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Brain myeloid cells, include infiltrating macrophages and resident microglia, play an
essential role in responding to and inducing neurodegenerative diseases, such as
Alzheimer’s disease (AD). Genome-wide association studies (GWAS) implicate many
AD casual and risk genes enriched in brain myeloid cells. Coordinated arginine
metabolism through arginase 1 (Arg1) is critical for brain myeloid cells to perform
biological functions, whereas dysregulated arginine metabolism disrupts them. Altered
arginine metabolism is proposed as a new biomarker pathway for AD. We previously
reported Arg1 deficiency in myeloid biased cells using lysozymeM (LysM) promoter-driven
deletion worsened amyloidosis-related neuropathology and behavioral impairment.
However, it remains unclear how Arg1 deficiency in these cells impacts the whole brain
to promote amyloidosis. Herein, we aim to determine how Arg1 deficiency driven by LysM
restriction during amyloidosis affects fundamental neurodegenerative pathways at the
transcriptome level. By applying several bioinformatic tools and analyses, we found that
amyloid-b (Ab) stimulated transcriptomic signatures in autophagy-related pathways and
myeloid cells’ inflammatory response. At the same time, myeloid Arg1 deficiency during
amyloidosis promoted gene signatures of lipid metabolism, myelination, and migration of
myeloid cells. Focusing on Ab associated glial transcriptomic signatures, we found
org May 2021 | Volume 12 | Article 6281561
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myeloid Arg1 deficiency up-regulated glial gene transcripts that positively correlated with
Ab plaque burden. We also observed that Ab preferentially activated disease-associated
microglial signatures to increase phagocytic response, whereas myeloid Arg1 deficiency
selectively promoted homeostatic microglial signature that is non-phagocytic. These
transcriptomic findings suggest a critical role for proper Arg1 function during normal
and pathological challenges associated with amyloidosis. Furthermore, understanding
pathways that govern Arg1 metabolism may provide new therapeutic opportunities to
rebalance immune function and improve microglia/macrophage fitness.
Keywords: arginine metabolism, APP Tg2576, amyloidosis, neurodegeneration, neuroinflammation, infiltrating
macrophage, microglia, nCounter technology
INTRODUCTION

Dysregulation of arginine metabolism has been recognized to
impact neuropathology and neuroinflammation in Alzheimer’s
disease (AD). Proper regulation of arginine metabolism through
its different catabolizing enzymes (ARG1, ARG2, NOS1, NOS2,
NOS3, ADC, AGAT1, ATE1) (1, 2) and protein sensors (GPRC6A,
SLC38A9, CASTOR1, CASTOR2, TM4SF5) (3–6) remains critical
for cellular responses to pathogenic stimuli, especially in myeloid
cells. Recent metabolomics research in AD uncovered promising
biomarker signatures associated with the deregulation of arginine-
related pathways and polyamines in the blood and cerebral spinal
fluid (CSF) (7–10). The altered metabolism of arginine and
arginase expression was confirmed in AD postmortem brains
(11–16). Human ARG1 has 43 mutations linked to ARG1
deficiency disorder, and a rare ARG2 variant was associated with
a higher risk of AD (16, 17). Increased arginine and alteredArg1 in
the brain of animal models of aging and AD were also reported,
signifying a pivotal role for proper arginine metabolism in
neurodegeneration (15, 18–21).

It has been reported that Arg1 is primarily expressed in brain-
infiltrating macrophages over microglia after central nervous
system (CNS) injury and ischemia, and brain infiltrating
macrophages relied on Arg1 expression to exhibit a reparative
role to ameliorate damages (22–26). Most recently, as a marker,
ARG1 distinguished human brain resident microglia from
peripheral blood mononuclear cells (PBMCs) and cerebrospinal
fluid mononuclear cells (CSF cells). The potential infiltrating CSF
cells expressed the highest level of ARG1 among all three (27).
The discrepancy of Arg1 expression between brain infiltrating
macrophages and resident microglia complicates its role in
myeloid cell subtypes and makes the entire brain myeloid cells
(microglia/macrophages) a promising target for research and
therapeutics (28–32). Albeit less studied in neurodegeneration,
Arg1 activity is essential for controlling the inflammatory
response of brain myeloid cells to an extracellular stimulus like
amyloid-b (Ab). In animal models of AD, our group and several
others have demonstrated that peripheral myeloid cells like
monocytes could infiltrate into the brain as local tissue
macrophages to clear Ab deposits together with activated brain
alysis; GSA, Gene Set Analysis; CPA,

org 2
resident microglia (33–36). We showed that Arg1 overexpression
in the CNS decreased the inflammatory response and ameliorated
tau pathology (37). Another group showed that Arg1 positive
microglia reduced Ab plaque burden under an IL-1b dependent
inflammatory condition (38). Besides, myeloid-specific knockout
of Arg1 in a retinal injury mouse model worsened neuronal loss
and increased inflammatory responses (26).

Previously we sought to investigate the impact of reduced
myeloid Arg1 in the APP Tg2576 mouse model of amyloidosis
(39). We found that Arg1 insufficiency in lysozyme M (LysM)
restricted cells produced more Ab deposition, increased activated
microglia, and impaired behavioral performance. Moreover,
amyloidosis induced machinery of the Ragulator-Rag complex
responsible for phagocytosis. However, Arg1 deficiency blunted
this response, suggesting a crucial role of arginine metabolism at
the lysosome. While there is considerable evidence supporting
that myeloid Arg1 deficiency during amyloidosis exacerbates AD-
typical neuropathology and behavioral impairments, the
underlying mechanisms have yet to be fully clarified. We
performed bulk RNA transcriptome analysis to determine the
transcriptional pathway changes following myeloid Arg1
haploinsufficiency during amyloidosis. We utilized the gene
expression profiling with the nCounter® mouse neuropathology
panel (NanoString Technologies, Inc.) to analyze the top changed
Ab associated neurodegenerative pathways and glial signatures.
In the current study, our data suggest that insufficient myeloid
Arg1 expression during amyloidosis activates transcriptomic
pathways in myelination, lipid metabolism, and glial gene
signatures that are primarily homeostatic and non-phagocytic.
These data provide a more comprehensive transcriptional
landscape of myeloid Arg1 insufficiency during amyloidosis,
which could offer new therapeutic targets that improve myeloid
function to mitigate amyloid deposition.
MATERIALS AND METHODS

Animal Breeding and Tissue Harvesting
The APP Tg2576 mice overexpressing human APP KM670/
671NL Swedish mutation (40) and the non-transgenic
littermates were bred at USF Health Byrd Alzheimer’s Institute
at the University of South Florida. The Cre-recombinase mice
May 2021 | Volume 12 | Article 628156
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(B6.129P2-Lyz2tm1(cre)/fo/J; LysMcre promoter, Stock No: 004781)
and arginase 1 mice (C57BL/6-Arg1tm1Pmu/J (Arg1fl), Stock No:
008817) were purchased from the Jackson Laboratory. The APP
Tg2576 mice (APP+/-), Arg1 floxed mice (Arg1fl/fl), and
LysMcreTg/+ were bred as previously described (41). Thus we
established four groups of mice: nTg/Arg1+/+/LysMcreTg/+, nTg/
Arg1fl/+/LysMcreTg/+, APP+/-/Arg1+/+/LysMcreTg/+ and APP+/-/
Arg1fl/+/LysMcreTg/+. All mice were subjected to behavioral
tests at the age of 15 months, followed by euthanasia and
perfusion at 16-month-old age. Immediately after perfusion, one
hemisphere of the brain was placed into 4% paraformaldehyde for
fixation, and the other hemisphere was dissected into different
brain regions and stored at -80°C. For dissection, the cerebral
cortex was peeled off the brain’s surface, taking care not to include
the hippocampus, striatum, or other underlying structures. The
posterior cortex, including entorhinal, temporal, parietal, and
occipital areas, was collected for analysis (39).

RNA Preparation for nCounter® Gene
Expression Analysis
Total RNA of the posterior cortex was extracted using AllPrep
DNA/RNA/Protein Mini Kit (QIAGEN, #80004) according to
the manufacturer’s protocol. The posterior cortex was selected
because entorhinal to hippocampal connections are critical to
memory formation and are affected early in both AD and the
Tg2576 mouse model (42). This area develops a high amyloid
burden in these mice, as reported before (39). All RNA samples
passed QC with high RNA Integrity Number (RIN) measured
using TapeStation RNA Screen Tape® (Agilent Technologies,
Inc., Molecular Genomics Core, Moffitt Cancer Center, Tampa,
FL, US). For NanoString nCounter® analysis, we pooled an equal
mass of RNA from two mice matched for genotype, gender, and
age, so one pooled RNA sample represents two mice. Thus we
created the following four groups of RNA samples: nTg/
Arg1+/+/LysMcreTg/+ (4 males/2 females, average RIN = 8.4),
nTg/Arg1fl/+/LysMcreTg/+ (2 males/4 females, average RIN = 8.8),
APP+/-/Arg1+/+/LysMcreTg/+ (4 males/2 females, average RIN =
8.7), and APP+/-/Arg1fl/+/LysMcreTg/+ (4 males/2 females, average
RIN = 8.7). Each group contained three samples representing six
mice. The nCounter® mouse neuropathology panel (v1.0, XT-
CSO-MNROP1-12, 12 Reactions, NanoString Technologies,
Inc.) was purchased for analyzing 12 mouse brain samples.
The panel plate loaded with RNA samples was analyzed by the
nCounter® Analysis System (nCounter® SPRINT Profiler at the
Molecular Genomics Core, Moffitt Cancer Center, Tampa, FL, US)
according to the manufacturer’s procedures for hybridization,
detection, and scanning.

