as more face-
like than matched nonface objects. Error bars are ±1 SEM. Source data are provided as a Source data file. c Event-related paradigm used for the fMRI (n=
16) and MEG (n= 22) neuroimaging experiments. In both experiments the 96 stimuli were presented in random order while brain activity was recorded.
Due to the long temporal lag of the fMRI BOLD signal, the fMRI version of the experiment used a longer presentation time and longer interstimulus-
intervals than the MEG version. To maintain alertness the participants’ task was to judge whether each image was tilted slightly to the left or right (3°)
using a keypress (fMRI, mean= 92.5%, SD= 8.6%; MEG, mean= 93.2%, SD= 4.8%). d Method for leave-one-exemplar-out cross-decoding. A classifier
was trained to discriminate between a given category pair (e.g., illusory faces and matched objects) by training on the brain activation patterns associated
with all of the exemplars of each category except one, which was left out as the test data from a separate run for the classifier to predict the category label.
This process was repeated across each cross-validation fold such that each exemplar had a turn as the left-out data. Accuracy was averaged across all
cross-validation folds.
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Fig. 2 fMRI results showing sensitivity to illusory faces in face-selective cortex. a Schematic visualization of the four functional regions of interest; each
region was defined individually in each hemisphere of each subject from their functional localizer. b Results of cross-decoding (train and test the classifier
on brain activity associated with different exemplars so generalization across stimuli is required) the three stimulus categories from four regions of interest.
The mean decoding accuracy is shown, averaged over N= 16 participants. Asterisks indicate conditions with statistically significant decoding, evaluated
using one-sample t-tests (one-tailed) and FDR adjusted *p values < 0.05, and ***p values < 0.001 to correct for multiple comparisons. The distinction
between human faces and objects with (FFA: p= 0.00004, OFA: p= 0.0005, LO: p= 0.0002, PPA: p= 0.0008) or without an illusory face (FFA: p=
0.00001, OFA: p= 0.0002, LO: p= 0.0003, PPA: p= 0.0002) can be decoded from activation patterns in all regions. Illusory faces can be discriminated
from similar matched objects from activity in FFA (p= 0.015) and OFA (p= 0.020) only, but not in LO (p= 0.11) and PPA (p= 0.40). Error bars are SEM.
Source data are provided as a Source data file. c Representational dissimilarly matrices (96 × 96) for all stimuli for the four regions of interest. The
dissimilarity is calculated by taking 1-correlation (Spearman) between the BOLD activation patterns for each pair of stimuli. The colorbar range is scaled to
the max and min of the dissimilarity values for each ROI for visualization. White lines indicate stimulus category boundaries. Insets show 3 × 3 matrices for
each ROI averaged by category, excluding the diagonal. Source data are provided as a Source data file. d Visualization of the dissimilarity matrices in (c)
using multidimensional scaling. The first two dimensions following MDS are plotted, each of the points representing the 96 stimuli is colored according to
its category membership. Proximity of the points represents more similar brain activation patterns for the stimuli. Note that in the FFA and OFA, the
illusory faces are more separated from the matched objects and closer to the human faces compared to LO and PPA.
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illusory faces based on visual features, instead of a slower
cognitive reinterpretation of the image (compare to predictions in
Fig. 4). A result we did not anticipate was the more transient
nature of the result for decoding illusory faces from objects
compared to real faces. Notably the second peak at ~260 ms
observed for human faces is absent for illusory faces, and
although decoding remains significant after onset for most of the
1100 ms analysis window, its magnitude is vastly reduced relative
to that for real faces. We investigate this further using RSA to
probe the brain’s representation of illusory faces in more detail.

An early face response followed by rapid reorganization. The
decoding results are indicative of a dynamic change in how
illusory faces are represented relative to real faces and similar
nonface objects over a relatively brief time period of ~200 ms. To
investigate this further, we applied RSA18,19. For each pair of
96 stimuli, we correlated their time-varying MEG activation
patterns across all sensors at each time point. This produced a
representational dissimilarity matrix (RDM, Fig. 5b, Supple-
mentary Movie 1), which depicts the relative similarity between
the brain’s representation of each pair of stimuli (1-Spearman’s
R). Here we focus on three timepoints of interest based on the
cross-decoding results in Fig. 4a: t1 (130 ms) corresponds to the
first time point after all three category comparisons were sig-
nificant, t2 (160 ms) is when the first decoding peak occurs for all
three category pairs, and t3 (260 ms) is the time of the second
decoding peak for decoding human faces from all objects with or
without a face, which is notably absent for decoding illusory faces
from nonface objects. We additionally used MDS to produce a
visualization of the dissimilarity matrices, plotting the first two
dimensions (Fig. 5c, Supplementary Movie 2). Each of the points
representing the 96 stimuli is colored according to its category
membership. Closer proximity of the points represents more
similar brain activation patterns for the associated stimuli.

