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Abstract

Purpose

To facilitate the demonstration of the prognostic value of radiomics, multicenter radiomics

studies are needed. Pooling radiomic features of such data in a statistical analysis is how-

ever challenging, as they are sensitive to the variability in scanner models, acquisition proto-

cols and reconstruction settings, which is often unavoidable in a multicentre retrospective

analysis. A statistical harmonization strategy called ComBat was utilized in radiomics stud-

ies to deal with the “center-effect”. The goal of the present work was to integrate a transfer

learning (TL) technique within ComBat—and recently developed alternate versions of Com-

Bat with improved flexibility (M-ComBat) and robustness (B-ComBat)–to allow the use of a

previously determined harmonization transform to the radiomic feature values of new

patients from an already known center.

Material and methods

The proposed TL approach were incorporated in the four versions of ComBat (standard, B,

M, and B-M ComBat). The proposed approach was evaluated using a dataset of 189 locally

advanced cervical cancer patients from 3 centers, with magnetic resonance imaging (MRI)

and positron emission tomography (PET) images, with the clinical endpoint of predicting

local failure. The impact performance of the TL approach was evaluated by comparing the

harmonization achieved using only parts of the data to the reference (harmonization

achieved using all the available data). It was performed through three different machine

learning pipelines.
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Results

The proposed TL technique was successful in harmonizing features of new patients from a

known center in all versions of ComBat, leading to predictive models reaching similar perfor-

mance as the ones developed using the features harmonized with all the data available.

Conclusion

The proposed TL approach enables applying a previously determined ComBat transform to

new, previously unseen data.

Introduction

The extraction of quantitative features using high-throughput computing from medical images

like magnetic resonance [MR], computed tomography [CT], and positron emission tomogra-

phy [PET], is known as radiomics [1–4]. It provides a large set of quantitative features to

researchers, enabling investigation of potential impact in clinical-decision support systems to

improve diagnostic, prognostic, and predictive accuracy [5]. These various radiomics-driven

prognostic/predictive studies in various cancer types may prove useful for personalized medi-

cine in oncological applications [6].

The increased interest in radiomics research is in part due to the transparency of radio-

mics-based models. Thus, many initiatives have recognized the need for greater standardiza-

tion of radiomics research with the aims of achieving improved reproducibility and translation

of radiomics research into clinical practice [7–9]. Despite the significant impact in clinical

practice, most radiomics studies to date have been single center based and retrospective in

nature, and most published models have not been externally validated [10,11]. In the interest

of producing convincing results with respect to the potential clinical value of radiomics as a

prognostic tool, it is vital to consider large patient cohorts that can often only be available

through multicenter recruitment [12–15]. One of the most important advantages of multicen-

ter studies is the higher statistical relevance and potential generalizability of the developed

models when applied to external, previously unseen cohorts. Besides the legal, ethical, admin-

istrative and technical hurdles of collecting data from several centers, one of the most challeng-

ing aspects is the fact that medical images have different characteristics when acquired on

different scanner models from various manufacturers, using different acquisition protocols

and reconstruction settings, which is currently unavoidable in the current clinical practice.

Radiomic features have been shown to exhibit sensitivity to such heterogeneity, which conse-

quently hinders pooling data to perform statistical analysis and/or machine learning (ML) in

order to build robust models [16–21]. We recently reviewed and discussed the existing meth-

ods to perform data integration either by harmonizing images before feature extraction, or

directly in the already extracted radiomics features by statistically estimating and reducing the

unwanted variation associated with center effects [20,22]. In the present work, we place our-

selves in the context of features harmonization (i.e., the original images are not specifically

pre-processed for harmonization).

In this context, various methods have been considered [20,22]. We have recently expanded

the ComBat method to improve its flexibility and robustness [23]. One remaining limitation of

ComBat lies in its ability to harmonize previously unseen data (either new patients from one

of the centers included in the initial harmonization process, or a new cohort from an entirely
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new and unseen center) [20]. In this case, the new data has to be labeled and added to the pre-

viously considered datasets, and the entire new datasets has to be re-harmonized again, which

is cumbersome and seriously hinders the future external validation of the models that have

been developed on harmonized features, especially if original features are not available

anymore.

In this work, our objective was to develop and evaluate a transfer learning (TL) technique

implemented within ComBat (and B(M)-ComBat versions as well) that could allow applying

the previously learned harmonization transform to the radiomic features values of new

patients from a known center.

