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New roles for RNA in mediating gene expression are being discovered at an alarming rate.
A broad array of pathways control patterning of N6-methyladenosine (m6A) methylation on
RNA transcripts. This review comprehensively discusses long non-coding RNAs (lncRNAs)
as an additional dynamic regulator of m6A methylation, with a focus on the untranslated
regions (UTRs) of mRNAs. Although there is extensive literature describing m6A
modification of lncRNA, the function of lncRNA in guiding m6A writers has not been
thoroughly explored. The independent control of lncRNA expression, its heterogeneous
roles in RNA metabolism, and its interactions with epigenetic machinery, alludes to their
potential in dynamic patterning of m6A methylation. While epigenetic regulation by histone
modification of H3K36me3 has been demonstrated to pattern RNA m6A methylation,
these modifications were specific to the coding and 3′UTR regions. However, there are
observations that 5′UTR m6A is distinct from that of the coding and 3′UTR regions, and
substantial evidence supports the active regulation of 5′UTR m6A methylation.
Consequently, two potential mechanisms in patterning the UTRs m6A methylation are
discussed; (1) Anti-sense lncRNA (AS-lncRNA) can either bind directly to the UTR, or (2)
act indirectly via recruitment of chromatin-modifying complexes to pattern m6A. Both
pathways can guide the m6A writer complex, facilitate m6A methylation and modulate
protein translation. Findings in the lncRNA-histone-m6A axis could potentially contribute to
the discovery of new functions of lncRNAs and clarify lncRNA-m6A findings in translational
medicine.
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INTRODUCTION

RNA modifications and RNA-RNA interactions are some of the oldest biological building blocks of
the cell (Schwartz, 1998; Higgs and Lehman, 2015). Long non-coding RNAs (lncRNAs) are an
abundant type of non-protein-coding RNA that have diverse functions in the nucleus, including
DNA organization, recruitment of histone proteins, RNA metabolism, and translational control via
direct epigenetic interactions (Schmitz et al., 2016). LncRNAs have been described to guide DNA
methylation, histone modifications, and, recently, RNA methylation (Kim et al., 2015; Marchese
et al., 2017; Chen et al., 2020). While patterned by multiple mechanisms, n6-methyladenosine (m6A)
methylation of RNA is the most abundant internal post-transcriptional modification and is most
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prevalent on the coding sequence (CDS) and 3′ untranslated
region (UTR) (Meyer et al., 2012). The reversible modification of
m6A methylation is catalyzed by “writer” proteins (Mettl3/
Mettl14/WTAP) (Figure 1A), and demethylated by “erasers”
(FTO/ALKBH5). M6A methylation has been described to be
involved in alternative splicing, transport, stability of RNAs
and to regulate RNA translation (B. Wu et al., 2017a; Shi H.
et al., 2019). Cap-independent translation is a potent ribosome
recruitment mechanism that bypasses translational control
checkpoints during a rapid cellular response to environmental
or physiological insults (Leppek et al., 2018). While present in low
abundance, m6A methylation at the 5′UTR has been shown to
selectively initiate cap-independent protein translation (Meyer
et al., 2015; Zhou et al., 2015; Coots et al., 2017). Yet, the
mechanisms that govern m6A patterning on the 5′UTR are
poorly understood.

The 5′UTR is a critical regulator of the final product of gene
expression given it can either enhance or repress the translational
state of messenger RNAs (mRNAs) (Sendoel et al., 2017; Leppek
et al., 2018). Since translational control is highly regulated (Silvera
et al., 2010; Buffington et al., 2014), and single mRNA transcripts
can persistently generate protein products (English et al., 2016), a
mechanism that can tag RNAs to bypass canonical translational
control is of tremendous significance. As observed in the study of
the heat shock response (Meyer et al., 2015; Zhou et al., 2015),
changes in m6Amethylated 5′UTR (m6A 5′UTR) can alter a cell’s
biological state in response to environmental cues or perturbation
(Figure 1). This prompts a significant need to understand 5′UTR