The most striking feature of the representational structure is
how it changes dynamically across these three timepoints, as
visualized in the dissimilarity matrices (Fig. 5b) and MDS plots
(Fig. 5c). At 130 ms the human faces are already more similar to
each other than to illusory faces or objects (Fig. 5b), as shown by
the clustering of the human face exemplars in the MDS plot
(Fig. 5c). Notably, a few illusory face exemplars are clustered with
the human faces (Fig. 5c). By 160 ms, the illusory faces have
started to segregate from the matched objects (Fig. 5c), and have
become more similar to the human faces than the matched
objects are (Fig. 5b). There is a categorical shift in the
representational organization between 160 and 260ms: initially
the illusory faces are distinct from the matched objects, but only
100 ms later, the illusory faces are grouped with the matched
objects (Fig. 5c). As with the rapid onset of category-level cross-
decoding (Fig. 5a), this shows that illusory faces are rapidly
processed. These errors of face detection are initially treated more
like real faces than matched objects are, however, the human
brain rapidly resolves this detection error and they are
represented more similarly to objects in less than a quarter of a
second.

The contribution of visual features to rapid face detection. The
decoding and RSA results show an early response to illusory faces
in the patterns of brain activity measured with MEG. This is
consistent with engagement of a rapid process for face detection
(see Fig. 4) rather than a slower cognitive reinterpretation of the
image. Presumably a fast face-detection process would be based
on simple or coarse visual features associated with real faces. If
this is the case, we might expect that the early stages of the MEG
response to illusory faces would be driven by simple or coarse
visual features in the images. Here we aim to examine the extent
to which two computational models of visual features can explain
the brain’s response to illusory faces by comparing their
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Fig. 3 Localized sensitivity to illusory faces. fMRI cross-decoding searchlight results for a human faces vs. objects and b illusory faces vs. objects. For both
comparisons, the location of greatest decoding accuracy is within ventral temporal cortex and overlaps with FFA particularly in the right hemisphere. The
location of greatest cross-decoding for illusory faces vs. matched objects (across exemplars) is a subset of the area for human faces vs. objects. For
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across individual participants (node inclusion threshold= 3/16 participants for OFA, 4/16 participants for FFA) are drawn on this example inflated surface
for comparison with the searchlight results.
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representation of the stimuli to that measured by behavioral
ratings of “face-ness” and the brain activation patterns measured
by MEG. We selected two well-established computational models
that emphasize different visual features in an image: Graph-Based
Visual Saliency20 (GBVS) and the GIST21 visual feature model.
Prior research has suggested that features important for face
recognition typically consist of high contrast regions22–24. Com-
putational models of visual saliency such as GBVS aim to predict
where a human observer would look in an image. Given that
regions of high saliency frequently correspond to areas of high
contrast, we reasoned that this class of model may approximate
the type of visual characteristics relevant to the face-detection
mechanism. In contrast, the GIST21 visual feature model is based
upon characterizing the spatial distribution of content across an
image, and may be able to capture different low-level visual fea-
tures associated with illusory faces.

Before testing the correlation with the MEG data, we examined
the representational dissimilarity matrices (RDMs). First, we
constructed a dissimilarity matrix based on the behavioral ratings
of “face-ness” for the stimuli (Fig. 6a). Notably, the behavioral
matrix reveals that illusory faces are more similar to human faces
than the matched objects are. Further, different illusory face
exemplars are also more similar to each other than they are to the
matched objects. These relationships are expected from the
behavioral results showing that illusory faces were rated as more
face-like than matched objects, but less so than human faces
(Fig. 1b). Next, we built separate dissimilarity matrices for the two
models by correlating the saliency maps generated from the
GBVS model (Fig. 6b) and the gist descriptors produced by the
GIST model (Fig. 6c) for each pair of images. To test whether the
representation of illusory faces generated from the GBVS and
GIST models is distinct from that of human faces and matched
objects we averaged the dissimilarity across all 32 exemplars of
each category, producing 3 × 3 category dissimilarity matrices
(Fig. 6d). For the GIST model, the category-averaged RDM
revealed that illusory faces were on average more similar to