Material and methods

ComBat approach description

The ComBat strategy was initially drafted for genomics [24], where the so-called “batch effect”

is the source of variations in measurements caused by handling of samples by different labora-

tories, tools and technicians. This “batch effect” is theoretically similar to variations induced in

radiomic features by the scanner model, the acquisition protocol and/or the reconstruction

settings, sometimes called “center effect”.

ComBat is primarily based on an empirical Bayes framework to eliminates batch effects. It

has shown robustness with small sample sizes, down to 5 samples per batch [22,25,26], and

continues to be a widely used approach [20,27–29]. ComBat was seen as being “best ready to
lessen and remove batch effects while expanding precision and accuracy” when compared to five

other popular batch effect removal methods [20,25]. Within the context of radiomic features

harmonization, ComBat works with the following steps:

Step 1: Standardize the data

The magnitude of radiomic features could differ across center due variability in scanner mod-

els, acquisition protocols and reconstruction settings. If not accounted for, these will create

bias in the Empirical Bayes (EB) estimates of the prior distribution of center effect and reduce

the amount of systematic center information that can be borrowed across features [24]. To

avoid this phenomenon, we first standardize the data features-wise so that radiomic features

have similar overall mean and variance. Ordinary least-squares is used to calculate features-

wise mean and standard deviation estimates, âg and ŝg , across feature g, sample j, and center i.
The standardized set of features Zijg from the original set of features Yijg is given by

Zijg ¼
Yijg � â ig � Xb̂g

ŝ ig
ð1Þ

where Xb̂g represents potential non-center related covariates and coefficients in the model.

Step 2: EB center effect parameter estimates using parametric empirical

priors

The standardized data is assumed to be normally distributed Zijg ~ Nðgig; d
2

igÞ.

Additionally, we assume the parametric forms for prior distributions on the center effect

parameters to be

gig ~NðYi; t
2

i Þ and d
2

ig ~ Inverse Gamma ðli; yiÞ ð2Þ
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The hyperparameters γi, t2
i , λi, θi are estimated empirically from standardized data using

the method of moments. These prior distributions (Normal, Inverse Gamma) were selected

due to the conjugacy with the Normal assumption for the standardized data [24]. Based on the

distributional assumptions above, the EB estimates for center effect parameters, γijg and d
2

ig are

given (respectively) by the conditional posterior means

g�ig ¼
ni�t2

i ĝ ig þ d
2�

ig �g i

ni�t2
i þ d

2�

ig

and d2�

ig ¼

�y i þ
1

2

X

j
ðZijg � g�igÞ

2

nj
2
þ �l i � 1

ð3Þ

Detailed derivations for these estimates γig and d
2

ig are given in the supplemental materials

available at Biostatistics online.

Step 3: Adjust the data for center effects

After calculating the adjusted center effect estimators, g�ig and d
2�

ig , we now adjust the data. The

EB center-adjusted data y�ig is given by

Y�ijg ¼
ŝg

d̂
�

ig

ðZijg � ĝ
�

igÞ þ âg þ Xb̂g ð4Þ

Although ComBat is an effective method, one of its limitations is that it centers the data to

the overall, grand mean of all samples, resulting in an adjusted data matrix that is shifted to an

arbitrary location that no longer coincides with the location of any of the original centers. This

can result in harmonized features losing their original physical meaning, including the genera-

tion of impossible values, e.g., negative volumes or SUV.

Recently, we showed the interest of two modifications [20,30]: on the one hand, a first mod-

ification, called M-ComBat, allows centering the data to the location and scale of a pre-deter-

mined “reference” batch, which, in the case of radiomics, prevents losing the physical meaning

of some features (e.g., SUV or volume) and can provide the ability to select as a reference a

dataset for which confidence in data curation is higher [30]. Bootstrapped ComBat (B-Com-

Bat) on the other hand, improves the predictive ability of the developed models and their

robustness through the addition of a bootstrap step [20]. These improvements however did

not address the limitations of ComBat regarding the application of models based on harmo-

nized features on new patients.

