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Plutonium metal exhibits an anomalously large softening of its
bulk modulus at elevated temperatures that is made all the
more extraordinary by the finding that it occurs irrespective of
whether the thermal expansion coefficient is positive, negative,
or zero—representing an extreme departure from conventional
Grüneisen scaling. We show here that the cause of this softening
is the compressibility of plutonium’s thermally excited electronic
configurations, which has thus far not been considered in ther-
modynamic models. We show that when compressible electronic
configurations are thermally activated, they invariably give rise
to a softening of the bulk modulus regardless of the sign of their
contribution to the thermal expansion. The electronically driven
softening of the bulk modulus is shown to be in good agreement
with elastic moduli measurements performed on the gallium-
stabilized δ phase of plutonium over a range of temperatures
and compositions and is shown to grow rapidly at small concen-
trations of gallium and at high temperatures, where it becomes
extremely sensitive to hydrostatic pressure.
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P lutonium (Pu) has the richest phase diagram among the
metallic elements and, as a consequence, has proved to be

the most challenging to grasp (1–4). In recent years, consider-
able advances have been made toward understanding some of
Pu’s unusual thermodynamic properties, such as its anomalously
enhanced residual electronic heat capacity for an element (5–8)
and its invar-like negative thermal expansion coefficient (9–11).
The softening of the bulk modulus (12–16), by contrast, which
occurs ∼50% more rapidly with increasing temperature (rela-
tive to the melting temperature) than regular solids (17–23), has
continued to remain a mystery. The increased likelihood that
the entirety of the bulk modulus softening cannot be explained
by phonons alone has led to the suggestion of an uncon-
ventional contribution originating from electronic degrees of
freedom (16, 24).

A natural candidate for electronic degrees of freedom in
Pu is provided by its unstable 5f -electron atomic shell, which
has been shown to allow Pu to exist in a greater number of
near-degenerate electronic configurations (25–27) and oxida-
tion states (28) than other actinides and rare earths. Spectro-
scopic evidence for the presence of multiple near-degenerate
electronic configurations in δ-phase Pu (δ-Pu) has been pro-
vided by way of X-ray (29) and neutron scattering (30) exper-
iments. While the 5f electrons in partially filled shell configu-
rations often hybridize with conduction electrons (6–8, 26, 31,
32), attempts to reconcile specific electronic structure models
with the unusual temperature dependence of thermodynamic
quantities such as the thermal expansion and bulk modulus
have thus far been only at a qualitative level (SI Appendix)
(10, 16, 33). The existing models have also not been shown
to account for the sensitivity of elevated temperature thermo-
dynamic quantities to the gallium (Ga) substitution used for
stabilizing δ-Pu. The finding of a Ga substitution-dependent
thermally activated behavior in the thermal expansion over a
broad span of temperatures suggests instead that different elec-
tronic configurations can be regarded as being subject to statisti-

cal thermodynamics (9, 10). Strong support for this picture has
recently been found in the magnetostriction and specific heat
measurements (11).

We show here that, while the identity of the electronic con-
figurations remains an open question (Materials and Methods),
their compressibility is a crucial factor in considering their con-
tribution to the bulk modulus. We show consideration of the
compressibility to give rise to a previously unknown yet signif-
icant electronic contribution to the bulk modulus when differ-
ent electronic configurations are thermally activated. Because
this contribution is both negative and quadratic in the size of
the difference in equilibrium volume (manifesting itself as a
partial pressure) between the excited configurations and the
lattice, it invariably leads to a softening of the bulk modulus
with increasing temperature. Using a form for the free energy
recently adapted from measurements of different thermody-
namic quantities (10, 11), we show that the uncovered electron-
ically driven softening of the bulk modulus is in agreement with
temperature-dependent and Ga concentration-dependent reso-
nant ultrasound spectroscopy results (12, 14–16). The softening
is shown to become especially large in δ-Pu stabilized with small
concentrations of Ga at temperatures well above room temper-
ature, where it is further predicted to undergo a collapse under
hydrostatic pressure.