human faces than the matched objects (mean difference=
−0.0696, p= 0.012, permutation test with FDR corrected
p values). This was not the case for the GBVS saliency model
(mean difference= 0.0063, p= 0.701). However, illusory faces
were not more similar to each other on average than they were to
matched objects for either the GBVS (mean difference=
−0.0000004, p= 0.649) or GIST (mean difference=−0.0450, p
= 0.092) models. Overall, these results suggest the GIST visual
feature model is sensitive to some of the distinguishing features of
illusory faces, however, neither the GIST or GBVS models capture
the clear perceptual differences revealed by the behavioral ratings
of how easily a face can be perceived in each image (Fig. 6c).

To examine to what degree these model representations explain
the time-varying representation of the stimuli measured with
MEG, we correlated each of the three model RDMs (Fig. 6a–c:
behavior, saliency, and visual features) with the time-varying
MEG RDM (Supplementary Movie 1). Importantly, we removed
the human faces from both model and MEG RDMs for this
analysis. A preliminary analysis showed that human faces
produce a strong neural response, which dominated the results,
and consequently only confirmed that human faces were
represented differently than the other stimuli. As our focus here
is on how illusory faces modulate the representation of an object,
including human faces would inflate any observed correlations
between the brain representations and the models. The saliency
RDM significantly correlated with the MEG RDM from 85–125
ms after stimulus onset (Fig. 6f), with one discreet peak at 110 ms.
In comparison, a more sustained correlation was observed with
the visual feature RDM, starting at 95 ms after stimulus onset and
continuing throughout the stimulus presentation. Consistent with
the observed differences in the category-averaged RDMs (Fig. 6d),
this difference in the time course of the correlation with the MEG
RDMs suggests that the saliency and visual feature models pick
up on different aspects of the stimuli. The behavioral RDM based
on the face ratings had a sustained correlation with the MEG
RDM from 120ms, with a peak at 170 ms (Fig. 6b). The
correlation with behavior also reached much closer to the noise
ceiling, an estimate of the maximum correlation expected with
the MEG data25. The peak correlation with behavior occurred
around the time of the first decoding peak at ~160 ms (Fig. 5a),
which is notably later than the correlation with the saliency or
visual feature models. The finding that the correlation with
behavior was stronger overall than for either computational
model suggests that these models capture an initial stage of
processing, but not the full time course.

An early face-like response in FFA. In order to link the MEG
and fMRI data, we used a fusion approach27. We correlated the
fMRI RDMs for each of the four regions of interest with the time-
varying MEG RDM at every time point (Fig. 7a). As for the RSA
model comparison with saliency and behavior, we removed
human faces from this analysis. This makes the analysis more
conservative, and any significant correlations are reflective of the
representation of objects with and without an illusory face. The
representation in the FFA significantly correlated with the MEG
data for a brief period post stimulus onset (160, 175 ms). The
correlation was not significant at any time for OFA, LO, or PPA.
This suggests that the face response to illusory faces demonstrated
by the peak correlation with behavior at 170 ms (Fig. 6b) and in
cross-decoding at 160 ms (Fig. 5a) in the MEG data has a likely
origin in FFA.

Discussion
Our results reveal the representation of natural errors of face
detection in the human brain. With fMRI and multivariate
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pattern classification methods, we found that a face-like response
to illusory faces was restricted to face-selective regions in
occipital–temporal cortex. In scene and object areas, illusory faces
were instead represented more similarly to objects. Exploiting the
much higher temporal resolution of MEG, we showed that illu-
sory faces are initially represented as more face-like in their brain
activation patterns than similar matched objects. However, only
~100 ms later, illusory faces are represented as more object-like,
consistent with a rapid resolution of the detection error. Thus,
although illusory faces in objects are perceived as having a

persistent dual identity (face, object), their neural representation
quickly shifts in its relative weighting of these two identities over
time. This is consistent with the rapid activation of a broadly
tuned face-detection system, which is tolerant of substantial visual
variance in the definition of facial features. Following the initial
face-detection process, which possibly occurs via a subcortical
route28, the subsequent resolution of the error is likely driven by
processing in cortical areas involved in face recognition1,4,5.