Bioinformatic Analyses
The nSolver Analysis
The NanoString nCounter data analysis was performed using the
nSolver™ Analysis Software (v4.0, NanoString Technologies, Inc.)
according to the user manuals (43, 44). The nSolver was used for
analyzing the mouse neuropathology panel by loading with an RLF
file (NS_Mm_NeuroPath_v1.0). We performed the basic features of
the nSolver analysis to generate the heat maps of differentially
expressed gene transcripts (DEGs) with agglomerative clustering
Frontiers in Immunology | www.frontiersin.org 3
based on the normalized data. We also used it to export all
normalized data. We also performed the advanced nSolver
analysis based on the downloaded and installed online R package
(nCounter_Advanced_Analysis_2.0.134) and the probe annotation
file provided by NanoString (NS_Mm_NeuroPath_v1.0_
ProbeAnnotations). We modified this probe annotation file as the
following description. First, we annotated two autophagy genes
(Atg5, Becn1) to the autophagy pathway. Second, we referred to the
so far most comprehensive GWAS publications in AD and
annotated 15 gene transcripts into a new pathway named “AD
Causal Risk Pathway” (Cntnap2, Cd33, Psen2, Mapt, Psmb9, App,
Psen1, Apoe, Trem2, Adam10, Psmb8, Spi1, Sorl1, Clu, C4a) (45–49).
All RNA samples passed system QC parameters on imaging (fields
of view > 75), binding density (0.1-2.25), and positive control
linearity (R2 > 0.95). All RNA data passed the positive control
limit of detection QC (0.5fM > 2*standard deviations above the
arithmetic mean of the negative controls). The following basic
threshold criteria were applied. A threshold count value of 10 was
calculated as the gene transcript expression background (arithmetic
mean of negative controls + 2*standard deviation). An observation
frequency of 0.5 was applied for the background, indicating gene
transcripts with counts lower than 10 were omitted if it happened to
more than 50% of the samples. Therefore, 648 genes were above the
background, and 122 genes were removed for falling below the
background too frequently. A total of 6 house-keeping genes (Aars,
Ccdc127, Cnot10, Csnk2a2, Lars, Mto1) were selected for data
normalization by the geNorm algorithm (50). The p-values were
adjusted for multiple testing by the false discovery rate (FDR)
method of Benjamini and Hochberg correction (51). The matrix
remodeling pathway was dropped from pathway scoring analysis
due to less than five detected gene transcripts. In gene set analysis, a
directed global significance score at ±1.3 was set as the cut-off value
to reflect the top changed pathways further. Pathway scoring
analysis and gene set analysis could independently assess a
transcriptomic pathway’s change due to different algorithms.

Selection of Genes for nSolver Cell-type
Profiling Analysis
In cell-type profiling analysis, we performed advanced nSolver
analysis to select cell-type-specific marker gene transcripts to
characterize the major central nervous system cells (see
Figure 4A). We identified astrocytes (52–54), endothelial cells
(53), microglia/macrophages (53–55), neurotransmitter-secreting
neurons (53), oligodendrocytes (53), and mature neurons (53, 54).
To clarify, the cell type scores can only be interpreted as relative
cell abundance values rather than quantitative cell abundance in a
group. Due to the counting and capturing efficiencies of individual
cell-type-specific gene transcripts, one cell type score can be
compared to the same cell type among different groups, but it
cannot compare different cell types within the same group.

Selection of Focus Genes Indicative of Amyloid-b
Associated Glial Transcriptomic Signatures for
nSolver Analyses
Data from published transcriptomic studies using mouse models
of amyloidosis were consulted to identify seven amyloid-b
associated glial transcriptomic signatures. We cross-referenced
May 2021 | Volume 12 | Article 628156
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these signature top prioritized genes with the NanoString mouse
neuropathology panel (Figure 5A). We selected 17 out of 57 gene
transcripts that overlap with Plaque Induced Genes (PIGs;
purple WGCNA module genes in reference Table S3) and 30
out of 165 that overlap with Plaque Correlated Oligodendrocyte
Genes (OLIGs; red WGCNA module genes in reference
Table S3) (56). We selected 15 out of the top 117 that overlap
with Disease-associated Microglia (DAM; sorted by p-values,
-log10 (p-value) ≥ 21, up-regulated genes of “MG3/MG1” in
reference Table S2 and Figure 6) and 9 out of total 36 that overlap
with Homeostatic Microglia (HM; sorted by p-values, -log10 (p-
value) ≥ 7, down-regulated genes of “MG3/MG1” in reference
Table S1 and Figure 6) (57). We selected 20 out of total 114 that
overlap with Microglial Neurodegenerative Phenotype (MGnD;
sorted by fold-change, log2 (FC) ≥ 0.01, up-regulated genes of
“APP-PS1 10mo/WT 10mo” in reference Table S1) and 25 out of
top 169 that overlap with Tolerogenic Microglia (M0; sorted by
fold-change, log2 (FC) ≤ -0.43, down-regulated genes of “APP-
PS1 10mo/WT 10mo” in reference Table S1) (58). We selected 15
out of the top 121 that overlap with Disease-associated
Astrocytes (DAA; sorted by p-values, -log10 (p-value) ≥ 21,
up-regulated genes of “Cluster 4/Cluster 1” in reference
Table S2) (59).

IPA Analysis
Ingenuity® Pathway Analysis (IPA®, 2000-2020, QIAGEN) was
applied for functional enrichment analysis and causal analysis using
the differentially expressed gene transcripts (DEGs, p < 0.05), as
previously described (60, 61). IPA core analysis was performed to
determine the top canonical pathways, predict upstream regulators,
diseases/disorders, and biological functions based on two statistical
measures (p-value and z-score). The p-value calculated the statistical
significance of the overlap between the current dataset and the
publicly available databases by a Fisher’s exact test. The z-score
implicates how likely the predicted state is activated/increased
(z ≥ 2) or inhibited/decreased (z ≤ -2) based on a comparison
model. The p-values less than 0.05 were enforced for all analyses in
IPA. For analysis in canonical pathways, pathways were sorted
based on p-values, and the top five most significant pathways were
listed. For upstream analysis, upstream regulators were sorted by
z-score to focus on predicted activation (z ≥ 2) or inhibition (z ≤ -2).
A gene interaction network was plotted, including the predicted
upstream regulators and associated target gene transcripts. IPA
regulator effect analysis suggested potential mechanisms. Diseases
or functions were sorted by z-score to show predicted increased
(z ≥ 2) or decreased (z ≤ -2) risk. To reduce data redundancy,
overlapped items (pathways/diseases/functions) were removed if
they shared the same target gene transcripts and linked to
unrelated peripheral organs/cancer/tumors.

STRING Analysis
STRING (Version 11.0), part of the ELIXIRCoreDataResources, is
known for its predicted protein-protein interactions but also
analyzes mRNA gene transcript in the current version (62).
STRING was applied for network analysis and functional
enrichment analysis using differentially expressed gene transcripts
(DEGs, p < 0.05) with log2 fold change (FC) values. The Normal
Frontiers in Immunology | www.frontiersin.org 4
Gene Set Analysis was performed in STRING based on the mouse
organism (Mus musculus, NCBI taxonomy Id: 10090). In our
STRING network, nodes represent gene transcripts, and edges
represent the expressed protein-protein association. The halo
color of the nodes was based on the rank of DEG log2 FC. For
settingSTRINGanalysis, thenetworkof edgeswas built onevidence
by interaction lines (textmining, experiments, databases, co
−expression) with medium confidence (0.4). Disconnected nodes
were hidden in the network. STRINGnetworkwith protein-protein
interaction (PPI) enrichment p-value less than 0.05 indicates
statistical significance, suggesting the expressed genes were
biologically connected as a group. Functional enrichment analysis
by Reactome Pathways was sorted based on an FDR q-value less
than 0.01 and a minimum observed gene count of 5.

Statistical Analysis
All statistical analyses were performed by SPSS (version 25.0, IBM
Corp., Armonk, NY, USA). GraphPad Prism (version 8.4.3,
GraphPad Software, San Diego, CA, USA) was used for generating
graphs. In all cases, two-way ANOVA (2*2 factorial) was chosen to
measure any main genotype effect in APP transgene (APP+/-/
LysMcreTg/+ vs. nTg/LysMcreTg/+) or Arg1 haploinsufficiency
(Arg1fl/+/LysMcreTg/+ vs. Arg1+/+/LysMcreTg/+), and the interaction
of the two genotypes. Two-wayANOVAwas followed by a pair-wise
comparison test using Fisher’s PLSD to investigate further the two
focused comparisons (APP+/-/Arg1+/+/LysMcreTg/+ vs.
nTg/Arg1+/+/LysMcreTg/+; APP+/-/Arg1fl/+/LysMcreTg/+ vs.
APP+/-/Arg1+/+/LysMcreTg/+).
RESULTS

Experimental Design and Workflow of
Gene Expression Profiling of Mouse Brains
With APP Transgene and Arg1
Haploinsufficiency
To investigate the gene expression of arginase 1 in CNS cell
types, we performed data-mining on 35 publicly available RNA
sequencing (RNA-seq) studies using purified cell types from
human and mouse brains (55, 63). We found ARG1 gene
transcript was particularly up-regulated in microglia/
macrophages (log2 FC = 3.228, adjusted p = 0.0006) but not in
other CNS cell types in normal adult human brains (GSE73721)
(Figure 1A) (64). We also found Arg1 gene transcript was only
up-regulated in microglia/macrophages (CD11b+, log2 FC =
2.777, adjusted p = 0.0067) in response to LPS stimulation in
normal adult mouse brains, but not in astrocytes and neurons
(GSE75246) (Figure 1B) (65). Thus, we uncovered the arginase 1
transcript in these two RNA-seq datasets and found arginase 1 was
mainly enriched and active in brain microglia/macrophages,
aligning with our previous findings (39, 66–68). Therefore, we
sought to repressArg1 in myeloid cells to assess the impact ofArg1
deficiency in the mouse brain during the amyloidosis challenge.