Origin of the Bulk Modulus Softening
Studies of the thermodynamic properties of Pu have shown that
their temperature dependences can be modeled by consider-

ing a partition function of the form (9–11, 16) Zel =
∑

i e
− Ei

kBT ,
where i refers to different electronic configurations with fixed
energies Ei and atomic volumes Vi . Use of such a partition
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function for modeling thermodynamic quantities is warranted
under circumstances where higher-energy configurations are
mostly of a thermally activated nature (11, 34, 35). We find,
however, that whereas the consideration of Ei and Vi as fixed
and independent quantities is a reasonable approximation for
modeling the thermal expansion, heat capacity, and the magne-
tostriction (9–11), this is not the case when considering the bulk
modulus (Fig. 1). Since the relationship between Ei and V forms
the basis of the definition of the bulk modulus of a material,
neglect of this relationship has the potential to cause entire terms
to be missing from the equation of state. Electronic structure cal-
culations have shown that Ei and V are inextricably linked for
each electronic configuration of Pu and other actinides (25, 27),
making Ei(V ) a function of V or, equivalently, Ei(ν) a function
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Fig. 1. (A) A comparison of experimental adiabatic bulk modulus data for
different compositions x of δ-Pu1−xGax as indicated (12, 14–16) with the
model calculations of KS = γKT (where KT = Kel + Kph is the isothermal bulk
modulus and γ is plotted in SI Appendix, Fig. S2) for different compositions,
as indicated. As a point of reference, the black dotted line is the fitted
functional form of Kph (for b = 18); we have added this to K0 = 37.7 GPa
to bring it into alignment with the other curves at T ≈ 10 K. (B) A com-
parison of the experimentally measured change in temperature-dependent
electronic contribution to the bulk moduli ∆Kel = Kel(T)−Kel(280 K) for
x = 2.36%, 3.30%, and 4.64% (colored squares), having subtracted the mea-
sured values at T = 280 K and the calculated change ∆Kph = Kphl(T)−
Kph(280 K) in Kph (again for b = 18) relative to that at T = 280 K (assum-
ing Kph to be independent of x), with the equivalent change ∆Kel in the
electronic contribution (colored lines) relative to that at T = 280 K calcu-
lated using Eq. 4. For noninteger values of x, calculated values of Kel are
interpolated in x.

of the volume strain ν= V
V0
− 1 (schematic in Fig. 2). A more

generalized form

Zel(ν) =
∑
i

e
− Ei (ν)

kBT [1]

for the partition function that preserves information relating to
the compressibility is therefore required.

Electronic structure calculations have shown that the Ei(ν)
curves of the different configurations (illustrated in Fig. 2)
are approximately parabolic (25, 27), enabling them to be
represented in the reduced form (Materials and Methods)

lim
ν−νi→0

Ei(ν) =Ei,0 +
Ki [ν− νi ]2

2N
[2]

for small ν, where N is the atomic density and each of their con-
tributions Ki to the bulk modulus is given by Ki(ν) =N ∂2Ei (ν)

∂ν2

evaluated at ν= 0. Here, Ei,0 is the energy minimum and νi =
Vi
V0
− 1 is the volume strain at the energy minimum for each

configuration (Fig. 2). For the lowest-energy (ground-state) con-
figuration, by definition i = 0, Vi =V0, νi = 0, and Ei,0 = 0. The
excited electronic configurations, by contrast, are in nonequi-
librium states, causing them each to exert a statistical partial
pressure Pi(ν) =−N ∂Ei (ν)

∂ν
on the surrounding lattice. In the

limit of small strain, this pressure is simply

lim
ν−νi→0

Pi(ν) =−Ki [ν− νi ]. [3]

The ensemble average of the volume changes associated with
these partial pressures is what ultimately drives the positive
and negative electronic contributions to the thermal expansion
(Materials and Methods) (11).