It is currently debated to what degree representations in ventral
temporal cortex are driven by the appearance or visual properties
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of an object vs. its semantic meaning29–34. Recently it was
demonstrated that in ventral occipitotemporal cortex, objects that
look like another object (for example, a cow-shaped mug) have
BOLD activation patterns that are more similar to what object
they look like (e.g., a cow) than to their actual object identity (e.g.,
a mug)30. Similarly, it has been debated whether object repre-
sentations in ventral temporal cortex are organized by an overall
semantic principle such as animacy14 or real-world size35,36, or by
visual properties that co-vary with these categories29,31,32,34. Our
data offer interesting insights into this issue. Despite sharing
more visual properties and their semantic identity with the yoked
objects, the illusory faces were represented as more similar to
human faces than the yoked objects were in face-selective FFA
and OFA, and for a brief transient period in the first quarter of a
second as revealed by whole-brain MEG. This suggests that the
response to stimuli in which meaning and visual appearance are
dissociated is not homogenous throughout ventral visual cortex,
and further, that these representations exhibit temporal variability
rather than stability over time in the brain’s response.

Our results are able to adjudicate between two alternative
mechanisms for illusory face perception, providing evidence for a
rapid detection mechanism rather than a slower cognitive rein-
terpretation of the object as a face. The early timing of the cor-
relation between the MEG data and the saliency and visual feature
models relative to that with behavior suggests that illusory face
perception is at least partially driven by particular low or mid-
level features. However, neither computational model fully
explains the behavioral or brain data. The differences in timing
reflected by the transient correlation with the GBVS saliency
model and the more sustained correlation with the GIST visual
feature model suggest that the two models isolate different visual
characteristics that might drive the erroneous face-detection
response to illusory faces at different stages of processing. Pre-
vious fMRI investigation of face detection in visual noise has
suggested the eye and mouth regions are important features in
modulating the response of face-selective visual areas, consistent
with the idea of a simple template for face detection37. A rapid
subcortical route for face detection has been proposed based on
multiple lines of evidence28, involving the superior colliculus,
pulvinar, and amygdala. The amygdala has been implicated in
orienting toward faces in primates, and amygdala lesions impair
this tendency for both real and illusory faces3. Along with the
timescale of the early confusion we observe between real and
illusory face processing, this is suggestive of a possible role for the
amygdala in falsely detecting faces in everyday objects.

Beyond revealing a rapid neural mechanism underlying illu-
sory face perception, our data offer insight into the distinction
between face detection and face recognition in the visual system.
Visual detection and recognition have competing requirements,
which must be adequately weighted in a biological system in
order to optimally direct the behavior of the organism. To
improve detection a system needs to maximize sensitivity, yet
recognizing an object as belonging to one category or another
requires precise tuning to visual features. Neurons in face-
selective cortical areas are tightly tuned to particular features
associated with real faces6,11,38, and this tight tuning might be
expected to result in poor detection. In contrast, the existence of
face pareidolia in a wide range of objects is suggestive of a broadly
tuned face-detection system. Our results suggest that this broadly
tuned face detector results in compelling errors, yet these errors
are quickly resolved, likely via a rapid subcortical route for face
detection. The role of individual face-selective regions in the
human brain is still being revealed1. If rapid face detection is
served by a subcortical route, processing in cortical areas may be
focused on different aspects of the complex task of face recog-
nition. This functional anatomical distinction may explain how

the human visual system balances the competing requirements of
face detection vs. recognition.

Although we observe a rapid face-like response to illusory faces
in objects, there are substantial differences in the representation
of human faces vs. illusory faces. The fMRI data showed that in
face-selective FFA and OFA, human faces have more similar
within-category activation patterns than illusory faces, which are
less similar to each other. Further, in nonface areas such as LO
and PPA, the illusory faces group with objects rather than human
faces. This is similar in the time domain revealed by MEG, in
which illusory faces have a more transient face-like response than
human faces, and are much more similar to nonface objects
within a couple 100 ms. The fact that human faces and illusory
faces are readily decoded from each other in both fMRI and MEG
is also indicative of differences in their representation. Overall,
this difference is consistent with the interpretation of illusory
faces as a quickly resolved error of a broadly tuned face-detection
system2,3. Thus although illusory faces elicit a face-like response,
they are not represented in the same way as human faces within
the visual system.