M-ComBat. M-ComBat shifts samples to the mean and variance of the chosen reference

batch, instead of the grand mean and pooled variance [20,30]. This is accomplished by chang-

ing the standardizing mean and variance of the estimates, âg and ŝg , to center-wise estimates,

â ig and ŝig . Moreover, the mean and variance estimates utilized in the final center-effect

adjusted data are calculated using the feature-wise mean and variance estimates of the refer-

ence batch, i = r.
The M-ComBat adjusted data are then given by

Y� ijg ¼
ŝi¼r;g

d̂�ig
ðZijg � ĝ

�
igÞ þ â i¼r;g þ Xb̂g ð5Þ

Bootstrapped ComBat: B-ComBat and BM-ComBat. Our last study [50] showed the

interest of a hybrid technique performing parametric bootstrap in the initial estimates

obtained in ComBat (or M-ComBat), then use a Monte Carlo method to obtain the final esti-

mates. Hence, the final B-ComBat and BM-ComBat bootstrapped adjusted data are given
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respectively by:

YB� ComBat
ijg ¼

yijg � âgk � Xijb̂gk � g
�
igk

d
�

igk

þ âgk þ Xijb̂gk ð6Þ

YBM� ComBat
ijg ¼

yijg � â i¼ðr;gÞk � Xijb̂gk � g
�
igk

d
�

igk

þ â i¼ðr;gÞk þ Xijb̂gk ð7Þ

Proposed method: A transfer learning (TL) approach. We first determine the hyper

parameters, i.e., the conditional posterior center effect estimators (g�ig and d
2�

ig ) in the initial

available dataset (“learning” part). Then, these learned hyper parameters are used in the

harmonization process of the new, previously unseen dataset (“transfer” part).

The proposed method follows these steps:

i. Save the conditional posterior center effect estimators (g�ig and d
2�

ig ) obtained in Step 2 during
the initial data harmonization using ComBat.

ii. Perform the Step 1 using the new unseen data.

iii. After obtaining the results of (i) and (ii), perform Step 3 to adjust the new unseen data. The

new EB center-adjusted data yTLijg is given by

YTL
ijg ¼

ŝg

d̂�ig

ðZijg � ĝ
�

igÞ þ âg þ Xb̂g ð8Þ

Data: Patient cohorts, imaging and clinical endpoints

In this study, we relied on a dataset of 189 patients with histologically proven locally

advanced cervical cancer (LACC) retrospectively collected from three clinical centers (Brest,

n = 117 and Nantes, n = 44, in France, and Montreal, n = 28, in Canada). Patients were

treated with definitive curative chemoradiotherapy followed by brachytherapy from August

2010 to July 2017 (to ensure a minimum follow-up of 1 year) (see S1 Table). The radiomics

analysis was applied to the available pre-treatment images: T2-weighted MRI (T2) and

apparent diffusion coefficients (ADC) maps from diffusion-weighted MRI, post-injection

gadolinium contrast-enhanced MRI (GADO), and Fluorodeoxyglucose (FDG)-PET images

(see S2 Table). Importantly, the PET/CT settings (scanner model, reconstruction algorithms

and parameters) were the same within Brest and Nantes, but not within Montreal, where 2

different scanners were used for 5 and 23 patients respectively (see S1 Table). Compared to

our previous work [20] in which 50 patients from Nantes were included, 6 were removed for

the present analysis because their PET images had different characteristics. The available

clinical variables included age (gender is female for all patients), histopathological type,

grade, lymphovascular invasion, HPV status, T-stage, N-stage and FIGO (International Fed-

eration of Gynaecology and Obstetrics). To provide a rationale to adapt treatment (e.g.,
avoid systemic treatment for patients with low risk of recurrence), prediction of local failure

(LF) was chosen as the endpoint [20,31].

All procedures performed in studies involving human participants were in accordance

with the ethical standards of the institutional and/or national research committee and with

the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The
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retrospective collection of images and clinical data from the three centers was approved by the

following ethics committees: "The Institutional Review Board of Brest University Hospital"

for data collected in Brest and Nantes, and « The McGill University Health Center Research

Ethics Board" for these collected in McGill. All patients provided permission for the use of

their clinical data for scientific purposes and informed consent for the anonymous publication

of data via a non-opposition form. Data were anonymized before it was accessed for the pres-

ent analysis.

Overview of the framework of radiomics analysis

As in our previous work [20], we worked with radiomic features extracted from the images

and the available clinical factors collected during the study by Lucia, et al [15]. These are made

available for reproducibility. As a reminder, we summarize the process followed by Lucia, et al

in the following. More details can be found in [15]. One single expert radiation oncologists (F.