We proceed to calculate the electronic contribution to the bulk
modulus by taking the second derivative Kel = ∂2Fel

∂ν2 |T of the
electronic component Fel =−kBT lnZel(ν) of the free energy
with respect to the volume strain. Using the volume-dependent
partition function given by Eq. 1 and Ei(ν) curves, we obtain

Kel =
∑
i

pi(ν)Ki(ν)−
∑

i pi(ν)P2
i (ν)

NkBT
+

[∑
i pi(ν)Pi(ν)

]2
NkBT

,

[4]

where pi(ν) =Z−1
el e

− Ei (ν)
kBT is the probability of occupancy for

each configuration.
The first term on the right-hand side of Eq. 4 is the probability-

weighted sum of bulk moduli that has been assumed in prior
models of the multiple electronic configurations in δ-Pu (9,
10, 16). While large changes in Ki(ν) with i (we discuss the
extreme case where Ki = 0 for an excited configuration in SI
Appendix) (10, 24) have the potential to yield significant changes
in Kel with temperature, the individual bulk moduli contri-
butions Ki of all of the electronic configurations obtained by
density functional theory are found to all be very similar at
ν= 0 (25, 27). In Materials and Methods, we find these to have
a mean value of K̄i = 28.2 gigapascal (GPa) and a SD of only
σKi = 5.0 GPa. The first term in Eq. 4 is therefore not expected
to lead to significant changes of the bulk modulus with increasing
temperature.

The second term on the right-hand side of Eq. 4 has the poten-
tial to lead to much larger changes in the bulk modulus of δ-Pu
with increasing temperature, making it the primary motivation
of the present study. The origin of this term is the statistical par-
tial pressure Pi(ν) between thermally excited configurations and
the ground state that occurs as a result of their equilibrium vol-
ume strains νi being nonzero. For sufficiently small total strains
ν− νi , this partial pressure is linear as shown in Eq. 3. Because
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Fig. 2. Schematic E(V) curves (lower axis) or E(ν) curves (upper axis) as
described in the text according to Eq. 6, showing an approximately parabolic
form. The energy minima Ei,0 and the energies E*

i at V = V0 or ν= 0 in
relation to the volumes Vi or volume strains νi are also indicated.

the partial pressure produces a negative quadratic contribution
to the electronic bulk modulus in Eq. 4, it implies that thermally
fluctuating electronic configurations invariably lead to a soften-
ing of the bulk modulus irrespective of whether νi > 0, as for a
positive contribution to the thermal expansion, or νi < 0, as for
a negative contribution to the thermal expansion (Materials and
Methods).

The third term on the right-hand side of Eq. 4 is also deter-
mined by Pi(ν). However, because the probability factors pi(ν)
in this term are multiplied together, its overall contribution to
the bulk modulus is weaker than that of the second term.

For the effect of hydrostatic pressure on the bulk modulus, this
we estimate by taking the third derivative of the free energy with
respect to ν and considering ∂

∂P
=−K−1

T
∂
∂ν

, where KT is the
isothermal bulk modulus, whereupon we obtain

K ′=
∂Kel

∂P

∣∣∣∣
T

≈ 1

KT [NkBT ]2

[∑
i

pi(ν)P3
i (ν)

− 3

[∑
i

pi(ν)P2
i (ν)

][∑
i

pi(ν)Pi(ν)

]

+ 2

[∑
i

pi(ν)Pi(ν)

]3
+ δ

]
. [5]

The first term on the right-hand side in Eq. 5, which originates
from the derivative of the anomalous softening (i.e., the second
term in Eq. 4), is found to dominate over the other terms. Its
dominance implies that the sign and magnitude of the change
in bulk modulus under pressure are determined almost entirely
by the partial pressures of the electronic configurations, which
in turn depend on the signs of νi . The cubic dependence on
Pi(ν) implies K ′ has a more extreme sensitivity to composition
than KT . The last term on the right-hand side of Eq. 5, δ, is
a correction term (Materials and Methods) that vanishes in the
limit where the bulk moduli of the electronic configurations are
the same.

Electronically Driven Softening Estimates
We proceed to estimate the electronic contribution to the bulk
modulus and its pressure derivative in Fig. 3 from the multi-
ple electronic configurations, by defining E∗i ≈Ei,0 +Kiν

2
i /2N

according to Eq. 2 and using the approximation Pi ≈Kiνi
according to Eq. 3 (11). Low-temperature specific heat mea-
surements have shown that the Debye temperature ΘD≈
100 kelvin (K) remains largely unchanged as a function of
the Ga concentration x used to stabilize the δ phase (11),
which is consistent with the parabolic approximation given by
Eq. 2. We therefore assume that the bulk modulus of the
ground-state electronic configuration also remains unchanged
and adopt the value K0 = 37.7 GPa found in δ-Pu1−xGax for
x = 2.36% (14) by way of resonant ultrasound measurements.
Since the bulk moduli of the excited electronic configura-
tions in δ-Pu are unknown, yet are predicted to fall within
a narrow range of possible values, we further assume the
excited configurations to have bulk moduli Ki that are sim-
ilar to that of the ground-state configuration (Materials and
Methods).