Our unexpected finding that the face-like response to illusory
faces is not only rapid, but is also brief, underscores the impor-
tance of investigating temporal dynamics in understanding the
neural mechanisms of visual perception. Our results are con-
sistent with prior MEG results suggesting differential stages of
information processing of faces that unfold over a few 100 ms39.
Recently, an MEG study using famous faces reported that certain
features such as gender and age were evident in the whole-brain
representation of the face before identity40. Similarly, neurons in
macaque temporal cortex are known to respond to global infor-
mation about faces in the earliest part of the response, with finer-
scale information about identity or expression emerging later41.
Broadly consistent with our finding of a rapid face-like response
to illusory faces, an EEG study reported an increased neuronal
response across frontal and LO cortex within 500 ms to white
noise patterns in which observers mistakenly thought they saw a
face42. Our result reveals a transformation of the representational
space that occurs in a fraction of a second. Together these results
are indicative of the type of insights into neural mechanisms that
are inaccessible at the slower temporal resolution of the fMRI
BOLD response43. A curious feature of illusory faces is that the
percept of a face persists well beyond the initial few 100 ms in
which we now know they are represented in the brain as more
face-like. This suggests that the MEG data are reflective of the
initial processing that leads to the misperception of a face in these
objects.

In sum, illusory faces are represented uniquely in the brain
compared to both real human faces and similar objects that do
not have illusory facial features. The presence of an illusory face
initially results in a rapid face-like response to an inanimate
object, possibly via a subcortical route. However, this detection
error is rapidly resolved and the brain’s representation transforms
such that illusory faces are represented more similarly to matched
objects than human faces within a couple of 100 ms. This result
underscores the importance of considering temporal dynamics in
understanding human cognition.

Methods
Participants. All imaging experiments were approved by the Human Research
Ethics Committee of Macquarie University and participants received financial
compensation for their time. The online experiments were conducted on Amazon
Mechanical Turk following guidelines set by the NIH Office of Human Subjects
Research Protections, and participants were also compensated for their time. All
experiments were conducted in accordance with the Declaration of Helsinki and
informed consent was obtained from each participant. In total, 22 participants
(8 male, 14 female, mean age 26.2 years, range 18–41 years) completed the MEG
experiment. In total, 21 participants (11 male, 10 female, mean age 25.4 years,
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range 20–36 years) participated in the fMRI experiment. N= 4 participants were
removed from the fMRI analysis due to inability to define category-selective
regions from their localizer data and N= 1 was excluded due to failing to complete
the experiment, leaving N= 16 fMRI datasets for analysis. In total, 20 participants
(12 female, 7 male, 1 other) completed the behavioral experiment online via
Amazon Mechanical Turk. Note that the human face images used in the experi-
ments are not shown in the paper because we do not have the rights to publish
them. The original face stimuli used in the experiments are available at the Open
Science Framework website for this project: https://osf.io/9g4rz. The human faces
shown in this figure are similar photographs taken of lab members who gave
permission to publish their identifiable images.

Visual stimuli. The stimulus set consisted of 96 photographs sourced from the
internet (32 illusory faces, 32 matched nonface objects, 32 human faces). For
each of the 32 examples of illusory faces in inanimate objects (e.g., bell peppers,

backpack, coffee cup), we selected a matched object of the same type and as
visually similar as possible, but which did not contain an illusory face (Fig. 1a).
The illusory face images have a high degree of variance in the visual appearance
of their illusory facial features, compared to human facial features. In addition,
the illusory face images have greater variance in visual properties such as color,
orientation, and face size, compared to the controlled face images typically used
in experiments on face processing. For these reasons, the set of 32 human faces
was selected to have a high degree of variance across age, gender, race, facial
expression, and head orientation in order to match the high variance of the
illusory face image set. Human faces were not individually matched to the
illusory faces because of the ambiguity in defining parameters such as age, race
and gender for illusory faces. However, we did match the number of images
containing more than one face across human and illusory face sets. Two of the
illusory face images contained two faces, so we included two images in the
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human face set that also had two faces. All images were cropped to a square
image and resized to 400 × 400 pixels, but no other manipulations were made.