To target myeloid cells, we chose to use mice with the
lysozyme M Cre-recombinase (LysMcre) knock-in/knockout
allele, which expresses mainly in myelomonocytic cells of the
myeloid lineage (monocytes, macrophages, microglia, and
May 2021 | Volume 12 | Article 628156
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granulocytes) (69–72). We presented a schematic design on cross-
breeding mice of Arg1 LoxP (non-transgenic, nTg/Arg1fl/fl) with
APP Tg2576 mice (APP+/-/Arg1+/+) to produce nTg/Arg1fl/+ and
APP+/-/Arg1fl/+mice, bothofwhichwere further bredwith LysMcre
mice (LysMcreTg/+) to generate four groups of mice for the study
(Figure 1C) (72).

We extracted total RNA from the posterior cortex and pooled
two samples segregated by genotype, gender, and age. Then, we
performed digital RNA profiling using the nCounter® mouse
neuropathology panel with coverage of 770 genes to investigate
the transcriptomic pathway alterations in neurodegenerative
diseases like AD (73–76) and common microglial gene
expression signatures (77, 78). We utilized the nCounter®

analysis system to directly count and quantify the abundance
of RNA molecules with high reproducible results (79, 80). This
unique RNA measuring technique permits a higher sensitivity
Frontiers in Immunology | www.frontiersin.org 5
than traditional real-time quantitative reverse transcription PCR
(qRT-PCR) (81, 82) and microarrays (83, 84) without cDNA
reverse transcription and amplification, while also allowing to
procure data much faster than RNA-seq (85) and single-cell
RNA-seq (scRNA-seq) (86) without cDNA library preparation
(87). Finally, we performed strategic analyses in bioinformatics
and statistics based on the four experimental groups in the order
of nTg/Arg1 sufficient mice (nTg/Arg1+/+/LysMcreTg/+), nTg/Arg1
insufficient mice (nTg/Arg1fl/+/LysMcreTg/+), APP/Arg1 sufficient
mice (APP+/-/Arg1+/+/LysMcreTg/+), and APP/Arg1 insufficient
mice (APP+/-/Arg1fl/+/LysMcreTg/+). Four groups were also
branched into two covariates of genotype: APP transgene
genotype comparing APP mice (APP+/-) to nTg mice (nTg) and
Arg1 haploinsufficiency genotype comparing Arg1 insufficient
mice (Arg1fl/+) to Arg1 sufficient mice (Arg1+/+; Tables S1–S4)
(Figure 1C).
A C

B

FIGURE 1 | Arginase 1 gene expression in central nervous system cell types and the experimental workflow for mouse breeding and gene expression analysis. A
search for RNA sequencing data sets enriched for purified central nervous system cell types from human and mouse brains identified two studies on arginase 1
expression. Datasets were obtained from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO). Gene transcripts were
measured by reads per kilobase per million total reads (log2 RPKM) and presented as violin plots with dots representing samples. The green bars at the top indicate
significant up-regulation (p ≤ 0.05) with the fold change (log2 FC) relative to the control. (A) The human ARG1 gene transcript in purified cell types of normal adult
human brains (GSE73721; Astrocytes, n=12; Endothelial Cells, n=2; Microglia/Macrophages, n=3; Neurons, n=1; Oligodendrocytes, n=5). (B) The Arg1 gene
transcript in purified cell types of normal adult mouse brains injected with LPS (GSE75246; Astrocytes, Microglia/Macrophages, Neurons; Vehicle, n=5; LPS, n=5).
(C) The schematic representation of the experimental workflow. The APP Tg2576 (APP+/-/Arg1+/+) mice were bred with non-transgenic Arg1 LoxP (nTg/Arg1fl/fl) mice
to generate nTg/Arg1fl/+ mice and APP+/-/Arg1fl/+ mice. Both were then bred with LysMcreTg/+ mice to generate a total of four groups for the study. We harvested
mouse brain RNA and performed gene expression profiling using the nCounter® mouse neuropathology panel (770 genes, NanoString Technologies, Inc.).
Bioinformatic analyses were performed to investigate the four groups of mice (nTg/Arg1+/+/LysMcreTg/+, nTg/Arg1fl/+/LysMcreTg/+, APP+/-/Arg1+/+/LysMcreTg/+,
APP+/-/Arg1fl/+/LysMcreTg/+, n=3 samples per group representing 6 mice), which cover two genotypes categorized into the APP transgene genotype (APP+/- vs nTg)
and the Arg1 haploinsufficiency genotype (Arg1fl/+ vs Arg1+/+).
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The heat map of all normalized data displayed mouse
clustering under two genotypes with 648 gene transcripts
measured above the background expression threshold
(Figure S1A). All samples passed QC metrics and were
automatically segregated by the two genotypes (Figure S1A).
Notably, samples were correctly clustered by the APP transgene
genotype. Principal component analysis (PCA) calculated the
first four principal components (PCs) of all data with PC1 (20%),
PC2 (11%), PC3 (10%), and PC4 (9%) plotting to each other
against the four groups (Figure S1B). Accounting for the highest
percentage of genotype variance, the PC1 identified modest but
clear sample separation due to the APP transgene genotype, but
to a lesser extent for the Arg1 haploinsufficiency genotype
(Figure S1B). It suggests that the overexpression of human
APP transgene dominates the overall differential expression of
genes, whereas the myeloid Arg1 haploinsufficiency becomes a
secondary influencing factor.

Pathway Scoring Analysis of Fundamental
Neurodegeneration Pathways in Mouse
Brains With APP Transgene and Arg1
Haploinsufficiency
All genes were annotated in 25 gene signature pathways of
neurodegeneration (two disease pathways and 23 functional
pathways) that were categorized into seven fundamental
themes (one disease theme and six functional themes)
(Figure 2A). To analyze each gene signature pathway, pathway
scoring analysis (PSA) was performed to create a score for each
group using the first principal component dataset of the
pathway’s gene set (44, 88). The sum of all four groups
equilibrated to zero value in each pathway, while their scores
indicated up or down-regulation relative to each other.
Collectively, pathway scores were visualized in a heat map to
represent all pathways’ clustering across samples under two
genotypes. We observed clustering of the APP transgene
genotype between APP mice (APP+/-/LysMcreTg/+) and nTg
mice (nTg/LysMcreTg/+), and clear sub-clustering of Arg1
insufficient mice (Arg1fl/+/LysMcreTg/+) and Arg1 sufficient
mice (Arg1+/+/LysMcreTg/+) except for one sample (Figure 2B).

Then we statistically analyzed the 25 gene signature pathway
scores and described them here. Compared to nTg mice, we
found that APP mice up-regulated eight pathways and down-
regulated one pathway due to the main genotype effect in APP
transgene. The eight up-regulated pathways were AD causal risk
pathway (p < 0.0001, Figure 2C), disease association (p = 0.002,
Figure 2D), neuronal cytoskeleton (p < 0.0001, Figure 2E),
autophagy (p < 0.0001, Figure 2F), activated microglia (p <
0.0001, Figure 2H), cytokines (p = 0.002, Figure 2I),
angiogenesis (p = 0.010, Figure 2J), and myelination (p <
0.0001, Figure 2L). The one down-regulated pathway was
transmitter synthesis and storage (p = 0.021; Figure 2M). On
the other side, we did not find any main genotype effect in Arg1
haploinsufficiency except for an increasing trend in apoptosis
(p = 0.083, Figure 2K). However, we observed increased
myelination (p = 0.023, Figure 2L) and an increasing trend in
lipid metabolism (p = 0.054, Figure 2G) with the pairwise
comparison of APP/Arg1 insufficient mice to APP/Arg1
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sufficient mice. We also found an increased trend for two
genotypes’ interaction in myelination (p = 0.058, Figure 2L)
and lipid metabolism (p = 0.087, Figure 2G). In addition, the
heat map of the correlation matrix of all gene signature pathways
clearly separated pathways of up-regulation and down-
regulation into the opposite direction (Figure S1C). To
summarize, the APP transgene exerted stronger effects on gene
expression than did Arg1 haploinsufficiency, mostly by
increasing transcriptomic pathways associated with the risk of
neurodegeneration diseases (AD causal risk/disease association)
and neuroinflammation (activated microglia/cytokines).