m6A patterning mechanisms. However, most studies observe a
scarcity of m6A methylation at the 5′UTR (Fu et al., 2014).
Because 5‘UTR methylation is both WTAP-independent
(Schwartz et al., 2014) and Zc3h13-independent (Wen et al.,
2018), this suggests that it is regulated by other sources (Meyer
et al., 2012; Dominissini et al., 2013; Schwartz et al., 2014;
Koranda et al., 2018). Recently, knock-out of the Mettl14/
Mettl3 associated complex component Vir-like m6A
methyltransferase associated or VIRMA (a.k.a. KIAA1429),
was shown to increase the amount of 5’UTR m6A. This
suggests that the process may be regulated by protein
participants of the Mettl14/Mettl3 complex (Yue et al., 2018).
Furthermore, VIRMA upregulation has been associated with
tumorigenesis and seminoma cancer, consistent with aberrant
gene expression profiles (Lobo et al., 2019). Studies have
demonstrated that m6A at the 5′UTR can be altered due to
biological signals such as normal development (Xiao et al.,
2019), neurogenesis (Yoon et al., 2017), HIV infection
(Lichinchi et al., 2016), memory formation (Widagdo et al.,
2016) and stress response (J. Yu F. et al., 2018), supporting
dynamic regulation of m6A 5′UTR. However, the mechanism
by which transcript- andmethylation-site specificity at the 5′UTR
is controlled remains elusive (Zhao et al., 2018).

Multiple forms of regulating m6A methylation have been
described and are frequently being discovered (Huang et al.,
2020). For example, the histone modification H3K36me3
(Huang et al., 2019) was found to guide m6A methylation co-
transcriptionally, and microRNAs (miRNAs) (Chen et al., 2015)

FIGURE 1 |M6Amethylation at the UTRs can be patterned by lncRNAs. (A)M6Amethylation by writer complex occurring primarily at the CDS and 3′UTR of mRNA.
Methylated mRNA is then exported from the nucleus and undergoes cap-dependent protein translation. (B) LncRNAs directly guide the m6A Writer complex by
association with Virma to pattern the 5′UTRwithm6A. Upon export, 5′UTRmethylatedmRNA undergoes Cap-independent protein translation by recruitment of eiF3 and
bypassing regulatory networks. (C) LncRNAs can recruit histone modifying enzymes that result in m6A patterning. Transcripts are then exported from the nucleus
and mRNAs methylated at the 5′UTR undergo Cap-independent protein translation.
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were found to mediate binding of Mettl3 to target sites on
mRNAs. Yet, both mechanisms are preferential towards m6A
patterning of the CDS and 3′UTR. Interestingly, there are in-
depth descriptions of lncRNAs that recruit chromatin modifiers,
and that guide DNAmethylation (Savell et al., 2016; F. Yu J. et al.,
2018; Mishra and Kanduri, 2019). Non-Coding RNAs are broadly
known to act as guides for RNA modifications and m6A is no
exception; lncRNAs are now accepted as regulators of post-
transcriptional modifications (Leighton and Bredy, 2018; Chen
et al., 2020). Here, lncRNAs are reviewed as guides for m6A UTR
patterning and two potential non-mutually exclusive
mechanisms by which lncRNAs can dynamically control m6A
at the UTR are discussed. In one scenario (Figure 1B), lncRNAs
bind directly to the UTR of the mRNA transcripts to regulate
VIRMA binding and control UTR m6A levels, such as lncRNA
GATA3-AS (Lan et al., 2019). In the second scenario (Figure 1C),
lncRNA regulate epigenetic modifications of histone subunits
that ultimately pattern m6A on mRNA (Huang et al., 2019). This
review provides an in-depth analysis of these two non-opposing
mechanisms that may guide m6A to the 3′UTR and potentially
the 5′UTR, while highlighting the cross-talk between the
epigenome and the epitranscriptome.

CO-TRANSCRIPTIONAL NATURE OF M6A
METHYLATION, INCRNAS AND HISTONE
MODIFICATIONS
Histone modifiers, m6A writers, as well as hundreds of lncRNAs
are thought to localize to the same subcellular nuclear
compartment. However, whether these biological processes
localize and can function simultaneously at a single active
gene during transcription, e.g., co-transcriptionally, is a
fundamental question in understanding the precise control of
m6A methylation patterning (Perales and Bentley, 2009; Huang
et al., 2020).