In calculating the electronic contribution to the bulk mod-
ulus, we use excitation energies E∗i and equilibrium volume
strains νi determined (11) (values listed in Materials and Meth-
ods) from fitting thermal expansion (9, 10) and temperature-
dependent magnetostriction (11) measurements, the results of
which were further validated using heat capacity measurements
(5, 11). The resulting calculations of the electronic contribu-
tion to the bulk modulus as a function of T and x using Eq. 2
are shown in Fig. 3A. Both of the previously determined (11)
excited electronic configurations (E∗1 and E∗2 ) are found to lead
to discernible reductions in the bulk modulus with increasing
temperature. Since E∗1 leads to a positive thermal expansion
(11) whereas E∗2 leads to a negative thermal expansion (9, 10),
yet both lead to a softening of the bulk modulus, it is the
combination of both of these terms that is responsible for the
departures from simple Grüneisen scaling in δ-Pu (Materials and
Methods).

The degree of bulk modulus softening with temperature is
significantly more pronounced for the higher excitation energy
E∗2 = 125 meV (for x= 2%) at small Ga concentrations due
to the large (≈13%) difference between its equilibrium vol-
ume V2 and the ground-state volume V0. Very similar results
at high temperatures would therefore be obtained on neglect-
ing E∗1 and ν1 and considering only the excitation energy E∗2
and volume strain ν2 determined from the invar model fits
(9, 10) (Materials and Methods). According to our calculation,
this dominant excitation is predicted to yield a reduction in
the bulk modulus that is as large as ≈8 GPa in pure δ-Pu
at 700 K; beyond this temperature the δ phase becomes
unstable (2).

Turning to the effect of hydrostatic pressure on the bulk mod-
ulus, since the leading term on the right-hand side of Eq. 5 varies
as the cube of the partial pressure, K ′ is found to be strongly
dependent on x . The invar contribution, which is characterized
by a negative partial pressure, clearly dominates, leading to the
prediction of a dramatic collapse of the bulk modulus under
pressure and at high temperatures for small concentrations of
Ga in Fig. 3B .

Comparison with Experiment
To compare the calculations against experimental data, we must
also include the phonon contribution to the bulk modulus, which
is known to reduce the bulk modulus of most materials by
≈20% upon reaching T =Tm/2 (17–23), where Tm is the melt-
ing temperature (Tm≈ 912 K in Pu). While a universal model
able to accurately describe the reduction in bulk modulus Kph

attributable to phonons in all materials has yet to be developed
(17–23), the model of Ida (18, 19) has been shown to provide
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Fig. 3. (A) Kel. of Pu1−xGax as a function of temperature T and Ga composi-
tion x (colored lines) calculated by way of Eq. 2, using the parameters listed
in Materials and Methods for x= 2% and x= 7%, which are extrapolated
for x= 0% and interpolated for x= 4% and 6%. Inset shows ν2

i for i = 1
and 2 versus V0, with the percentage of Ga (x) indicated for each point. It
is important to note that because Pi = 0 for the ground-state configuration,
the denominators of the second and third terms in Eq. 4 do not lead to a
divergence at T = 0. (B) Calculated pressure derivative of the bulk modulus
K′ according to Eq. 5.

a good description of the heat capacity of δ-Pu at temperatures
above room temperature (24)—most notably an observed upturn
in the heat capacity above ∼600 K. Since the electronic and
phonon contributions to the free energy are additive, this should,
to a first approximation, be similarly true for derivatives, in which
case KT =Kel +Kph (Materials and Methods) for the isother-
mal bulk modulus. To compare with the adiabatic bulk modulus
KS obtained by ultrasound measurements, we use the fact that
KS = γKT , where γ≈ 1 for δ-Pu (Materials and Methods and SI
Appendix).