Gene Set Analysis for Measuring
Differential Expression of
Neurodegeneration Pathways in Mouse
Brains With APP Transgene and Arg1
Haploinsufficiency
To assess changes of signature pathways in APP transgene and
Arg1 haploinsufficiency genotypes, we performed gene set
analysis (GSA) to measure the cumulative evidence for the
differential expression of a pathway’s gene set. GSA calculates a
directed global significance score (GSS) for each pathway based
on the square root of the mean (signed) squared t-statistic of the
gene set’s genes (44). Positive or negative GSS values indicate a
pathway is overall up or down-regulated, respectively. We also
adopted a GSS threshold value of ± 1.3 to indicate significance.
The GSA heat map clearly segregated pathways of up-regulation
and down-regulation (Figure 3A).

Comparing APP mice (APP+/-/LysMcreTg/+) to nTgmice (nTg/
LysMcreTg/+), the top eight up-regulated transcriptomic pathways
were AD causal risk pathway (GSS = 2.922), activated microglia
(GSS = 2.665), autophagy (GSS = 2.497), neuronal cytoskeleton
(GSS = 2.442), cytokines (GSS= 2.044), angiogenesis (GSS= 1.806),
myelination (GSS = 1.699), and disease association (GSS = 1.575)
(Figure 3B). Interestingly, these eight pathwayswere also increased
in PSA due to the main genotype effect inAPP transgene (p < 0.05,
Figures 2C–F, H–J, L). However, we did not find changed
pathways that met the cut-off GSS significance values when
comparing Arg1 insufficient mice (Arg1fl/+/LysMcreTg/+) to Arg1
sufficient mice (Arg1+/+/LysMcreTg/+) (Figure 3C). In summary,
two different pathway scoring algorithms (PSAandGSA) identified
the overlapped up-regulated transcriptomic pathways enriched
in neurodegeneration disease association (AD causal risk
pathway/disease association), neuroinflammation (activated
microglia/cytokines), and others (autophagy/neuronal
cytoskeleton/angiogenesis/myelination), caused by the human
APP transgene.

Cell-type Profiling Analysis of Central
Nervous System Reveals APP Transgene
Activates Microglia/Macrophages and
Myeloid Arg1 Deficiency During
Amyloidosis Promotes Oligodendrocytes
We performed a cell-type profiling analysis (CPA) on CNS cells
using their cell-type-specific gene transcripts to explore which
cell types changed across four groups due to the two covariates of
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FIGURE 2 | Pathway scoring analysis of fundamental neurodegeneration pathways. (A) A table of signature pathways and themes of nCounter® mouse
neuropathology panel. A total of 25 fundamental signature pathways are mapped into seven themes covering one disease theme and six functional themes.
(B) A heat map of pathway scoring analysis provides an overview of pathway distribution and clustering across all samples. Score color in orange or blue indicates
up or down-regulation of each pathway in each sample, respectively. All scores are presented on the same scale via a z-transformation. (C, D) Scores for pathways
of AD causal risk pathway (C) and disease association (D) under the theme of neurodegeneration disease association. (E) Score for the pathway of neuronal
cytoskeleton under the theme of compartmentalization & structural integrity. (F, G) Scores for pathways of autophagy (F) and lipid metabolism (G) under the theme
of metabolism. (H, I) Scores for pathways of activated microglia (H) and cytokines (I) under the theme of neuroinflammation. (J, K) Scores for pathways of
angiogenesis (J) and apoptosis (K) under the theme of neuroplasticity, development & aging. (L) Score for the pathway of myelination under the theme of neuron-
glia interaction. (M) Score for the pathway of transmitter synthesis and storage under the theme of neurotransmission. All samples are displayed in violin plots with
the median denoted as a line. Within each pathway, score values from four groups have been centered to a mean of zero. Pathways that show statistically significant
main APP transgene genotype effects are highlighted in red or blue to indicate up or down-regulation, respectively. n=3 samples per group representing 6 mice. The
asterisk sign (*) indicates the main effect of APP transgene genotype and its pair-wise comparisons. The number sign (#) indicates the main effect of the Arg1
haploinsufficiency genotype and its pair-wise comparisons. Interaction of the two genotypes is indicated vertically by the p values. */#p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001. Two-way ANOVA of 2x2 factorial analysis followed by pairwise comparisons using Fisher’s PLSD.
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FIGURE 3 | Gene set analysis for measuring overall pathway differential expression. (A) A heat map of directed global significance scores (GSS) against covariate of
APP transgene genotype (APP+/-/LysMcreTg/+ vs nTg/LysMcreTg/+) and Arg1 haploinsufficiency genotype (Arg1fl/+/LysMcreTg/+ vs Arg1+/+/LysMcreTg/+). All gene sets
are presented on the same scale via a z-transformation. Gene sets that show statistically significant main APP transgene genotype effects from pathway scoring
analysis are highlighted in red or blue to indicate up or down-regulation, respectively. (B) A bar graph of APP transgene genotype ranks all signature pathways with
directed GSS values. (C) A bar graph of Arg1 haploinsufficiency genotype ranks all signature pathways with directed GSS values. The up or down regulated pathway
is indicated by positive or negative GSS values, respectively. The red or blue dashed line highlights the up or down regulated pathways based on the cut-off criterion
(absolute GSS value at 1.3). Also, the statistically significant pathways of main APP transgene genotype effect identified in pathway scoring analysis are additionally
annotated with red or blue asterisk sign (*). *p < 0.05; **p < 0.01; ****p < 0.0001.
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genotype. We first applied a QC p-value to investigate the
validity of measuring each cell type. Statistically significant cell
types (QC p ≤ 0.05) indicate the selected marker gene transcripts
exhibit a significant cell-type-specific correlation than randomly
selected genes with a similar size. This stringent algorithm
requires selecting cell-type-specific genes that are consistently
expressed above background while keeping a correlation
expression slope close to 1 (44, 89). Therefore, we confidently
characterized cell types of astrocytes (QC p < 0.0001), endothelial
cells (QC p < 0.0001), microglia/macrophages (QC p < 0.0001),
neurotransmitter-secreting neurons (QC p = 0.010),
oligodendrocytes (QC p = 0.040), but not the mature neurons
(QC p = 0.060) (Figure 4A). The CPA heat map presented the
clustering of cell types (QC p ≤ 0.05) corresponding to genotypes
of APP transgene and Arg1 haploinsufficiency (Figure 4B). The
CPA line plot showed the relative cell-type transcriptomic
changes in selected marker gene transcripts’ abundance across
groups (Figure 4C).

Furthermore, the average log2 counts of the selected marker
gene transcripts were calculated as the cell type scores. Comparing
APP/Arg1 sufficient mice with nTg/Arg1 sufficient mice, we
observed increased cell type score only in microglia/macrophages
(Fcrls, Itgam, Trem2, Irf8, CD68, Hexb, Cx3cr1; p = 0.001, Figure
4D), but not otherCNS cell types including oligodendrocytes (Mog,
Pllp, Plxnb3, Gsn, Fa2h, Mag; p = 0.351, Figure 4E). Surprisingly,
APP/Arg1 insufficient mice showed increased cell type score over
the nTg/Arg1 insufficient mice in bothmicroglia/macrophages (p =
0.001, Figure 4D) and oligodendrocytes (p = 0.038, Figure 4E).
Therefore, both microglia/macrophages (p < 0.0001, Figure 4D)
andoligodendrocytes (p=0.04,Figure4E) suggestedmaineffects in
APP transgene genotype. Collectively, the CPA data strongly
suggest that APP transgene activates microglia/macrophages, and
myeloid Arg1 deficiency during amyloidosis promotes
oligodendrocytes, by which CNS cell types presumably drive the
regulation of neurodegeneration.
Myeloid Arg1 Deficiency During Amyloidosis
Enhances Amyloid-b Associated Glial
Transcriptomic Signatures Biased for
Promoting Homeostatic Microglial Genes
Recent progress in studying glia (microglia/astrocytes/
oligodendrocytes) using scRNA-seq techniques has established
specific transcriptomic signature identities and pathophysiological
roles in mouse models of neurodegenerative diseases, including AD
(90–92). Therefore, disease-associated microglia (DAM) (57),
microglial neurodegenerative phenotype (MGnD) (58), and
disease-associated astrocytes (DAA) (59) were all considered
disease-associated phagocytic glial cells commonly induced in
responding to Ab plaques. Meanwhile, they suppressed non-
phagocytic glial cells like homeostatic microglia (HM) (57) and
tolerogenic microglia (M0) (58). Most recently, novel signatures
of plaque induced genes (PIGs) and plaque correlated
oligodendrocyte genes (OLIGs) were found positively correlated
with Ab plaque burden (56). The PIGs were mainly expressed by
microglia and astrocytes that closely interacted with Ab plaques,
while oligodendrocytes primarily expressed the OLIGs in
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regulating myelination. Interestingly, the PIGs shares 41% of
genes with DAM/MGnD signatures (Apoe, Trem2, C4a, Cd9,
Grn, Gusb, Npc2), 41% with HM/M0 signatures (C1qa, C1qb,
C1qc, Csf1r, Cx3cr1, Hexb, Fcrls), 12% with DAA signature (Clu,
Gfap), and 6% of others (Man2b1), strongly suggesting Ab
associated glial transcriptomic signatures are a mix of glial genes
covering disease-associated state and homeostatic state
(Figure 5A).