M6A Methylation
The co-transcriptional nature of m6A deposition on RNA
molecules was described early in the re-invigoration of the
m6A modification field (Shi X. et al., 2019). M6A writers
interact with transcription factors, like FoxO6 (Zong et al.,
2020), with transcriptional machinery, like Poll2, along with
nascent transcribed RNA (Zhou et al., 2019). Furthermore, the
writer Mettl3 can bind directly with both promoter regions
(Barbieri et al., 2017) and transcription start sites (TSS) (Xiao
et al., 2019), and even with epigenetic machinery like histone
methyltransferases (Xu et al., 2021). For example, during TGF-β
pathway activation, the transcription factors SMAD2/3 promotes
writer complex Mettl3, Mettl14 and WTAP activity to selectively
methylate transcripts associated with cell fate specification
(Bertero et al., 2018). Additionally, RNA binding proteins that
bind to m6A sites, e.g. m6A “readers,” such as YTHDC1, can also
interact with epigenetic machinery (Li et al., 2020). Pivotal
findings have been made so far uncovering the co-
transcriptional landscape of m6A methylation, however, these
are likely only the first of many interactions with transcriptional

machinery to be discovered. Overall, it is still unclear what
patterning mechanisms prime the gene/transcript at the
epigenetic level.

LncRNAs in the Nucleus
LncRNAs have long been observed to interact with genomic
machinery within the nucleus. These lncRNAs have been
described to have direct interactions with DNA enhancer
regions [e.g. Pvt1 lncRNA to MYC enhancer (Olivero et al.,
2020)], transcription factors (Z. Wang et al., 2018a) (e.g.,
EPIC1), histones, pre-mRNA, and RNA-binding proteins
within the nucleus (Yao et al., 2019). Over 120,000 species
of lncRNA have been described to date (Volders et al., 2015),
with thousands of lncRNAs identified within the nucleus
(Frankish et al., 2019) using sequencing and fluorescent in
situ hybridization (Cabili et al., 2015) (FISH). Specific
lncRNAs demonstrate subcellular localization at nuclear
speckles (Quinodoz et al., 2021), paraspeckles (Bond and
Fox, 2009), and other nuclear regions such as nuclear bodies
(Chujo and Hirose, 2017). Nuclear localization studies
highlight how speckle-associated genomic domains tend to
be rich in open-reading frames (ORFs) and highly
transcriptionally active (van Steensel and Furlong, 2019).
Importantly, nuclear speckles is where m6A methylation
has been described to occur (Jia et al., 2011; Schöller et al.,
2018), and where Mettl14 is known to localize via direct
interaction with laminin-A (Zhang M. et al., 2020). While
this evidence suggests nuclear speckle localizing lncRNAs
could play a regulatory role in m6A methylation patterning,
more studies are necessary to elucidate the function of
lncRNAs within specific compartments of the nucleus.

Histone Modifications and
Co-Transcription
In the complex 3D environment of the nucleus, epigenetic
machinery regulates gene transcription and repression. The
histone proteins H2A, H2B, H3, and H4 are fundamental
constituents of the nucleosome, which are modified on their
N-terminal tails with reversible chromatin modifications.
The best studied modifications occur on H3 and H4,
which include histone acetylation (H3K27ac) and various
forms of lysine methylation (H3K4me1, H3K27me3 and
H3K36me3) (Zhao et al., 2021). Proteins that read these
histone modifications can activate or repress DNA
accessibility and bind with RNA transcription machinery
(Zhao et al., 2021). Conversely, histone proteins respond
to signals generated during transcription and pre-mRNA
processing. The pre-mRNA processing mechanisms known
to interact with histone modifications and transcription
machinery include: splicing, RNA editing, 5′ end capping,
and, most recently, m6A methylation (Bentley, 2002; Huang
et al., 2020; Kan et al., 2022). Given the novelty, only a few
studies have identified epigenetic-epitranscriptomic network
interactions. As described in the following sections,
H3K36me3 and H3K27me3 were found to bind with m6A
writers, suggesting this new branch in the field of RNA
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modifications is likely to continue to expand (Huang et al.,
2019; Wu et al., 2020).