fMRI data acquisition. The fMRI experiment consisted of a structural anatomical
scan, two functional localizer runs, and seven experimental runs. MRI data were
acquired with a 3T Siemens Verio MRI scanner and a 32-channel head coil at
Macquarie Medical Imaging, Macquarie University Hospital (Sydney, Australia). A
high-resolution T1-weighted structural MRI scan (3D-MPRAGE sequence, 1 × 1 ×
1mm voxel size, in-plane matrix size: 256 × 256, 176 slices, TR= 2 s, TE= 2.36 ms,
FA= 9°) was collected for each participant at the start of the session. Functional
scans were acquired with a 2D T2*-weighted EPI acquisition sequence: TR= 2.5 s,
TE= 32 ms, FA= 80°, voxel size: 2.8 × 2.8 × 2.8 mm, in-plane matrix size: 92 × 92.
A whole-brain volume containing 42 slices was collected. In total, 128 volumes
were collected per localizer run (5 min each), and 218 per experimental run (9 min
each). One localizer run was collected immediately after the structural scan, fol-
lowed by the seven experimental runs, and then the second localizer run. In total
the scanning session took <90 min.

Stimulus presentation scripts were written in MATLAB using functions from
the Psychtoolbox44–46 and run on an Apple MacBook Pro with Mac OSX. Visual
stimuli were displayed using a flat-panel MRI-compatible 32″ Cambridge Research
Systems BOLDscreen with resolution 1920 × 1080 and viewing distance 112 cm.
Experimental stimuli subtended 7.4 × 7.4° and localizer stimuli 8.8 × 8.8°.
Behavioral responses were collected using a Lumina MRI-compatible button box.

fMRI category-selective localizer: two independent localizer runs were used to
define the category-selective regions FFA, OFA, LO, and PPA individually in each
participant. The functional localizer stimuli were color pictures of faces, places,
objects, and scrambled objects (480 × 480 pixels). In total, 54 images for each
category were selected from The Center for Vital Longevity Face Database47, the
SUN397 database48, and the BOSS database49,50 respectively. Scrambled objects for
localizing object-selective region LO51 were pregenerated in MATLAB by
randomly scrambling each object image in an 8 × 8 grid and saving the resulting
image. Localizer runs began with a 4 s fixation period before the first stimulus
block. For each stimulus class, there were 3 unique blocks of 18 images.
Participants performed a 1-back task, pressing a key each time an image was
repeated twice in a row. Every time a block was run, the images were presented in a
random order and two random images were repeated twice for the 1-back task.
Each of the 20 images within a block (18 unique+ 2 repeats) was shown for 600 ms
followed by a 200 ms interstimulus interval. The 16 s stimulus blocks alternated
with 10 s fixation blocks. Each of the four stimulus categories was repeated three
times per 5-min localizer run, once per unique image set. The order of block
presentation was in a pseudorandom order, with two different orders
counterbalanced across runs for each participant.

fMRI experimental runs: the fMRI experiment used a rapid event-related
design14, in order to measure the BOLD activation patterns for each individual
stimulus. Each of the 96 stimuli was shown once per run, in random order. In each
4 s trial, stimuli were presented for 300 ms at the start of the trial on a gray
background. For the remaining time in each trial after stimulus offset, a gray
background with a fixation cross was shown. In addition to the 96 stimulus trials,
32 blank null trials (4 s duration each) were inserted randomly in the sequence for
each run and each participant. Finally, four null trials were inserted at the start and
end of each run. This produced 136 trials total per run for a run duration of 9 min.
Each participant completed seven experimental runs.

A task unrelated to face detection was used in order to maintain participants’
alertness during the fMRI experiment. Each image was presented tilted slightly by
3° to the left or right of center (Fig. 1c) and participants’ task was to report the
direction of tilt with a keypress using a Lumina MRI-compatible button response
pad. At the end of each run, participants received on-screen feedback on their
performance on the rotation task (accuracy, reaction time, number of missed
trials). For each run and participant, the tilt of each stimulus was pseudo-randomly
allocated such that tilt direction was counterbalanced equally within each of the
three stimulus categories (faces, illusory faces, and matched objects). Averaged
across participants and runs, the mean task accuracy was 92.5% (SD= 8.6%). Eye
movements were not recorded, however, the brief stimulus duration prevented any
substantial eye movements during stimulus presentation.

fMRI preprocessing: fMRI data were preprocessed using the AFNI52 software
package. EPIs were slice-time corrected, motion-corrected, and co-registered to the
participant’s individual anatomical volume. Spatial smoothing of 4 mm full-width
at half-maximum was applied to the localizer runs only, no smoothing was
conducted on the experimental runs. All analyses were conducted in the native
brain space of each participant.