We have shown that brain myeloid cells (microglia/
macrophages) express the highest arginase 1 among CNS cell
types (Figures 1A, B), and they were also activated in APP mice
(Figure 4D). This would suggest that Arg1 deficiency in myeloid
cells may affect their normal immune response and reparative
role upon various stimuli. It is unknown if myeloid Arg1
deficiency impacts the glial signatures during the challenge of
the Ab stimulus. To address this question, we systematically
matched our data with those above seven major published Ab
associated glial gene signatures solely characterized in mouse
models of amyloidosis (Figure 5A).

We first performed PSA and displayed it in a heat map,
indicating the significant role of APP transgene in segregating
the APP mice from the nTg mice with extensive gene signature
overexpression (Figure 5B). We also presented a line plot showing
that the APP mice had an increased signature score than the nTg
mice, whereas the APP/Arg1 insufficient mice kept the highest
score in all glial signatures than any other groups (Figure 5C).
Collectively, we collated the seven signatures and merged them as
amyloid-b associated glial transcriptomic signatures. We observed
an increased signature score in the main genotype effect of APP
transgene (p < 0.0001) and its pairwise comparison between APP/
Arg1 sufficient mice and nTg/Arg1 sufficient mice (p = 0.003).
Most importantly, the APP/Arg1 insufficient mice had an
increased score than the APP/Arg1 sufficient mice (p = 0.049).
(Figure 5D).

Combining PSA with GSA, we found gene signatures of PIGs
(p = 0.002, GSS = 3.351), DAM (p = 0.004, GSS = 3.103), DAA (p =
0.005, GSS = 2.519), HM (p = 0.048, GSS = 1.992), andMGnD (p =
0.024, GSS = 1.805) were up-regulated comparing APP/Arg1
sufficient mice to nTg/Arg1 sufficient mice (Figure 5E).
Although no significance in PSA, we discovered gene signatures
of PIGs (GSS = 1.667), HM (GSS = 1.646), DAA (GSS = 1.410),
DAM (GSS = 1.365), M0 (GSS = 1.354), and OLIGs (GSS = 1.322)
were up-regulated in GSA comparing APP/Arg1 insufficient mice
to APP/Arg1 sufficient mice (Figure 5F). Notably, myeloid Arg1
deficiency in APP mice further activated the PIGs as its top
changed signature while promoting HM as the second (Figure
5F). To summarize, these data suggest that myeloid Arg1
deficiency enhances Ab associated glial transcriptomic signatures
leaning towards homeostatic and non-phagocytic directionality.

Human APP Transgene Elevates Gene
Signatures Associated With Autophagy,
Activated Microglia and Inflammatory
Response of Myeloid Cells in Mouse Brain
To measure the effect of human APP (KM670/671NL, Swedish)
overexpression in Arg1 sufficient mice, we performed differential
gene expression analysis by comparing APP/Arg1 sufficient mice
May 2021 | Volume 12 | Article 628156
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to nTg/Arg1 sufficient mice and thus identified 47 differentially
expressed gene transcripts (DEGs, p < 0.05) (Table S1). A
clustering heat map segregated the two groups based on these
DEGs (Figure 6A). The top DEGs with high statistical
significance and fold change variance could be visualized in the
volcano plot (Figure 6B). Furthermore, we created PCA biplots
using the top 15 DEGs based on log2 fold change. The up-
regulated DEGs (Irf8, C4a, Gfap, Trem2, Mta2, Gba, Cd68, Stab1,
Osmr, Hmox1, Cd33, Fcrls) and down-regulated DEGs (Ncl,
Frontiers in Immunology | www.frontiersin.org 10
Lpar1, Ache) successfully separated the two groups by a
leading PC1 (54.7%) and a PC2 (14.4%) (Figure 6C). The
APP/Arg1 sufficient mice had increased transcriptomic
pathway scores than nTg/Arg1 sufficient mice in autophagy
(p = 0.001, Figure 2F), activated microglia (p = 0.010, Figure
2H), AD causal risk pathway (p = 0.002, Figure 2C), neuronal
cytoskeleton (p = 0.006, Figure 2E), disease association (p = 0.041,
Figure 2D), and myelination (p = 0.003, Figure 2L) (Figure 6D).
The DEGs of these pathways were also listed (Figure 6E).
A

B

D E

C

FIGURE 4 | Cell-type profiling analysis of the central nervous system. (A) A table lists central nervous system cell types, QC p-value, pan marker gene transcripts, and
references. (B) Heat map of cell-type profiling analysis provides an overview of cell-type distribution and clustering across all samples within two covariates of genotype.
The z-score color in orange or blue indicates a high or low abundance of cell-type-specific gene transcripts, respectively. All scores are presented on the same scale
via a z-transformation. (C) A line plot of relative cell-type transcriptomic changes in selected marker gene transcripts’ abundance across groups. Each cell type score
was centered to zero value. (D, E) Cell type scores of microglia/macrophages (D) and oligodendrocytes (E) are displayed in a violin plot against four groups. All
samples are displayed, and the median is denoted with a line. n=3 samples per group representing 6 mice. Cell types highlighted in red indicates main APP transgene
genotype effect in cell type scores. The asterisk sign (*) indicates the main effect of APP transgene genotype and its pair-wise comparisons. *p < 0.05; ***p < 0.001;
****p < 0.0001. Two-way ANOVA of 2x2 factorial analysis followed by pairwise comparisons using Fisher’s PLSD.
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FIGURE 5 | Pathway scoring analysis of amyloid-b associated glial transcriptomic signatures. (A) A table lists seven key glial transcriptomic signatures attributed to
amyloid-b stimulus described in recent milestone publications using different mouse models of amyloidosis. (B) A heat map of pathway scoring analysis provides an
overview of the glial signature distribution and sample clustering. The z-score color in orange or blue indicates up or down-regulation of glial signature by each sample.
All scores are presented on the same scale via a z-transformation. (C) A line plot of seven glial signatures’ scores shows the transcriptomic changes across groups.
Signature cores have been centered to a value of zero. (D) The score of amyloid-b associated glial transcriptomic signatures is summarized as the average of seven
glial signatures’ scores. (E, F) Gene set analysis is presented in bar graphs using directed global significance scores (GSS) by comparing APP+/-/Arg1+/+/LysMcreTg/+

to nTg/Arg1+/+/LysMcreTg/+ (E) and APP+/-/Arg1fl/+/LysMcreTg/+ to APP+/-/Arg1+/+/LysMcreTg/+ (F). The red or blue dashed line highlights the top up or down regulated
signatures that meet the cut-off criterion (absolute GSS value at 1.3). Also, the statistically significant signatures from pathway scoring analysis are additionally
annotated with red asterisk sign (*). n=3 samples per group representing 6 mice. The asterisk sign (*) indicates the main effect of APP transgene genotype and its pair-
wise comparisons. The number sign (#) indicates the main effect of the Arg1 haploinsufficiency genotype and its pair-wise comparisons. */#p < 0.05, **p < 0.01;
****p < 0.0001. Two-way ANOVA of 2x2 factorial analysis followed by pairwise comparisons using Fisher’s PLSD.
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The GSA showed that the top 3 up-regulated pathways that met
the cut-off GSS criterion were autophagy (GSS = 1.900), activated
microglia (GSS = 1.672), and AD causal risk pathway (GSS =
1.665) (Figure 6D). We observed 13 out of the top 15 DEGs
contributed to the top changed pathways identified by PSA and
GSA (Figure 6E). Importantly, the AD causal risk pathway has
60% microglia related genes in its gene set (Cd33, Psen2, Psmb9,
Apoe, Trem2, Psmb8, Spi1, Clu, C4a) and its up-regulated DEGs
(C4a, Trem2, Cd33) overlapped with activated microglia pathway
(Figure 6E). Notably, CPA showed that the APP/Arg1 sufficient
mice activated microglia/macrophages cell-type-specific gene
transcripts than nTg/Arg1 sufficient mice (Figure 4D). These
transcriptomics data suggest that Ab plaque activated brain
myeloid cells with increased autophagy.