CONTEXT DEPENDENT CHANGES IN
LNCRNA EXPRESSION, 59UTR M6A
PATTERNING, AND HISTONE
MODIFICATIONS

Many biological processes dynamically modulate lncRNA
expression, m6A patterning, and the chromatin landscape (see
Table 1). This review presents many of the typical physiological
and pathological cell states in which all three of these epigenetic-
epitranscriptomic mechanisms exhibit dynamic expression
patterns. While this section lists correlational observations,
many of the examples delineated here have already been

described to exhibit bidirectional regulatory relationships that
involve lncRNAs, histonemodifications and/or m6Amethylation.

Changes in 59UTR m6A Patterning
The dynamic mechanisms that govern the precise control of m6A
methylation is of particular interest in the growing field of RNA
modifications (Shi H. et al., 2019). Given that patterns in m6A can
change rapidly, it has been proposed that 5′UTR m6A
methylation may be a means of coordinated rapid response to
environmental perturbation (Zhou et al., 2015). Differential and
often rapid m6A methylation of specific transcripts has been
described in multiple biological systems such as cancer,
development, stress, learning and memory, infection, and
cellular reprogramming (See Table 1).

The complexity of the nervous system has generated great
interest in the epitranscriptome. A pioneering study of m6A in the

TABLE 1 | Correlation of regulatory dynamics in select biological and pathological states.

Cellular state — Mechanism Ref

EMT and Cancer lncRNA Hundreds of lncRNAs have been associated with tumor initiation,
progression, metastasis and survival rates

Du et al. (2013); Terashima et al. (2017); Wang et al.
(2018b); Lv et al. (2020)

5′UTR
m6A

Associated with EMT transition and metastasis Zhang et al. (2017); Lin et al. (2019); Yue et al. (2019)

Chromatin Histone and DNA methylation are mis-regulated in many types of cancers Sun and Fang. (2016); Zhao et al. (2021)

Development lncRNA Over 300 positively correlated lncRNA-mRNA interactions in vertebrate
development have been identified

(Devaux et al. (2015); Xiao et al. (2019); Pillay et al. (2021)

5′UTR
m6A

m6A at the 5′UTR is particularly low early in development Batista et al. (2014); Seo et al. (2019)

Chromatin Histone modifications exhibit highly specific yet dynamic patterns during
development

Zhang et al. (2016); Zheng et al. (2016)

Corticogenesis lncRNA Necessary for identity commitment, generation of intermediate progenitors
and cellular maturation

Wu et al. (2013); Aprea and Calegari. (2015); Aprea et al.
(2015); Goff et al. (2015)

5′UTR
m6A

Regulates cell-cycle progression of neural progenitor cells Yoon et al. (2017)

Chromatin Control of progenitor renewal, generation of intermediate-progenitors and
neuron migration

Mossink et al. (2021)

Stress lncRNA LncRNAs have been observed to respond to metabolite deprivation, heat-
shock, and DNA damage

Audas and Lee. (2016); Pirogov et al. (2019); Cai and
Jiang. (2020)

5′UTR
m6A

Critical in the response and regulation of stress Zhou et al. (2015); Zhou et al. (2018); Engel et al. (2018)

Chromatin Precise control of histone methylation and acetylation is critical to normal
physiological response to stressors

Golden et al. (2013); Wang et al. (2017a); Anderson et al.
(2018)

Learning and
Memory

lncRNA lncRNAs can regulate activity dependent synaptic plasticity Savell et al. (2016); Wang et al. (2017b)
5′UTR
m6A

m6A methylation is dynamically regulated during learning and is essential in
memory formation

Widagdo et al. (2016); Koranda et al. (2018)

Chromatin Histone modifications are both critical and receptive to synaptic plasticity Jakovcevski et al. (2015); Campbell and Wood. (2019)

Infection lncRNA Both cis- and trans acting lncRNAs can regulate host immune response
during pathogen infection