Lucia) semi-automatically delineated tumour volume-of-interests (VOIs) independently in the

PET and MRI images. The Fuzzy locally adaptive Bayesian (FLAB) algorithm [32] imple-

mented in a home-made software (MIRAS software v1.0.2.0, LaTIM, INSERM, Brest) was

used in PET images while the 3D Slicer™ software [33] was used in MR images. For each VOI

in the PET and three MRI sequences, 79 morphological and intensity-based features, as well as

94 textural features were extracted in 3D using MIRAS software. Features were checked for

consistency with the benchmark of the Image Biomarker Standardization Initiative (IBSI)

[34,35]. Both “fixed bin number” (FBN, 64 bins) and “fixed bin width” (FBW, width of 0.25,

0.5, 1 and 2 standardized uptake values (SUVs) for PET and width of 10 mm2/s for ADC map)

grey-level discretization algorithms were used to compute each of the 94 textural features. Tex-

ture matrices were built according to the merging procedure (by summation of 13 matrices

calculated in toward every direction before texture calculation).

Experimental analysis

Non-parametric versions of ComBat were utilized in sections A, B, C and D using as harmoni-

zation labels either the 3 clinical centers for MRI features and the 4 scanners (1 in Brest, 1 in

Nantes and 2 in Montreal) for FDG PET.

The objective of our the experiment is to demonstrate the ability of the TL implementation

within ComBat to successfully harmonize features of new patients, previously not included in

the initial harmonization.

Stratified random sampling was used to split the data from the 3 centers into training

(n = 142 with 52 LF) and testing (n = 57 with 15 LF) sets. These sets are considered “training”

and “testing” for the purpose of building multiparametric models predictive of LF using three

different machine learning pipelines (see the next section). Patients from the 3 centers are thus

included in both sets. For the purpose of evaluating the TL ComBat harmonization, patients

from the testing set are not used in the initial harmonization, and are used to evaluate the per-

formance of the TL harmonization. In order to evaluate the performance of TL ComBat

harmonization, all patients from Nantes are set aside in the initial harmonization process and

constitute the “new” center to evaluate TL harmonization. The experiment is further illustrated

in Fig 1.

In order to further evaluate the impact of harmonization, principal components analysis

(PCA) was performed, and the four different versions of ComBat were then compared with

ANOVA in terms of their statistical distributions across labels (i.e., 3 clinical centers for MRI

features and 4 scanners (1 in Brest, 1 in Nantes and 2 in Montreal) for FDG PET) before and

after harmonization with the four ComBat versions. In addition, a 2-sample Kolmogorov-

PLOS ONE A transfer learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0253653 July 1, 2021 6 / 19

https://doi.org/10.1371/journal.pone.0253653


Smirnov test was used to determine if there was a significant difference in the distribution of

the features from each device variations both before and after ComBat harmonization.

The Original (i.e., original harmonized data with all the available samples, thus the “gold

standard reference”) was compared to the harmonized data by the proposed TL (i.e., harmo-

nized data by the proposed transfer learning) method. Since variances of the results acquired

by the two experiments could not be considered equal, we used the Welch-t test [26] to com-

pare whether the differences between the original (i.e., gold standard) and the TL results were

statistically different. Tests were run on each combination of data under the null hypotheses

“method does not impact ML performances” and “both methods have same performances”

and reject the Ho if p< 0.05.

Finally, the performance of the predictive models built relying on features harmonized with

the TL approach (through all four ComBat versions) was compared to the performance of the

models built using features harmonized using all the available data.

Models predicting endpoints (as a binary task) were built exactly as in our previous work: 3

different ML pipelines were utilized: i) Random Forest (RF) and ii) Support Vector Machine

(SVM), both with embedded feature selection, and iii) Multivariate regression (MR) with

10-fold cross-validation after feature selection based on least absolute shrinkage and selection

operator (LASSO). All of the harmonized (with the 4 ComBat versions) radiomic features

were used as inputs in combination with the available clinical factors (age, gender, histology,

stage, etc.). Since there were ~34% of events (LF), we used synthetic minority over-sampling

technique (SMOTE) to facilitate training of the models [20,36].

For the purpose of the M-ComBat and BM-ComBat, Brest was chosen as the reference to

which the two other centers (in the case of MRI) or 3 other scanners (in the case of PET) were

harmonized. Fig 2 illustrates the overall workflow.

Fig 1. Workflow for the analysis in LACC datasets’ experiments.

https://doi.org/10.1371/journal.pone.0253653.g001
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Machine learning methodology

Imbalance adjustment. To address the imbalance in the dataset, SMOTE algorithm was

utilized to facilitate training of the models. SMOTE is a method of over-sampling the minority

class in order to provide a balanced number of positive and negative cases to the learning algo-

rithm [20,36]. The difference of SMOTE to any other techniques is that the minority class is

over-sampled by creating a synthetic sample rather than over-sampling with replacement

[20,36].