Functional ROI definition. Four functional ROIs were defined in each participant’s
brain from the independent localizer data: FFA, OFA, LO, and PPA. Data from the
two independent localizer runs were entered as factors into a GLM in AFNI52 to
estimate the beta weights for faces, scenes, objects, and scrambled objects. Con-
trasts of faces–scenes, scenes–faces, and objects–scrambled objects produced t-
maps used to define the boundaries of each ROI. Cortical reconstruction was
performed using Freesurfer 6.0 from the structural scan for each participant.
Inflated surfaces were visualized in SUMA53 for functional ROI definition, with the
results of the GLM overlaid as t-maps. FFA and OFA were defined as the

contiguous cluster of voxels in the fusiform gyrus and LO area, respectively, pro-
duced from the contrast between faces vs. scenes. LO was defined as activation on
the LO surface from the contrast between objects and scrambled objects. Finally,
PPA was defined as the peak cluster of activation in the parahippocampal gyrus
produced by the contrast between scenes vs. faces. To ensure unique ROIs, any
overlapping voxels in the four regions were preferentially allocated to the face-
selective regions, and any voxels allocated to both FFA and OFA were removed
from both ROIs. The mean size of each ROI averaged across participants was 271
voxels for FFA (range: 86–577), 190 voxels for OFA (range: 101–316), 337 voxels
for LO (range: 70–543), and 393 voxels for PPA (range: 277–712).

fMRI multivariate pattern analysis. Decoding analysis was performed using The
Decoding Toolbox (TDT)54 and MATLAB. Decoding was performed with a linear
SVM in each ROI on the beta weights estimated in a GLM using AFNI52 for each
of the 96 stimuli, producing a separate beta weight for each run (i.e., 7 beta weights
per stimulus). For cross-validation we used a combined leave-one-run-out and
leave-one-exemplar-out procedure as implemented in TDT54. Cross-decoding for
each category pair (faces vs. objects, faces vs. illusory faces, illusory faces vs. objects)
was performed by training the classifier on the data for all exemplars except one
pair (N−1= 31), which served as the test set. Leave-exemplar-out cross-validation
was performed by repeating this process iteratively such that each exemplar was in
the test set once. Classifier accuracy was averaged across all cross-validation folds
for each ROI and category pair (Fig. 2b). Statistical significance was assessed using
one-tailed t-tests with control for multiple comparisons (at α < 0.05) implemented
using the FDR procedure for adjusting p values described by Benjamini and
Hochberg55 and implemented with MATLAB’s mafdr function.

RSA was conducted using MATLAB. RDMs for each ROI and participant were
constructed by correlating the beta coefficients for each pair of stimuli across voxels
in the ROI, and taking 1-correlation (Spearman’s rho) to convert to a dissimilarity
measure18,19. The mean of individual participants’ RDMs produced one RDM per
ROI (Fig. 2c). MDS was performed using the MATLAB function cmdscale on the
average RDM across participants for each ROI, with the first two dimensions
plotted for visualization (Fig. 2d).

A whole-brain decoding searchlight was conducted using the Newton linear
SVM classifier implemented in TDT54 with a searchlight radius of 3 voxels. We
used a leave-exemplar-out cross-validation approach as implemented for the ROI
decoding analysis, however, to improve performance for the searchlight we used
the faster Newton implementation of SVM and did not implement leave-one-run-
out cross-validation in addition to leave-exemplar-out. The searchlight was
conducted in each participant’s native brain space, and then the results were
mapped on to surface nodes in SUMA53 for visualization of the average group
decoding maps for all participants (Fig. 3).