Shirahama et al. (2020); Walther and Schulte. (2021)

5′UTR
m6A

Increase in m6A peaks at the 5′UTR with bacterial infection Wu et al. (2020); Zong et al. (2020)

Chromatin Histone modifications are essential in host immune response or hijacked
during bacterial infection

Marazzi et al. (2018)

Reprogramming lncRNA 312 differentially expressed lncRNAs during cellular reprogramming Kim et al. (2015)
5′UTR
m6A

Dynamic changes in 5′ UTR m6A in embryonic stem cells, induced
pluripotent stem cells and neural stem cells

Aguilo et al. (2015); Chen et al. (2015); Zhang et al.
(2020a)

Chromatin Histone modifications regulate and exhibit complex dynamics beginning at
early stages of reprogramming

Liang et al. (2012); Onder et al. (2012); Sridharan et al.
(2013)
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brain observed dynamic changes in m6A levels during cortical
neurogenesis and was found to be critical in mediating RNA
decay during neuronal maturation (Yoon et al., 2017). In another
study, the m6A levels at the 5′UTR of the synaptic protein
DSCR1.4 increased with BDNF stimulation resulting in axon
growth, confirming m6A involvement in central nervous system
plasticity (Seo et al., 2019) and axon regeneration (Weng et al.,
2018a). Interestingly, a slight increase in 5′UTR m6A-modified
transcripts was observed within synaptosome fractions when
compared to whole cell lysate (Merkurjev et al., 2018). Among
the noteworthy synaptic RNAs identified byMerkurjev et al. were
CaMKIIa and Shank1, that have been previously suggested to
undergo non-canonical Cap-independent protein translation
(Pinkstaff et al., 2001; Studtmann et al., 2014). The
mammalian stress response represents another potent example
of a physiological process that exhibits dynamic changes in the
epitranscriptome. During stress response, changes in readers
(YTHDC1), writers (Mettl3), erasers (FTO) as well as global
changes in m6A patterns are observed. Specifically, 5′UTR m6A
increased with response to fasting (Zhou et al., 2018), and
exhibited brain region-specific dynamics in stress regulation in
rodents (Engel et al., 2018). These studies fortify the notion that 5′
UTR m6A methylation acts as a rapid-response mechanism to
physiological and environmental change.

Understanding m6A methylation patterns during epithelial
mesenchymal transition (EMT) of oncogenes is a rapidly
expanding field (Yue et al., 2019; Bera and Lewis, 2020).
Increases in 5′UTR m6A were observed during EMT of cancer
cells and during metastasis (Lin et al., 2019). The cross-talk of
histone methylation and m6A methylation was described in great
mechanistic detail and is suggested to be important during
pathogen infection and the host immune response (Wu et al.,
2020), as well as in playing a significant role in maintaining the
pluripotency of stem cells (Huang et al., 2019). However,
generally low levels of m6A methylation are observed during
early phases of development and throughout pluripotency
(Aguilo et al., 2015), but this phenomenon is poorly
understood. Nevertheless, these lines of evidence support that
5′UTR m6A methylation exhibits context dependent patterning
and coordinated rapid response.

Dynamic lncRNA Expression
LncRNAs are well described to exhibit differential and cell-type
specific expression patterns across multiple biological systems
and during cell state changes including cancer (Terashima et al.,
2017), stress (Carrieri et al., 2012), development (Pillay et al.,
2021) and memory formation (Wang et al., 2017a) (see Table 1).

Production of anti-sense (AS) RNAs is abundant in the human
brain (Mills et al., 2016). For instance, AS RNAs are integral to the
epigenetic regulation of the activity dependent neuronal cFos
gene during memory formation. The anti-sense FOS (AS-Fos)
RNA was found to be temporally co-expressed in an activity-
dependent manner with cFos mRNA. Upon cFos open reading
frame activation, a transcript produced from the 3′UTR, AS-fos
RNA, binds to the CpG promoter region of the Fos gene,
inhibiting DNA methylation and promoting gene transcription
(Savell et al., 2016). Savell et al. found AS-Fos to be essential for

long-term memory formation but not short-term memory in the
hippocampus during fear learning. This study alludes to the
importance of temporarily precise transcriptional control by
lncRNAs in the context of memory formation (Savell et al., 2016).