Multivariate regression with LASSO. Features selected from LASSO was using for train-

ing multivariate regression. Here, LASSO was used as both a regularization and variable selec-

tion methods for any statistical models [20,37]. LASSO was used to penalize the negative log of

the partial likelihood in multivariate cox regression [37]. The algorithm employs a cyclical

coordinate descent, which sequentially optimizes the objective function over a parameter with

others kept fixed, and cycles repeatedly until convergence [20,37].

Random forest. The RF method is designed to make use of an ensemble method consist-

ing of many decision trees [20,38]. The concept behind RF is that each decision tree is formed

by choosing the sample from the original dataset with the bootstrap method and selecting the

random number of all variables in every decision node. The RF strategy consists of the follow-

ing steps: i.) n features are randomly selected from a total of m features, ii.) the node d the used

to best split point is calculated using the n features, iii.) it checks whether the number of final

nodes reaches the target number, and iv.) by repeating step i to iii for n times, a forest is then

built [20,38].

Support vector machine. SVM is a supervised learning algorithm was incorporated based

on a statistical learning theory [39]. It works by aiming to find the hyper-plane, which sepa-

rates classes from each other, and which is the most distant from both classes. The result is a

linearly separable dataset made by using a kernel function [20,39]. Also, a non-linear separa-

tion can be made, and the data can be separated in the high dimensions [39] which sometimes

resulted to over-fitting in the input space. Overfitting is controlled through the principle of

structural risk minimization [20,39].

Feature selection methods. The objective of feature selection is to improve the prediction

performance of the predictors, understand the underlying process that generated the data and

Fig 2. Overall workflow for the analysis in LACC datasets.

https://doi.org/10.1371/journal.pone.0253653.g002
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in most of the cases to provide faster and more cost-effective predictors. Given a training data

set consisting of N instances, P predictor variables/features Xi (i = 1,. . ., P) and the class Y in

{1, 2,. . ., C}, the objective of feature selection is to select a compact variable/feature subset

without loss of predictive information about Y. Feature selection were embedded in both RF

and SVM as a part of the model training process and hyper parameters optimization. It is in

this manner typically specific to a given learning algorithm, i.e., the feature subset selection

can be considered as a search in the combined space of feature subsets and hypotheses [20,40].

Regarding RF, a single decision partitions the input space into a set of disjoint regions, and

assigns a response to each corresponding region [20,40]. In the event of SVM, a similar proce-

dure was thought of in spite of the fact that, rather than the measure of variable importance as

in RF, features are ranked based on the best fine cost of the models and are ranked according

to the values of leave-one-out error (LOO−i), i.e., the feature i with the highest value of LOO−i
is ranked first [20,41].

Final model construction and evaluation. Multiple regression with LASSO, RF and

SVM models were fitted independently with the selected optimal features subset and parame-

ters to exploit the feature selection and parameter tuning results.

For classification problem, the discrimination evaluation of the optimal solution during the

training can be defined on different performance matrix. Sensitivity, Specificity and accuracy

results are provided in the S1–S3 Figs. We have decided to focus on three metrics, area under

the ROC curves (AUC), balanced accuracy (BAcc) and Matthew’s correlation coefficient

(MCC, worst value = -1; best value = +1) [20,42] to compare the results obtained without and

with the different ComBat versions. ROC-AUC measure the optimal learning model under-

neath the ROC curve which AUC values reflects the overall ranking performance of a classifier

based on thresholding settings. BAcc (calculated as the average of sensitivity and specificity) is

a more appropriate metric in the presence of data imbalance than the conventional accuracy.

Lastly, MCC is a contingency matric method calculating the Pearson product-moment corre-

lation coefficient between the actual and predicted and is a good metric to measure the quality

of the binary classification.

Results

Initial analysis

The COV measurements (Table 1) show that in the testing sets of the experiment, the TL data

exhibit similar variability in all ComBat-harmonized versions (slightly lower/higher in Com-

Bat and B-ComBat, slightly higher/lower in M-ComBat and BM-ComBat) as the one observed

in harmonization carried out using all the data.

According to ANOVA, 97% and 98% (in Orig and TL, respectively) of untransformed

radiomic features were significantly (at p<0.01 level) different between labels. After harmoni-

zation, all of the four ComBat versions (in both Orig and TL) completely eliminated significant

label related differences across the different cohorts in both datasets, i.e., none of the radiomic

features remained significantly (at p<0.01 level) different between labels.