MEG data acquisition. MEG data were acquired using a 160-channel (axial gra-
diometers) whole-head KIT MEG system (Model PQ1160R-N2, KIT, Kanazawa,
Japan) at the KIT-Macquarie Brain Research Laboratory (Sydney, Australia).
Recordings were collected with a 1000 Hz sampling rate and filtered online between
0.03 and 200 Hz. Participants lay in a supine position inside the MEG scanner
within a magnetically shielded room (Fujihara Co. Ltd, Tokyo, Japan). Head
position was tracked using five marker coils placed on a fitted elastic cap worn on
the participant’s head. A photodiode tracked the exact onset of each visual stimulus
and was activated by the presentation of a small white square on the screen during
each stimulus presentation.

MEG experimental design. The experimental script was written in MATLAB
using functions from the Psychtoolbox44–46. Visual stimuli were presented in the
MEG via a projector at 114 cm viewing distance and subtended 4° of visual angle.
The 96 visual stimuli were presented in random order in 6 runs for each subject.
Each run contained 4 repeats of each of the 96 stimuli, for a total of 384 trials per
run and 2304 trials in total (24 repeats of each stimulus). A break occurred halfway
through each run and participants pressed a key when they were ready to proceed.
Images were presented in the center of the screen for 200 ms on a mid-gray
background. As for the fMRI experiment, eye movements were not recorded,
however, the brief stimulus duration prevented any substantial eye movements
during stimulus presentation. The interstimulus interval was jittered and randomly
varied between 1–1.5 s on each trial. Each image was presented tilted slightly by 3°
to the left or right of center (Fig. 1c) and participants’ task was to report the
direction of tilt with a keypress on an MEG-compatible button response pad. The
tilt of each stimulus was carefully counterbalanced within and across runs so that
tilt direction and/or motor response would not be an informative cue for multi-
variate pattern analysis. Averaged across participants and runs, the mean task
accuracy was 93.2% (SD= 4.8%).

MEG preprocessing. MEG analysis was conducted using MATLAB (The Math-
Works), including functions from the CoSMoMVPA26 and FieldTrip56 toolboxes.
We performed minimal preprocessing on the data17,57. Trials were downsampled
to 200 Hz (5 ms) temporal resolution and for each trial an epoch from −100 to
1000 ms relative to the onset of the visual stimulus was used for analysis. Principal
components analysis was performed to reduce the dimensionality of the data,
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and the components explaining 99% of the variance were retained for each par-
ticipant’s dataset. No further preprocessing was conducted on the data prior to
analysis17.

MEG multivariate pattern analysis. All analyses were conducted on the principal
components across all 160 sensors individually for each subject in sensor-space,
with the results then pooled. For cross-decoding we used a leave-one-exemplar-out
cross-validation approach. An LDA classifier was trained to discriminate between
two of the three categories (e.g., human faces vs. objects) on all but one exemplar of
each category (i.e., n= 31 images per category). We chose LDA for MEG decoding
based on the finding that SVM and LDA produce comparable results for MEG data
using the PCA preprocessing pipeline we apply here, yet LDA is generally faster
and thus suited to handling MEG timeseries data17. This process was repeated in
an iterative manner across each cross-validation fold so that each combination of
exemplars was used as test data. Classifier accuracy was averaged over each cross-
validation fold, and then averaged across participants (Fig. 5a). Statistical sig-
nificance was assessed using Threshold-Free Cluster Enhancement as implemented
in the CoSMoMVPA26 toolbox.

RDMs for each time point (from −100 ms before stimulus onset to 1000 ms
after stimulus onset, in 5 ms increments) and participant were constructed by
correlating the whole-brain patterns across sensors (after PCA) for each pair of
stimuli, and taking 1-correlation (Spearman’s rho) to convert to a dissimilarity
measure18,19. The mean of individual participants’ RDMs produced one RDM per
time point (Fig. 5b; Supplementary Movie 1). MDS was performed using the
MATLAB function cmdscale on the average RDM across participants for each time
point, with the first two dimensions plotted for visualization (Fig. 5c;
Supplementary Movie 2). Comparison between the time-varying MEG RDM and
behavioral, visual feature, and saliency RDMs (Fig. 6f) was made by correlating the
RDMs using Kendall’s tau-a25. This approach was also used for the fMRI-MEG
fusion27 in Fig. 7.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The original experimental stimuli and the empirical RDMs (fMRI, MEG, behavioral,
output of computational models) are publicly available at the Open Science Framework
website for this project: https://osf.io/9g4rz. Source data are provided with this paper.

Code availability
The code for these experiments is available from the corresponding author upon request.
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