LncRNAs have commonly been studied in the context of
stroke. One report found about 80 lncRNAs were differentially
expressed during ischemic stroke, including the upregulation of
the antisense lncRNA-N1LR(Z. Wu et al., 2017b). LncRNA
upregulation is associated with stroke risk and recurrence (Bao
et al., 2018), including antisense noncoding RNA in the INK4
locus (ANRILs) (Zhang et al., 2012). Interestingly, the expression
of ANRILs is also associated with inflammation and oxidative
stress (Cai and Jiang, 2020), as well as melanoma and neural
tumors (Pasmant et al., 2007). This suggests lncRNA ANRILs
respond to multiple cellular stressors.

Deep-sequencing studies of tumor biopsies and cancer cell
lines have identified hundreds and occasionally thousands of
differentially expressed lncRNAs. Among these studies, lncRNA
EPIC1 (epigenetically-induced lncRNA1) was identified. EPIC1
directly interacts with the oncogene MYC and enhances MYC
binding to target gene promoters resulting cell-cycle progression
(Wang Y. et al., 2018). The lncRNA MEG3 is differentially
expressed in during EMT transition and in multiple forms of
cancer (Du et al., 2013; Terashima et al., 2017). MEG3 was found
to associate with JARED2, to recruit PRC2, and induce histone
H3K27 methylation on the regulatory regions of CDH1 gene. In
summary, lncRNAs exhibit dynamic roles in cancer progression,
many of which entail direct interactions with genes and histone
modifying enzymes.

Alterations in Histone Modifications
Epigenetic machinery is an essential core regulator and
stabilizer of gene expression programs during both normal
physiological and pathological states. The biological
processes that regulate changes in histone modifications
are heavily reviewed (Zhao et al., 2021). The epigenetic
landscape is generally thought to include DNA
methylation, nucleosome remodeling, 3D DNA
organization, and reversible histone modifications. This
review focuses on the nature of histone modifications and
their potential m6A pattering capabilities during changes in
cellular physiology.

There are hundreds of examples that describe the dynamic
regulation and necessity of precise epigenetic control of
chromatin remodeling during brain plasticity, stress response
and development (see Table 1) (Mossink et al., 2021). Histone
modifications such as H3K27ac have been extensively studied in
the context of learning and memory formation (Campbell and
Wood, 2019). Additionally, histone deacetylase 2 (HDAC2) is
activated by glucocorticoid stress hormone and essential in
regulating physiological stress response (Wang S. E. et al.,
2017). Histone methyltransferases, like KMT2A and KMT2B,
that regulate H3K4me are required for working memory and
long-term memory formation to occur (Kerimoglu et al., 2013;
Jakovcevski et al., 2015). Furthermore, increases in H3K9me2
were observed to exacerbate the anxiolytic response to withdrawal
from cocaine addiction (Anderson et al., 2018). These examples
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highlight the capability of histone modifying enzymes to respond
relatively quickly to changes in physiological state, a necessary
characteristic for timely regulation of m6A patterning.

This review only briefly examines many types of changes in
cell state that depend on the epitranscriptome and epigenome for
down-stream physiological processes to occur. Importantly, for
many of these, lncRNAs play essential roles. Next, many relevant
mechanisms by which lncRNA act co-transcriptionally and
during RNA pre-processing are discussed, as to further
highlight the potential of lncRNA to pattern m6A methylation
via multiple mechanisms.

GUIDE NC-RNAS IN RNA MODIFICATION
AND TARGETED AS-LNCRNA BINDING

Non-Coding RNAs are some of the oldest biological building
blocks of the cell. This section reviews ncRNAs and lncRNAs
interacting directly with RNA transcripts and as guides in
RNA modification. Furthermore, given the regulatory
implications of m6A at the 5′UTR, instances of lncRNAs
binding to the untranslated regions of mRNAs are discussed.
Additionally, functional categorizations of lncRNAs in terms
of biogenesis and mode of action are reviewed. This section
serves to contrast lncRNAs that bind with histone modifying
enzymes and focuses of lncRNAs binding directly with RNA
transcripts.