In comparing the calculation with experimental bulk modu-
lus data, only the phonon scaling coefficient b is adjusted. The
remainder of the parameters is taken from published results
(Materials and Methods). Fig. 1A shows that on combining the
electronic and lattice vibration contributions, a phonon coeffi-
cient b= 18 (Materials and Methods) yields a KS that closely
follows the temperature dependence of bulk modulus measured
in δ-Pu1−xGax (with x= 2.36%) (14) over a broad range of tem-
peratures. Establishing further confidence in the model is the
finding that the value of the phonon coefficient b= 18 that best
fits the phonon part of the bulk modulus is very similar to the

value b= 16 that best fits the anharmonic phonon contribution to
the high-temperature heat capacity (24). For this value of b, Kph

also accounts for an ≈20% reduction in KS with temperature
at Tm/2≈ 456 K (the remainder coming from the reduction in
Kel), therefore making the phonon contribution to the softening
comparable to that in other materials (17–23).

Having established the approximate form of the (assumed)
x -independent phonon contribution Kph to the bulk modulus
softening, we can proceed to subtract this contribution from
measurements of KS in other samples to isolate the electronic
contribution Kel to the bulk modulus softening and to investi-
gate its changes with temperature and composition x . Fig. 1B
shows the T dependence of the residual electronic contribution
Kel for samples of three different compositions (12), x= 2.36%,
3.30%, and 4.64%, after having subtracted Kph as well as an
offset (Materials and Methods) to bring the measured curves
into alignment at T= 280 K. Despite the limited range in tem-
perature of these measurements, significant differences in the
temperature dependences are clearly discernible. On comparing
the model predictions of Kel calculated for the same x composi-
tions using Eq. 4 with the experimental curves in Fig. 1B , we find
them to be in excellent agreement—with regard to both the tem-
perature dependence and the x dependence of the temperature
dependence of the experimental data. Apart from a subtraction
of the values of Kel at T= 280 K that is necessary to elimi-
nate offsets between the experimental curves, no adjustment has
been made to Kel calculated using Eq. 4—the parameters used
are those determined elsewhere by fitting other thermodynamic
quantities (11).

The other compositions, x= 0.2% and x= 0% (15, 16) in
Fig. 1A, exhibit trends relative to other compositions that are
consistent with the model calculations of KS . However, the lack
of temperature-dependent data for these compositions means we
cannot isolate the electronic component for these compositions.

Turning once again to the effect of pressure, a fundamental
question concerns whether prior measurements of a negative
thermal expansion serve as a reliable predictor of a pressure-
induced bulk modulus softening (10, 36). Existing experimental
studies have focused only on the effect of hydrostatic pressure
on the bulk modulus at ambient temperature (≈300 K) (37–39),
the results of which are compared with the model calculations
at 300 K (from Fig. 1B) in Fig. 4. Importantly, Eq. 5 is found
to yield a pressure-induced change in δ-Pu whose negative sign
agrees with the softening obtained experimentally; on taking an
average of the δ-Pu data points in Fig. 4 (including both Ga-
stabilized and americium [Am]-stabilized δ-Pu), we obtain K ′=
−3± 2. The calculated value is clearly different from the positive
(i.e., stiffening) K ′= +9 ± 2 value measured in α-Pu (plotted
for comparison) (38) and the stiffening K ′= +4 expected for
a normal metal. However, the degree of scatter in the exper-
imental data, the magnitude of the error bars, and the lack
of temperature-dependent data prevent firm conclusions from
being reached concerning the absolute magnitude, the doping
dependence, or the volume dependence of K ′ (SI Appendix).

Figs. 3B and 4 show that a significant increase in the observ-
able pressure-induced softening of Ga-stabilized δ-Pu could in
principle be achieved by increasing the experimental tempera-
ture, which would also enable a more robust verification of the
role of excited electronic configurations to be made. Access to
higher temperatures would also enable such experiments to be
carried out on pure δ-Pu.