Table 2 confirms that any ComBat versions and the untransformed data have a significant

difference in data distribution. However, for both experiments 1 and 2, the four ComBat ver-

sions in the Original and TL, respectively have similar data distributions.

Scatterplots of the top two principal components of PCA (Figs 3 and 4, representing

~54% and ~53% of the information in Orig and TL, respectively) confirm visually the ability

of all four ComBat versions in removing the differences in radiomic features between labels

while shifting the data to different locations. In the case of TL scenario, it shows that the
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method is rather effective in eliminating confounding effects brought by aforementioned

variabilities.

Predictive modelling using machine learning approaches

Table 3 provides results for the 3 performance evaluation metrics in the testing sets, for consid-

ering the use of the different ML algorithms in combination with the two different testing data-

sets, using the 4 versions of ComBat. The same results (including training sets and additional

evaluation metrics) are provided in S1–S3 Figs.

The experiment involves stratified random sampling used to split the data from the 3 cen-

ters into training and testing sets. In both sets, patients from the 3 centers are thus present. For

the purpose of evaluating the TL ComBat harmonization, all patients from the testing set are

not used in the initial harmonization. The results indicated in Table 3 show that all machine

learning approaches led to models with good predictive performance (AUC 0.84–0.95, BAcc

81–93% and MCC 0.64–0.86), in the gold standard reference. All ComBat harmonized sets of

features allowed for better models than using the untransformed data. In the TL scenario, the

new patients (a set containing patients from all 3 centers) could be harmonized efficiently

based on the learning of the harmonization transform, as the performance of the resulting

model is very similar to the one of the models obtained using all the available data: between

-0.06 to +0.02 in AUC, -2 to +4% in BAcc and -0.06 to +0.06 in MCC. Consistent with the gold

reference, the absolute increase in performance between the use of the original, untransformed

features and the harmonized ones utilizing the TL approach changed slightly depending on

the ML algorithms utilized and between the patient populations considered. Table 4 confirms

a statistically significant improvement for the three ML classification methods after harmoni-

zation compared to the use of untransformed features (in both Original and TL, respectively).

Moreover, Table 4 also shows the lack of significant difference between the performance of

ML models in original vs. TL.

Table 1. COV computed on the Orig and TL data in four ComBat versions.

Data COV

Original TL

Untransformed 2833 2833

ComBat 1313 1159

B-ComBat 1290 1082

M-ComBat 1204 1309

BM-ComBat 1189 1210

Original = original harmonized data (gold standard reference), TL = harmonized data by the proposed transfer

learning method.

https://doi.org/10.1371/journal.pone.0253653.t001

Table 2. P-values of Kolmogorov-Smirnov comparing different 4 ComBat versions using Original and TL data.

Kolmogorov-Smirnov

Untransfomed vs. any ComBat Original vs. Transfer Learning

ComBat B-ComBat M-ComBat BM-ComBat

<0.0001 0.753 0.921 0.977 0.992

https://doi.org/10.1371/journal.pone.0253653.t002
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Fig 3. PCA and summary distribution in Experiment 1 in MRI. Scatter plots of top 2 principal components of the

radiomic features across the three labels (centers) using data transformed with the 4 versions of ComBat (using R

(3.5.1) and R Studio (1.1.456,R Studios Inc., Boston,MA) https://cran.r-project.org/).

https://doi.org/10.1371/journal.pone.0253653.g003
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Fig 4. PCA and summary distribution in Experiment 1 in FDG PET. Scatter plots of top 2 principal components of
the radiomic features across the three labels (centers) using data transformed with the 4 versions of ComBat (using R
(3.5.1) and R Studio (1.1.456,R Studios Inc., Boston,MA) https://cran.r-project.org/).

https://doi.org/10.1371/journal.pone.0253653.g004
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Discussion

Variations of scanner models, reconstruction algorithms and acquisition protocols are fre-

quently unavoidable in multicenter studies, just as in retrospective studies with a long enlist-

ment duration (e.g., when the scanner is replaced by one more model at some point). In such a

context, there is a clear need for harmonization in order to allow for efficient models to be

trained and validated. There are two main approaches to address this issue: (i). harmonizing

images (i.e., before extracting features) and (ii). harmonizing features (i.e., posteriori, after

their extraction). The first method tackles the issue in the image domain and early developed

approaches considered standardization of acquisition protocols and reconstruction settings,

relying on guidelines already available, e.g., for PET/CT imaging [43,44]. However, it has been

shown recently that although such an approach can help towards reducing multicentre effects,

it may still be insufficient to fully compensate them [43,45]. Techniques based on deep learn-

ing (convolutional neural networks, CNN or generative adversarial networks, GAN and their

variants) have also been considered in order to standardize or harmonize medical images