NcRNAs Act as Guides in RNA
Modifications
Non-coding RNAs (ncRNAs) have been studied in great depth
for their ability to act as guides in RNA methylation, acetylation
and pseudouridylation. These ncRNAs serve as case studies in the
analysis of lncRNA-guided m6A methylation in the complex
nuclear environment. Small nucleolar RNAs (snoRNAs) are
abundant ancient ncRNAs that range between 80 and 1,000
nucleotides in length. There are at least 200 guide snoRNAs in
humans, necessary for multiple post-transcriptional
modifications in eukaryotic rRNAs and tRNAs(Dieci et al.,
2009). SnoRNAs guide the methylation (Kiss-Laszlo, 1998; van
Nues et al., 2011), acetylation (Sharma et al., 2017), and
pseudouridylation (Kiss et al., 2004) of ncRNAs in order to
generate functional and mature RNA species. Another
example are small Cajal-body-associated RNAs (scaRNAs) that
guide the post-transcriptional modification of spliceosomal small
nuclear RNA (snRNAs). ScaRNA have been found to bind
directly via RNA:RNA interactions with snRNA to guide 2’-
O’methylation and pseudouridylation of the transcript (Darzacq
et al., 2002). This line of evidence supports nc-RNAs and
lncRNAs interacting with target RNAs in complex nuclear
environments (Engreitz et al., 2016), acting on multiple RNA
metabolism pathways to facilitate post-transcriptional events.
However, ncRNAs binding specifically to the 5′ UTR of
mRNA transcripts is significant, given the effect on
translational control.

LncRNAs can Target the UTRs
LncRNAs are well known to bind directly with target RNA
transcripts causing alternative splicing, scaffolding to RNA
binding proteins and change in protein translation dynamics
(Yao et al., 2019). While less than 10% of developmentally active
As-lncRNAs exhibit complimentary sequence overlap with 3′
UTR or 5′ UTRs of protein coding mRNA transcripts (Pillay
et al., 2021), there are multiple examples of AS-ncRNAs binding
to 5′UTRs. This section highlights examples of lncRNAs binding
specifically to 5′UTRs.

The discovery of the antisense lncRNA for ubiquitin
carboxyterminal hydrolase L1 (AS-Uchl1) was significant,
given it was the first description of a lncRNA regulating
protein translation at the ribosomal level (Carrieri et al.,
2012). AS-Uchl1 is nuclear enriched, and upon binding with
the 5′UTR of UCHL1mRNA, both are exported to the cytoplasm.
AS-Uchl1 then recruit ribosomes to initiate the translation of
UCHL1 protein. Given AS-Uchl1 expression was found to be
regulated by stress signaling in neurons, this alludes to fast-acting
lncRNAs that can alter gene regulatory networks in response to
physiological change in state (Carrieri et al., 2012).

Few studies have deciphered the mechanisms of lncRNA and
5′UTR binding. For instance, the ZEB2-AS1 was reported to bind
to the 5′UTR of Zeb2 pre-mRNA after EMT. Upon binding,
ZEB2-AS1 acts on the spliceosome, facilitating the retention of an
internal ribosome entry site (IRES) containing intron in Zeb2
mRNA. The IRES promotes cap-independent protein translation
of Zeb2 and down regulates E-cadherin (Beltran et al., 2008).
Others have implicated expression of ZEB2-AS1 with shorter
overall survival in patients with acute myeloid leukemia (Shi X.
et al., 2019). Overall, the description of ZEB2-AS1 is a clear
example of lncRNA binding to 5‘UTRs during mRNA co-
transcriptional events.

These examples specifically highlight and support how
antisense lncRNAs can function in different locations of the
cell. AS-Uchl1 is trafficked to the cytoplasm and is an example
of lncRNAs functioning outside the nucleus. In contrast, ZEB2-
AS1 was an example of a lncRNA that acts within the area it was
transcribed. Next, the nomenclature and functional implications
of lncRNAs acting near or distant from the site of its transcription
is reviewed.