Discussion
By taking into consideration the compressible nature of the
previously isolated multiple electronic configurations in δ-Pu (9–
11), we have discovered a previously unknown yet significant
electronic contribution to the bulk modulus. We find this contri-
bution to be primarily responsible for the excess softening of the
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bulk modulus in Pu, the dominant energy scale of which is the
same as that previously associated with the invar effect (9, 10).
The effect of the electronically driven softening is discernible
in Ga composition-dependent experiments close to room tem-
perature, but is shown to be strongly enhanced at temperatures
substantially above room temperature in δ-Pu1−xGax samples
with low concentrations of Ga. The bulk modulus is further
shown to soften under pressure, as found experimentally (36–38),
and is further predicted to undergo a collapse at low concentra-
tions of Ga and high temperatures. Conversely, the electronic
contribution to the softening is expected to be much smaller for
samples with large concentrations of Ga at high temperatures,
providing an opportunity for the phonon contribution Kph to be
more accurately isolated in future studies.

What constitutes a significant advance in the present approach
to modeling the bulk modulus is that the softening is based
entirely on the same free energy that has been shown to accu-
rately describe other thermodynamic quantities as a function of
temperature and Ga composition. These include the experimen-
tally observed thermal expansion (9, 10), magnetostriction (11),
and heat capacity (5, 11, 24). It also involves the same energy
scale associated with the invar effect and detected in neutron

scattering experiments (30). Our results reveal the central role
played by statistical thermodynamics in the equation of state in
plutonium near ambient pressure.

Materials and Methods
Parameters Used in Bulk Modulus Calculations. We assume K0 = K1 = K2=

37.7 GPa (14). We also assume E*
1 to extrapolate linearly from 22.8 meV at

x= 2% to 41.0 meV at x= 7% and E*
2 to extrapolate linearly from 125 meV

at x= 2% to 70 meV at x= 7% (11). For x= 0, 2, 4, 6, and 7%, ν1= 0.0022,
0.0038, 0.0054, 0.016, and 0.021, while ν2= −0.22, −0.13, −0.069, −0.021,
and −0.0066, respectively (11). According to prior invar model fits (10), E*

2=

121 meV while ν2= −0.17.

Energy versus Volume Curves. To calculate Ki(ν), we turn to a generalized
model of cohesion in metals. The total internal energy for a given elec-
tronic configuration i is determined by a balance between Coulomb (∝ 1

a )
and kinetic (∝ 1

a2 ) energy terms, leading to an energy curve of the form

Ei(a) = a0−
a1
a +

a2
a2 (40), where a is the lattice spacing and a0, a1, and a2 are

constants. One possibility in Pu is that each Ei(a) curve corresponds to a dif-
ferent number of 5f electrons, nf = 0, 1, 2 . . . , confined to the atomic core
(25, 27). Alternative possibilities are that the different electronic configura-
tions correspond to different correlated ground states produced by strong
hybridization (10, 31), different electronic configurations with different
magnetic moments (16), or different configurations within a duality pic-
ture in which the 5f electrons are partitioned between itinerant states and
localized states subject to hybridization (26). We can obtain Ei(ν) curves in
face-centered cubic δ-Pu by the substitution of a =

3√4V and V = V0 [1 + ν]

into Ei(a), which yields

Ei(ν) = Ei,0 +
9Ki,0

2N

[
1− 2[1 + ν− νi]

− 1
3 + [1 + ν− νi]

− 2
3

]
. [6]

The parabolic approximation in Eq. 2 is obtained by making a Taylor series
expansion of Eq. 6 about ν− νi . The energy minimum for each curve is given
by Ei,0 = a0− 1

4 [a2
1/a2] while the bulk modulus at the minimum is given by

Ki,0 = N
18 [a2

1/a2].

Density Functional Theory Estimates. Double differentiation of Eq. 6 yields

Ki = Ki,0[5[1 + ν− νi]
− 8

3 − 4[1 + ν− νi]
− 7

3 ]. According to the results of
Eriksson et al. (25), Ki= 21.8, 34.5, 36.4, and 28.5 GPa for nf = 2, 3, 4, and
5, respectively, when ν= 0. According to the results of Svane et al. (27) Ki=

26.0, 28.0, 31.0, 24.4, 20.6, 33.9, and 25.6 GPa for nf = 0, 1, 2, 3, 4, 5, and 6,
respectively.