Next, we performed Ingenuity Pathway Analysis (IPA) based
on the DEGs mentioned above. First, IPA identified the top five
canonical pathways (based on p-values) were neuroinflammation
signaling pathway, acute phase response signaling, dendritic cell
maturation, role of Jak family kinases in Il-6-type cytokine
signaling, and endothelin-1 signaling (Figure 7A). Importantly,
the neuroinflammation signaling pathway was the top activated
pathway with the highest statistical significance (p = 9.33E-09)
and the most target gene transcripts (Bcl2, Calb2, Grin1, Hmox1,
Il6, Mapk8, Rela, Stat1, Trem2) (Figure 7A). Secondly, IPA
predicted activated upstream regulators (Il6, App; z ≥ 2.0) and
inhibited upstream regulators (Notch1, Tsc2; z ≤ -2.0)
(Figure 7B). By displaying the predicted upstream regulators
in a hierarchical gene interaction network, we observed that App
was the top-notch upstream regulator that causes the entire
network with the highest significance (p = 5.90E-09, z = 2.037)
and the most target gene transcripts (Ache, Bcl2, C4a/C4b, Cd68,
Gfap, Gnao1, Grin1, Hmox1, Il6, Mbp, Nos1, Rela, Sirt1, Stx1b)
(Figures 7B, D). Moreover, IPA built two networks of regulatory
effects based on the four predicted upstream regulators. One
network was composed of Il6, Notch1, and Tsc2, pointing to one
biological function in macrophages’ immune response with four
target gene transcripts (Grn, Hmox1, Irf8, Rela). Another
network was by App alone linked to one disease in motor
dysfunction with five target gene transcripts (Bcl2, Gfap, Grin1,
Il6, Sirt1). Next, we used IPA to study the top diseases/disorders
and biological functions. It predicted neurological diseases with
increased motor dysfunction and movement disorders (z ≥ 2.0)
(Figure 7C). It also predicted that the inflammatory response
was the top (based on z-score) increased biological function,
including the increased immune response of cells, accumulation
of phagocytes, immune response of macrophages, and immune
response of antigen presenting cells (z ≥ 2.0) (Figure 7C). It also
predicted other functions in lipid metabolism (increased
synthesis of glycolipid and synthesis of lipid, z ≥ 2.0), cell
death and survival (increased cell death of epithelial cells, z ≥
2.0; decreased cell viability of epithelial cell lines, z ≤ -2.0), as well
as nervous system development (decreased long-term
potentiation, z ≤ -2.0) (Figure 7C). Lastly, we performed
STRING analysis and plotted the connected DEGs to generate
a gene interaction network (PPI p-value < 1.0E-16), highlighted
by significant pathways identified by Reactome Pathways. These
Frontiers in Immunology | www.frontiersin.org 12
were innate immune system (q = 0.0028) and immune system
(q = 0.0063) (Figures 7E, F). Overall, these data strongly suggest
overexpression of human APP (KM670/671NL, Swedish) in
mouse brain activates gene signatures of innate immune
response associated with brain myeloid cells.
Myeloid Arg1 Deficiency Promotes Gene
Signatures Associated With Lipid
Metabolism, Myelination and Migration
of Myeloid Cells in Mouse Brain
During Amyloidosis
To determine the impact of reducing Arg1 in a mouse model of
amyloidosis, we obtained 33 DEGs (p < 0.05) in comparison of
APP/Arg1 insufficient mice to APP/Arg1 sufficient mice
(Table S2). The heat map of DEGs clustered the two groups
separately (Figure 8A). The volcano plot displays the top DEGs
with a high magnitude of significance and variance (Figure 8B).
We also analyzed the PCA biplots using the top 15 DEGs (based
on log2 fold change). The up-regulated DEGs (C3, Fas, Ache,
Slc2a1, Epha3, Il4ra, Casp6, Emcn, Ncl, Grin2d, Nos1, U2af2,
Cers4) and down-regulated DEGs (Creb1, Mta2) separated the
APP/Arg1 insufficient group from the APP/Arg1 sufficient group
with a PC1 (43.6%) and a PC2 (16.7%) (Figure 8C). The PSA and
GSA simultaneously showed that APP/Arg1 insufficient mice
activated transcriptomic pathways in lipid metabolism (p =
0.054, Figure 2G; GSS = 1.406, Figures 8D, E) and myelination
(p = 0.023, Figure 2L; GSS = 1.394, Figures 8D, E) compared to
APP/Arg1 sufficient mice.

We then applied IPA on the DEGs and observed the top five
canonical pathways (based on p-values) consisting of the
neuroinflammation signaling pathway, glucocorticoid receptor
signaling, synaptogenesis signaling pathway, Ephrin receptor
signaling, and PEDF signaling (Figure 9A). Notably, the most
significant neuroinflammation signaling pathway had the highest
activation z-score ((p = 1.66E-07, z = 1.633) and the most target
gene transcripts (Akt2, Bcl2, Creb1, Fas, Gabrb3, Grin2d, Tgfbr2)
(Figure 9A). IPA predicted one activated upstream regulator
(Il5, z ≥ 2.0, biased) and one inhibited upstream regulator
(Pten, z ≤ -2.0) with an interactive gene regulation network
(Figures 9B, D). Furthermore, IPA further built one upstream
regulatory network based on Il5 with five target gene transcripts
(Bcl2, Cd9, Fas, Il4r, Slc2a1) and was associated with three
biological functions (formation of lymphoid tissue, migration
of cells, vasculogenesis). Furthermore, although no disease was
predicted by IPA (z ≥ 2.0 or z ≤ -2.0), we found that neurological
diseases were increased with a trend in neurodegeneration of
sensory neurons (z = 1.980) and injury of nervous system (z =
1.678) (Figure 9C). IPA successfully predicted that the top
changed function was a cellular movement in biological
functions, with increased migration of cells, cell movement,
and cell movement of myeloid cells (z ≥ 2.0) (Figure 9C).
Other predicted functions included cardiovascular system
development (increased angiogenesis and vasculogenesis, z ≥
2.0), lymphoid tissue structure and development (increased
formation of lymphoid tissue and lymphopoiesis, z ≥ 2.0),
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FIGURE 6 | Differential gene expression analysis of overexpressing human APP KM670/671NL Swedish mutation in mouse brain. (A) A heat map with dendrogram
trees represents clustering of samples and differentially expressed gene transcripts (DEGs, p < 0.05) by comparing APP+/-/Arg1+/+/LysMcreTg/+ to nTg/
Arg1+/+/LysMcreTg/+ mice. The heat map uses the average Euclidean distance for the linkage and is centered and scaled by the z-score transformation. Red and
green colors denote up and down expressed gene transcript, respectively. (B) A volcano plot displays all expressed genes above the background. Gene transcripts
with high statistical significance stay on the top and high fold-change stay on either side. The left and right side of the volcano plot displays the down and up
expressed genes, respectively. Horizontal lines indicate different thresholds of the p-values. The top 40 DEGs (based on p-values) are labeled. (C) A biplot of
principal component analysis and a table are created by the top 15 DEGs with the highest fold-change variance. (D) A bar graph of gene set analysis ranks all
signature pathways with directed global significance scores (GSS). The up or down regulated pathway is indicated by positive or negative GSS values. The red or
blue dashed line highlights the top changed pathways based on the cut-off criterion (absolute GSS value at 1.3). The statistically changed pathways from pair-wise
comparison in pathway scoring analysis are annotated with red asterisk sign (*) for up-regulation. (E) A table lists DEGs of the top changed pathways from both gene
set analysis and pathway scoring analysis. The top 15 DEGs are bolded. Up/Down denotes up/down-regulation. n=3 samples per group representing 6 mice. The
asterisk sign (*) indicates the focused pair-wise comparison of APP transgene genotype. *p < 0.05, **p < 0.01; ***p < 0.001. Two-way ANOVA of 2x2 factorial
analysis followed by pairwise comparisons using Fisher’s PLSD. See also Table S1.
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FIGURE 7 | Ingenuity Pathway Analysis and STRING network analysis of overexpressing human APP KM670/671NL Swedish mutation in mouse brain. Differentially
expressed gene transcripts (DEGs, p < 0.05) created by comparing APP+/-/Arg1+/+/LysMcreTg/+ to nTg/Arg1+/+/LysMcreTg/+ mice were analyzed by Ingenuity
Pathway Analysis (IPA) and STRING network analysis using publicly available databases. (A) A table lists the top five canonical pathways (based on p-values). (B) A
table lists the top predicted upstream regulators (based on z-scores). (C) A table lists the top predicted diseases and functions under different categories (based on
z-scores). An absolute z-score value at 2.0 was set as the cut-off criterion to predict the activated/increased (z-score > 0) or inhibited/decreased (z-score < 0) states,
and were highlighted in red or green. (D) IPA network displays the predicted upstream regulators in a hierarchical order. Upstream regulators predicted as activation
or inhibition are colored in orange or blue. DEGs are colored in red or green, indicating increased or decreased expression. DEGs involved in Alzheimer’s disease are
also highlighted with a purple border. Direct or indirect gene interactions are in solid or dash lines with orange or blue colors indicating activation or inhibition. The
intensity of color shading represents either measured fold-change magnitude or predicted activation/inhibition magnitude. (E) STRING network of the connected
DEGs is presented. Each node represents a DEG with a halo color of red to blue, indicating high to low values of log2 fold-change. Nodes in different colors are
annotated based on the top Reactome Pathways. Each edge line represents an interaction between two DEGs based on parameters of databases (cyan),
experiments (purple), textmining (yellow), and co-expression (black). (F) A table lists the top Reactome Pathways from STRING functional enrichment analysis. The
false discovery rate (FDR) q-value is set at ≤ 0.01. The observed gene count is set at ≥ 5. DEGs highlighted in red or green indicate up or down expression. n=3
samples per group representing 6 mice.
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FIGURE 8 | Differential gene expression analysis of LysMcre dependent Arg1 haploinsufficiency in mouse brain with amyloidosis. (A) A heat map with dendrogram
trees represents agglomerative clustering of samples and differentially expressed gene transcripts (DEGs, p < 0.05) by comparing APP+/-/Arg1fl/+/LysMcreTg/+ to
APP+/-/Arg1+/+/LysMcreTg/+ mice. The heat map uses the average Euclidean distance for the linkage and is centered and scaled by the z-score transformation. Red
and green colors denote up and down expressed gene transcript, respectively. (B) A volcano plot displays all expressed genes above the background. Gene
transcripts with high statistical significance stay on the top and high fold-change stay on either side. The left and right side of the volcano plot displays the down and
up expressed genes, respectively. Horizontal lines indicate different thresholds of the p-values. The top 40 DEGs (based on p-values) are labeled. (C) A biplot of
principal component analysis and a table are created by the top 15 DEGs with the highest fold-change variance. (D) A bar graph of gene set analysis ranks all
signature pathways with directed global significance scores (GSS). The up or down regulated pathway is indicated by positive or negative GSS values. The red or
blue dashed line highlights the top changed pathways based on the cut-off criterion (absolute GSS value at 1.3). The statistically changed pathways from pair-wise
comparison in pathway scoring analysis are annotated with p-value or red number sign (#) for up-regulation. (E) A table lists DEGs of the top changed pathways in
gene set analysis. The top 15 DEGs are bolded. Up/Down denotes up/down-regulation. n=3 samples per group representing 6 mice. The number sign (#) indicates
the focused pair-wise comparison of Arg1 haploinsufficiency genotype. #p < 0.05. Two-way ANOVA of 2x2 factorial analysis followed by pairwise comparisons using
Fisher’s PLSD. See also Table S2.
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FIGURE 9 | Ingenuity Pathway Analysis and STRING network analysis of LysMcre dependent Arg1 haploinsufficiency in mouse brain with amyloidosis. Differentially
expressed gene transcripts (DEGs, p < 0.05) created by comparing APP+/-/Arg1fl/+/LysMcreTg/+ to APP+/-/Arg1+/+/LysMcreTg/+ mice were analyzed by Ingenuity
Pathway Analysis (IPA) and STRING network analysis using publicly available databases. (A) A table lists the top five canonical pathways (based on p-values). (B) A
table lists the top predicted upstream regulators (based on z-scores). (C) A table lists the top predicted diseases and functions under different categories (based on
z-scores). An absolute z-score value at 2.0 was set as the cut-off criterion to predict the activated/increased (z-score > 0) or inhibited/decreased (z-score < 0) states
and were highlighted in red or green. (D) IPA network displays the predicted upstream regulators in a hierarchical order. Upstream regulators predicted as activation
or inhibition are colored in orange or blue. DEGs are colored in red or green, indicating increased or decreased expression. DEGs involved in Alzheimer’s disease are
also highlighted with a purple border. Direct or indirect gene interactions are in solid or dash lines with orange or blue colors indicating activation or inhibition. The
intensity of color shading represents either measured fold-change magnitude or predicted activation/inhibition magnitude. (E) STRING network of the connected
DEGs is presented. Each node represents a DEG with a halo color of red to blue, indicating high to low values of log2 fold-change. Nodes in different colors are
annotated based on the top Reactome Pathways. Each edge line represents an interaction between two DEG transcripts based on parameters of databases (cyan),
experiments (purple), textmining (yellow), and co-expression (black). (F) A table lists the top Reactome Pathways from STRING functional enrichment analysis. The
false discovery rate (FDR) q-value is set at ≤ 0.01. The observed gene count is set at ≥ 5. Gene transcripts highlighted in red or green indicate up or down
expression. n=3 samples per group representing 6 mice.
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cellular growth and proliferation (increased cytostasis, z ≥ 2.0),
gene expression (increased transcription of RNA, z ≥ 2.0), cell
death and survival (increased cell death of sensory neurons, z ≥
2.0), and organismal survival (decreased organismal death,
z ≤ -2.0) (Figure 9C). Finally, the STRING network of
interacted DEGs was established (PPI p-value = 9.28E-05)
(Figure 9E). The STRING functional enrichment analysis
identified significant pathways via Reactome Pathways in
transmission across chemical synapses (q = 0.0022), innate
immune system (q = 0.0074), immune system (q = 0.0074),
and metabolism of lipids (q = 0.0074), all of which were
annotated in the network (Figures 9E, F). Collectively, these
transcriptomic findings suggest myeloid Arg1 deficiency
activates gene signatures of lipid metabolism and myelination
and promotes myeloid cell migration in the mouse brain
of amyloidosis.
DISCUSSION