[44,46–48], including with an evaluation of the impact on resulting radiomic features, in the

context of lung lesions in CT images [46]. Another paper [49] showed in a proposed workflow

evaluating harmonization techniques using synthetic and real data comparing ComBat and

cycleGaN that both methods perform well for removing various types of noises while preserv-

ing manually added synthesis lesions, but also for removing site effects on data coming from 2

Table 3. Performance metrics evaluation of predictive models in testing sets using the three ML pipelines.

ML Data AUC [0,1] BAcc (%) MCC [-1,+1]

Original TL Original TL Original TL

MR Untransformed 0.80 0.80 79 79 0.48 0.48

ComBat 0.86 0.86 84 83 0.64 0.58

B-ComBat 0.89 0.89 87 88 0.76 0.71

M-ComBat 0.89 0.83 83 87 0.71 0.73

BM-ComBat 0.90 0.91 85 88 0.73 0.78

RF Untransformed 0.84 0.84 82 82 0.67 0.67

ComBat 0.91 0.90 87 86 0.73 0.70

B-ComBat 0.93 0.94 91 92 0.82 0.86

M-ComBat 0.90 0.92 88 88 0.81 0.83

BM-ComBat 0.93 0.95 93 94 0.86 0.90

SVM Untransformed 0.79 0.79 77 77 0.61 0.61

ComBat 0.85 0.83 81 80 0.66 0.65

B-ComBat 0.88 0.88 83 84 0.73 0.75

M-ComBat 0.90 0.89 83 81 0.70 0.76

BM-ComBat 0.91 0.93 85 86 0.73 0.79

Original = original harmonized data (gold standard reference), TL = harmonized data by the proposed transfer learning method.

https://doi.org/10.1371/journal.pone.0253653.t003

Table 4. P-values of Welch’s t-test comparing ML algorithms performances on different 4 ComBat versions using original and TL data.

ML Untransfomed vs. any ComBat Original vs. Transfer learning

ComBat B-ComBat M-ComBat BM-ComBat

MR <0.0001 0.15 0.13 0.16 0.15

RF <0.0001 0.14 0.12 0.15 0.13

SVM <0.0001 0.13 0.12 0.15 0.13

https://doi.org/10.1371/journal.pone.0253653.t004

PLOS ONE A transfer learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0253653 July 1, 2021 13 / 19

https://doi.org/10.1371/journal.pone.0253653.t003
https://doi.org/10.1371/journal.pone.0253653.t004
https://doi.org/10.1371/journal.pone.0253653


different sites while preserving biological information. These techniques are promising but do

not appear mature enough yet to enable a full comparison with the harmonization in the fea-

ture’s domain. Thus, as our team is currently developing such methods [50], we will defini-

tively carry out such comparisons in future studies.

The other approach addresses the issue in the feature domain. This can be done either i) by

selecting features before the statistical analysis based on their robustness, in order to eliminate

features too sensitive to multicentre variability, or ii) by retaining all features together with

their harmonizing their statistical properties so they can be grouped throughout the modeling

step [20]. Numerous statistical methods exist to perform such normalization or batch-effect

correction [20,26]. ComBat recently outperformed 6 other methods for batch effect removal

using microarray datasets from brain RNA samples and two simulated datasets [25]. Although

an extensive comparison of ComBat with other methods remains to be carried out explicitly in

the context of radiomics, it has already been identified as a promising technique and is being

increasingly and successfully used in recent radiomics studies [15,20,22,24,32,51–56]. It how-

ever has some limitations regarding its use in practice and we previously addressed two of

these with the proposed BM-ComBat to allow for more flexibility in choosing a reference label

and improving the estimation [44]. As expected and similarly to previous findings [44], in the

experiment, all versions of ComBat were able to remove the differences amongst radiomic fea-

tures and improve the predictive performance of the models, and the best results were consis-

tently obtained with B(M)-ComBat over the standard ComBat, whether in the context of

Original or TL scenarios.