The calculation of K′ = NKi
∂3Ei (ν)

∂ν3 from the third derivative of Eq. 6

yields K′ = 4 at ν= 0 for a normal metal. However, the absence of a dis-
cernible dependence of the Debye temperature on x (11) suggests that K′ is
actually closer to zero for the ground-state configuration of δ-Pu, thereby
further justifying the use of a parabolic approximation for small ν in the
present study.

Thermodynamics of Multiple Configurations. For the thermal expansion, one

differentiates the free energy once with respect to ν to obtain
∂Fel
∂ν |T =

− P =
∑

i pi(ν)Ki [ν− νi], where we have again made use of the parabolic
approximation given by Eqs. 2 and 3. Since the total pressure P≈ 0 dur-
ing experiments under ambient conditions, ν and νi can be separated
above to yield ν=

∑
i pi(ν)Pi/

∑
i pi(ν)Ki . Here, the numerator is equiva-

lent to a summation over partial pressures, where the total pressure is
ambient pressure. Meanwhile, the denominator is equivalent to the first
term of Eq. 4, meaning that it is equivalent to the bulk modulus that one
obtains on neglecting excitations. If we constrain the bulk moduli to be
similar for all relevant configurations (i.e., Ki = K0), then the denomina-
tor becomes K0 and we obtain the much simpler form: ν≈

∑
i pi(ν)νi . It is

instructive to express Eq. 4 in a similarly reduced form by setting Ki = K0

for all configurations and defining kel =
Kel
K0
− 1, whereupon we obtain

kel≈
K0

NkBT [−
∑

i pi(ν)ν2
i + [

∑
i pi(ν)νi]

2], in which the negative term inside

the parentheses dominates.

Grüneisen’s Law Violation. Grüneisen’s law in its original form given by Γ =
αv VmKT

Cv
is violated because αv , which is the temperature derivative of ν,

is proportional to the sum over νi contributions, whose individual values
are both positive and negative, thereby giving rise to sign changes (11).
By contrast, the bulk modulus softening depends on a summation over ν2

i
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contributions, causing kel always to have the same negative sign. The heat
capacity, meanwhile, depends only on the energies Ei , which are positive (or
zero) and indirectly related to νi .

In the case of the pressure derivative, the last term on the right-
hand side of Eq. 5 is given by δ= 3NkBT[[

∑
i pi(ν)Pi(ν)][

∑
i pi(ν)Ki]−

[
∑

i pi(ν)Pi(ν)Ki]], which vanishes when Ki are the same for all
configurations.

Additive Electronic and Phonon Bulk Moduli. Since the isothermal bulk mod-
ulus is given by ∂2F

∂ν2 |T where the free energy F = Fel + Fph is the summation
of electronic and phonon contributions, we expect that KT = Kel + Kph. The
precise form of the dependence of Fph leading to Kph is still an area of
active debate (17–23). According to Ida (18) Kph(T) = K0[ T

T0
1
Q − 1], where

T0= 1.39 × 105 is the temperature scale associated with lattice vibrations,
(∆l/l)ph is the thermal expansion of the lattice attributable to phonons (11)
(SI Appendix, Fig. S1), and Q is the vibrational elongation determined by

solving Q = T
T0

e2b[( ∆l
l )ph+Q].

Calculating the Adiabatic Bulk Modulus. According to basic thermodynamics

γ=
α2

v VmTKT
Cv

+ 1, where Vm is the molar volume and the thermal expan-

sion αv = 3αl and heat capacity Cv values have been estimated (11), yielding
the T-dependent γ in SI Appendix, Fig. S2. We find γ to be close to unity,
especially for x≈ 2%.

Offsets in the Measured Bulk Modulus. Significant vertical displacements
between bulk moduli values for different samples of the same compo-
sition together with the absence of a trend in x near room tempera-
ture in Fig. 1A indicate that extrinsic factors unrelated to Kel and Kph

contribute random vertical offsets to the experimental data that are
of order 1 or 2 GPa. Similar observations have been made in measur-
ing control samples made of aluminum. In Fig. 1B, the extrinsic and
phonon contributions are removed from the analysis of the x= 2.36%,
3.30%, and 4.64% datasets by subtracting the values of the bulk moduli
at T= 280 K.

Data Availability. Parameters for reproducing the calculated curves are
included in the main text and in SI Appendix.
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