Together with our previous findings reporting that myeloid Arg1
insufficiency precipitates Ab deposition (39), the current
transcriptomic analysis shows that myeloid Arg1 insufficiency
activates Ab plaque-associated glial gene signatures to exacerbate
neurodegeneration. First, we demonstrated that the APP
transgene up-regulated pathways most related to autophagy,
activated microglia, and AD causal risk, while Arg1
haploinsufficiency up-regulated pathways of lipid metabolism
and myelination. Second, we demonstrated that APP transgene
mostly activated microglia/macrophages and myeloid Arg1
deficiency during amyloidosis promoted oligodendrocytes by
analyzing cell-type-specific gene expression. Next, we provided
strong evidence from analyzing key Ab plaque-associated glial
transcriptomic signatures to support the notion that APP
transgene activated these signatures mostly by inducing
disease-associated microglial genes, whereas myeloid Arg1
haploinsufficiency increased them further by largely eliciting
homeostatic microglial genes. Collectively, this is the first
report to suggest that Arg1 deficient brain myeloid cells align
transcriptome signatures that may phagocytose less Ab plaques,
thus aggravating the accumulation of Ab plaques and
possibly neurodegeneration.

Microglia perform various functions, maintaining CNS
homeostasis during normal aging and front-line responders
and inducers for neurodegenerative diseases like AD (90, 93,
94). Earlier work from Elly Hol and others identified several Ab
associated microglial pro-inflammatory transcriptional profiles
in different amyloidosis mouse models based on extensive
microarray data (95–98). Eventually, all of these microglial
profiles pointed to a common chronic primed microglia
transcriptional signature established by gene co-expression
meta-analysis (77), from which the results were built into the
NanoString nCounter® mouse neuropathology panel. Due to
recent developments in scRNA-seq and targeted NanoString
nCounter techniques, researchers have confirmed these earlier
findings by further deciphering the various transcriptional
Frontiers in Immunology | www.frontiersin.org 17
subtypes and distinct stages of microglia that were interacting
with Ab plaques (56–59, 99, 100) (Figure 5A), thus converging
age, sex, and AD risk genes as the major risk factors for AD (101,
102). Importantly, critical microglial activation genes identified in
amyloidosis mice were also recently validated in human AD brains
(103). Albeit with the conflicting data interpretation, microglia may
show either beneficial or detrimental effects depending on aging and
disease progression by inducing disease-associated microglial
signatures or restoring homeostatic microglial signatures (104,
105). Microglial fitness required to dynamically switch between
these states is critical for disease pathology. It was shown that the
homeostatic microglial signature (HM/M0) is mostly non-
phagocytic and presumably becomes suppressed to initiate the
disease-associated microglial signature (DAM/MGnD) that is
more phagocytic (57, 58). Therefore, microglia locked into a
homeostatic state may be just as detrimental as the disease-
induced state.

Our study focused on seven critical glial transcriptomic
signatures involved in amyloidosis from the literature covering
both homeostatic and disease-associated microglia. First, our
results showed the APP transgene activated Ab plaque induced
genes (PIGs) as the top changed signature (Figure 5E) and
myeloid Arg1 deficiency during amyloidosis up-regulated it
further (Figure 5F). The findings were in line with our
previous report that myeloid Arg1 insufficiency promoted
amyloidosis (39), confirming that the magnitude of PIGs
positively correlated to the load of Ab deposition (56). Next,
further investigation of individual glial signatures revealed that
myeloid Arg1 deficiency during amyloidosis preferentially
activated homeostatic microglia (HM) gene signature.
Therefore, we predict that the transcriptomic change in
migration of myeloid cells caused by myeloid Arg1 deficiency
may be a compensatory response to the increased Ab burden due
to the non-phagocytic homeostatic microglial signature.

Recent studies found that the pre-classical M2 marker gene
Arg1 played an essential role in activities of phagocytosis and
efferocytosis by myeloid cells. One study showed that Arg1,
orchestrated by STAT6/Arg1 signaling axis, was responsible for
efferocytosis of microglia/macrophages to remove dead/dying
neurons (106). Another group also showed that the Arg1 was
involved in the continual efferocytosis process of engulfing and
degrading apoptotic cells to provide nutrients (107). One study
reported that Arg1 was the second most up-regulated gene
transcript for inducing phagocytic microglial signature (MG-
dNF) relative to the non-phagocytic microglial signature (MG-
nF) after injection of apoptotic neurons in mouse brain (58).
Therefore, the simplicity of viewing microglial activation
phenotypes as M1-like (pro-inflammatory) and M2-like (anti-
inflammatory) was further challenged and has been replaced by
recent scRNA-seq based discoveries of molecular subtyping
microglial phenotypes (90, 104, 108, 109). These findings are
consistent with our previous in vitro work demonstrating that
repressing Arg1 in microglial cells impaired phagocytosis (39).
Thus, Arg1 is a key microglial functional marker for facilitating
phagocytosis and efferocytosis and, when suppressed, could
promote non-phagocytic and homeostatic microglial signatures.
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Recent progress in studying AD pathophysiology using
single-cell and spatial transcriptomics in AD patients and APP
knock-in mouse models discovered myelination-related
pathways were disturbed mostly in oligodendrocytes but also
in other principal CNS cells (56, 110). Our data linked myeloid
Arg1 deficiency with the myelination gene set during the amyloid
challenge. First, pathway analyses revealed that myelination
gene signature was up-regulated due to myeloid Arg1
haploinsufficiency in APP mice (Figures 2L and 8D). Second,
imputing gene expression changes to CNS cells showed
oligodendrocytes as one of the two significantly changed cell
types. Oligodendrocyte-specific gene transcripts were only
increased when the APP transgene was expressed in the
myeloid Arg1 haploinsufficient background mice (Figure 4E).
Third, pathway analysis of amyloid-b associated glial
transcriptomic signatures showed that the signature of Ab
plaque correlated oligodendrocyte genes (OLIGs) was up-
regulated when suppressing myeloid Arg1 in APP mice
(Figure 5F). The OLIGs signature was previously reported to
correlate positively with the Ab burden in specific brain regions
(entorhinal cortex and hippocampus) (56), thus suggesting that
increased myelination could be a secondary effect from myeloid
Arg1 deficient mice since we previously reported these mice
presented more Ab deposition (39). Therefore, these data might
suggest a potential role of Arg1 in the crosstalk between microglia
and oligodendrocytes. During conditions of neurodegenerative
diseases, oligodendrocytes continue an active demyelination/
remyelination process, in which microglia and reactive
astrocytes both play a role (111). Our study remains unclear if/
how Arg1 deficient microglia regulate myelination during
amyloidosis based on transcriptomic evidence. However,
previous research demonstrated that increased Arg1 served as a
dominant switch in microglia for initiating the remyelination
process (112) and that microglia could acquire a pro-
regenerative state with increased Arg1 (113, 114). Furthermore,
we also found that the oligodendrocyte-specific gene transcript
marker Mog, which was elevated in Arg1 deficient APP mice in
this study (Figure 8E), was previously identified as a critical
CNS-specific autoantigen responsible for demyelination in
multiple sclerosis (115, 116). Therefore, our data suggest that
reduced Arg1 in myeloid cells promotes transcript signatures
associated with demyelination or delayed remyelination during
the amyloid challenge.