The magnitude of differences between the performance of models trained and evaluated

either in the original or the TL scenario is similar to the differences observed in a given sce-

nario between different ML approaches. This absolute difference in performance amongst the

ML algorithms can be attributed in part to i) the different feature selection techniques [41] and

ii) the way the classifiers combine selected features. Previous studies have also highlighted the

variability of resulting performance of radiomic models depending on either classifier or fea-

ture selection algorithms [20,57,58].

We proposed and evaluated a transfer learning modification to the well-known ComBat

methodology for eliminating center-effects that allowed transferring the previously learned

harmonization transform to the radiomic features based signatures values of new patients

from a known center. Principal components analysis, analysis of variance, and statistical tests

have shown the feasibility of this proposed harmonization approach, in the sense that the effi-

ciency of the harmonization and the resulting performance of trained models in testing dataset

is similar with the proposed TL approach, compared to the reference gold standard using all

available data for the harmonization. These demonstrated that the proposed TL technique

leads to efficient estimation with similar resulting predictive ability of models. This important

point was demonstrated across 3 different ML algorithms, all performance metrics and for

both experiments. More specifically, the experiment showed that the TL approach was effective

in applying the previously determined harmonized transform to the radiomic features values

of new patients from a known center resulting in a consistent improvement in the predictive

performance of the developed models. Although the proposed TL technique provided a consis-

tent comparable predictive performance of the developed models in different ML algorithms,

we acknowledge the limitations associated with relatively small improvements in combination

with a single dataset with limited heterogeneity in the imaging factors. We also performed a

single split of the data and did not investigate different combinations of training/testing with

the 3 available centers, due to the time-consuming building of numerous models for evalua-

tion. Future work could consider different splits and combination of centers. The proposed

method will thus require validation in larger and more diverse cohorts (more centers, more
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scanners and sources of variability). Our future work will thus consider the use of a small set of

patients from the entirely new center as examples to learn from, in order to improve the per-

formance of the proposed TL approach in this context. In addition, our proposed approach

does not alleviate one of its inherent limitations: (i) ComBat only works properly when avail-

able and labelled data is available in order to perform the estimate and batch correction, (ii) in

order to apply the developed/validated model (i.e., a combination of harmonized radiomic fea-

tures with an associated threshold value) to a new patient from another center not previously

included, there is currently no direct method to apply the previously determined harmoniza-

tion transform to the radiomic features values of this new patient in order to determine his/her

prediction.

Finally, as in our previous work, we have considered working with the entire set of radiomic

features irrespectively of their robustness (i.e., without first selecting features based on their

resilience to changes in reconstruction or acquisition settings). Identifying radiomic features

robust to changes in acquisition and reconstruction settings prior to feeding them to the

machine learning pipeline is also a different approach. Such a feature selection procedure can

help building more robust models, potentially without the need for harmonization, since only

features insensitive (or at least, less sensitive) to multicenter variability are therefore exploited.

This approach however may suffer from a potential loss of information, as features identified

as unreliable are usually discarded before being evaluated and the most robust/reproducible

features might not necessarily be the most clinically-relevant to the task at hand. Furthermore,

the size of the radiomic features set would depend on the chosen threshold of what is consid-

ered robust enough. We will compare such an approach with ComBat harmonization in our

future works.

None of the models predicting local failure selected shape features and they relied only on

intensity and textural ones (whether considering the untransformed or the harmonized fea-

tures), which indicates that at least in that application, the shape and size of the tumor in PET

and MRI is not informative, as already observed in our initial studies in that cohort [32,59].

Shape features can be expected to be less impacted by the center effect, compared to intensity

and textural features, especially since the delineation was the same for all images. However,

they might still be sensitive to factors such as spatial resolution (more or less blur at the edges

of the tumors will drive more or less complex shapes and surfaces) and voxel sampling (larger

voxels will lead to less detailed delineations and “simpler” shapes and surfaces). Indeed, distri-

butions of most shape features were found to be statistically different between the 3 MRI or the

4 PET batches, although the statistics was lower than for intensity and textural features.

Finally, it could also be interesting to investigate the feasibility to apply this transfer learning

approach in a different implementation framework such as distributed learning [60,61].

Conclusion

The transfer learning technique implemented within ComBat allowed applying the previously

determined harmonization transform to the radiomic features values of new patients from a

known center with a slightly stronger decrease in performance. Our approach alleviates one of

the most important limitations of ComBat for harmonization of radiomic features in a multi-

centre context when new, previously unseen data are to be analyzed.
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