Furthermore, our pathway analyses showed that myeloid Arg1
haploinsufficiency during amyloidosis also up-regulated the lipid
metabolism gene set (Figures 2G and 8D). Lipid pathology has
been validated as a shared feature between neurodegenerative
mouse models and human AD (63, 117, 118). A recent study in
aging and AD identified a substantial diseased microglial
population termed “lipid-droplet-accumulating microglia
(LDAM)”, which were defective in phagocytosis (119). The gene
set analysis showed the glial signature LDAM was up-regulated in
myeloid Arg1 deficient APP mice without meeting significance
(data not shown). While it is feasible that activated brain lipid
metabolism is partly due to LDAM, this warrants further
investigation. Interestingly, acetylcholinesterase (Ache), a
Frontiers in Immunology | www.frontiersin.org 18
therapeutic target for AD, was one of the top three gene
transcripts up-regulated when reducing myeloid Arg1 in APP
mice (Figures 8C, E). It is known that Ab peptides increased
Ache (120), and conversely, Ache promoted Ab production (121,
122), which aligned with our current finding of increased Ache
expression with elevated Ab plaque-induced genes. IncreasedAche
could also decrease cholinergic transmission and contributing to
cognitive impairment (123). We identified the top changed
network by Reactome Pathway was transmission across
chemical synapses with increased Ache, Grin2d, and Raf1, and
decreased Creb1 and Gabrb3, all of which could contribute to
cognitive dysfunction (Figure 9F). These findings were in line
with our previous observation that myeloidArg1 deficiency during
amyloidosis hastened mouse behavioral impairments (39).

Therefore, by analyzing gene expression profiling in
fundamental neurodegeneration pathways, we provided novel
transcriptomic mechanisms to corroborate the previous
observation that myeloid Arg1 deficiency exacerbated Ab
deposition by promoting gene sets essential for myelination,
lipid metabolism, and activating Ab associated glial genes biased
for homeostatic/non-phagocytic microglia. By laying a
foundation for the role of Arg1 in phagocytic myeloid cells
during amyloidosis, we provided a new therapeutic target for
manipulating arginine metabolism through arginase 1 to benefit
human AD. Considering the beneficial role of overexpressing
Arg1 in the tau transgenic mouse model (37), a future study on
overexpressing Arg1 in a mouse model of amyloidosis should be
investigated. Conversely, another study using the CVN-AD
mouse model (Nos2 null) showed that sustained elevated
extracellular Arg1 level stimulated amyloidosis and promoted
hippocampal neuronal death (21). These discrepant studies
implicate that temporal and spatial Arg1 activity in different
CNS cell types, animal models, aging stages, and disease
progression remain critical questions for future studies.

Critically, we need to mention that transcriptomic analyses
cannot prove biological cell function or phenotype changes
because there are many gene regulation levels besides
transcription. Future studies are needed to confirm that the gene
expression changes reported herein result in changes in protein
levels or and that these changes modify cellular phenotype. It is
important to remember that the pathway analyses identify
coordinated regulation of multiple genes associated with given
cell functions. Consequently, spurious errors in expression of a
single gene transcript cannot explain the results we observed
linking specific pathways to amyloid or Arg1 insufficiency.

Although the LysMcre mice have been a useful tool to mainly
target myeloid cells for many years (71, 124), the specificity of
cell types that LysMcre targeted to suppress Arg1 expression has
been questioned recently (125). Two characterization studies on
LysMcre specificity in the mouse brain were thus reported. One
group showed that the LysM promoter was almost exclusively
active in neurons rather than microglia within certain brain
regions (neuronal layer of the forebrain motor cortex and
granule cell layer of the cerebellum), but on average, it was
active in less than 30% of both neurons and microglia across the
whole brain (126). Another recent report found that the LysMcre
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promoter was active in 40% of macrophage/microglia and only
8% of neurons in adult mouse retina (127). Although the
LysMcre promoter was still validated to express greatest in
myeloid cells, both studies provided evidence to show the
existence of recombination in neurons, albeit to different levels.

Although the functional role of the antibacterial enzyme
LysM in neurons is still unclear, recent scRNA-seq studies in
microglia showed that Lyz2 encoding LysM was one of the
commonly induced microglial genes during neurodegenerative
diseases (104). Lyz2 was up-regulated in disease-associated
microglial signatures such as PIGs (56), DAM (57), and
MGnD (58), indicating that the brain myeloid cells most likely
up-regulate Lyz2 as a compensatory response to amyloid
stimulation. These recent findings using scRNA-seq in
amyloid-depositing mouse models confirmed one previous
study in human AD, which showed that lysozyme protein was
increased in the CSF of AD patients, co-localized with Ab plaque
in postmortem AD brains, and directly interacted with Ab in
vitro (128). The increase of secreted lysozyme in CSF was thus
attributed to the mononuclear monocytes/macrophages.
Therefore, the current evidence suggests a protective role of
up-regulating lysozyme in responding to Ab, a process that
mainly occurs in brain myeloid cells rather than other CNS
cells including neurons. These findings indicate that LysMcre
dependent Arg1 haploinsufficiency has a functional consequence
in brain myeloid cells. However, it is possible that the one allele
deletion of Lyz2 due to the insertion of Cre-recombinase also
caused unknown effects. Since all the mice shared the same Lyz2
haploinsufficient background, the unintended expression should
be present in all mice and should minimize putative effects on
differentially expressed genes. In the future, mouse lines like the
Cx3cr1-CreERT2 (129, 130) for monocytes/macrophages or
Tmem119-CreERT2 (131) and Tmem119-tdTomato reporter
(132) for resident microglia may be favored because they have
not been shown to have similar caveats to date.

Another limitation to our study is that we analyzed bulk RNA
samples. It is possible that subtle changes in myeloid gene
expression were masked by dilution with RNA from other cell
types. On the other hand, mechanical dissociation of myeloid
cells has other caveats, such as the possibility that disease-
associated microglia or microglia adjacent to amyloid deposits
are more fragile and difficult to isolate. This study intended to
understand how myeloid Arg1 insufficiency impacted overall
CNS gene expression in neurodegeneration. Future studies
should increase replication with a larger sample size and
compare these targeted transcriptome results with larger
transcriptome dataset to ensure the effects of myeloid Arg1
deficiency during amyloidosis.

Overal l , our findings suggest that myeloid Arg1
haploinsufficiency elevates Ab associated genes enriched in
brain myeloid cells and oligodendrocytes. Deficiency of Arg1 in
brain myeloid cells preferentially promotes a transcriptomic
signature that is more homeostatic and less phagocytic,
possibly inhibiting their crucial transition from a homeostatic
to a disease-associated state during amyloidosis, leading to more
Ab deposition. Future therapeutics to modulate arginase 1 in
Frontiers in Immunology | www.frontiersin.org 19
brain myeloid cells may provide potential disease-modifying
treatment for AD patients.
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Supplementary Figure 1 | Overview of all normalized data. All data were
normalized for gene transcript expression against APP transgene genotype and
Arg1 haploinsufficiency genotype. (A) A heat map of all normalized data via
unsupervised clustering of mouse genotypes and a condensed heat map for
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unsupervised clustering of 770 genes. All data passed QC metrics without any flags
(top bar, yellow). Genes expressed below the background threshold are flagged in
blue. The orange or blue color in the heat map indicates high or low gene expression
z-score of each sample. All scores are presented on the same scale via a z-
transformation. (B) Principal components of all normalized data. The principal
component analysis shows the four groups’ variance using the four leading
components based on all normalized data. (C) A heat map of correlation matrix of all
signature pathways from pathway scoring analysis was presented. Yellow and blue
colors indicate positive and negative correlation and thus aggregate separately.
Pathways that show statistically significant main APP transgene genotype effects
are highlighted in red or blue text to indicate up or down-regulation, respectively.
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