Cis- and Trans-Acting lncRNAs
The specificity of lncRNAs targeting individual mRNAs (or
DNA/Chromatin) depends in part on its transcriptional origin
within the genome. This review utilizes a broad classification of
lncRNAs dependent on their origin and site of action; Cis-acting
lncRNAs that act near the site of transcription (Figure 2A), and
Trans-acting lncRNAs that act at distant sites from their locus of
transcription (Figure 2B), for example, in the cytoplasm
(Marchese et al., 2017; Kopp and Mendell, 2018). This
classification of lncRNA facilitates interpreting the mechanism
by which lncRNAs might guide m6A patterning, given the co-
transcriptional nature of m6A methylation and known nuclear
functions in RNA binding of distinct lncRNAs.

Cis-acting lncRNAs, or cis-antisense lncRNAs, are well known
to function in gene regulation. These can be generated in a variety
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of ways, including bi-directional transcription during R-Loop
formation (Tan-Wong et al., 2019) or presence of bi-directional
promoters (Uesaka et al., 2014) (Figure 2A). These local lncRNAs
are quite stable and exhibit long half-lives, with an average of
4.8 h, many exceeding 12 h, though of less duration than the
mRNAs they regulate (Tani et al., 2015). Most studies agree that
AS-lncRNAs mostly localize, and likely function, near their
transcriptional loci. Some estimates suggest around 93% of
nuclear lncRNAs are Cis-acting lncRNAs (Quinodoz et al.,
2021). Given the anti-sense nature of cis-acting AS-lncRNAs,
the long half-life, and the immediate proximity to target mRNAs,
these AS-lncRNAs make suitable candidates as direct binding
partners with the UTR and guides of m6A writer machinery. This
hypothesis is supported by the observation that GATA3-AS
lncRNA binds with GATA3 mRNA to regulate m6A
patterning (Lan et al., 2019).

Trans-acting lncRNAs, in contrast to cis-acting lncRNAs,
function at distant nuclear or cytoplasmic sites from their
transcriptional loci of origin (Figure 2B). Common examples
of trans-acting lncRNAs might be transcribed from pseudogenes
(Muro and Andrade-Navarro, 2010; Johnsson et al., 2013) and
large intergenic non-coding RNAs (lincRNAs) (Guttman et al.,

2011). Trans-acting lncRNAs are known to interact with
epigenetic machinery (Zhao et al., 2010), and it is this
involvement in chromatin remodeling that is likely to
contribute to a trans-acting pathway that alters UTR
methylation patterns. This proposal is enticing, given that
trans-acting lncRNAs can affect multiple gene/mRNA species
through “multi-way contract” with histone remodeling
complexes. This classification of lncRNAs provides insight into
how different, sometimes parallel pathways might converge on
RNA expression mechanisms.

LNCRNAS, CHROMATIN REMODELING
AND M6A METHYLATION SUGGESTS
EPIGENETIC CROSS-TALK
Examples of lncRNAs in m6A Dynamics
Since the first observation that lncRNAs undergo m6A
methylation (Meyer et al., 2012), a multitude of studies have
expanded the repertoire and importance of m6A modified
lncRNAs(Fazi and Fatica, 2019; Lv et al., 2020; Xue et al.,
2020). Conversely, a few yet pivotal studies have identified role

FIGURE 2 | Cis- and Trans-acting lncRNAs in m6A patterning. (A) Cis-acting lncRNA can be generated by bidirectional transcription via R-loop formation. AS-
lncRNA can then bind directly with nascent mRNA. (B) Representation of Trans-acting lncRNAs. Histones are shown to be repressed in Chromosome A. Change in
physiological state opens chromatin to facilitate gene expression, simultaneously, lncRNAs at Chromosome B are being transcribed. LncRNAs are then trafficked to
Chromosome A to guide histone modifications. (Red dots, H3K4me1. Green dots, H3K27ac. Magenta dots, H3K36me3).
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of lncRNAs in guiding the m6A writer complex, readers, and
erasers to mRNA targets (Figure 3A). A particular example is that
of the cis-acting lncRNA GATA3-AS and its ability to recruit
VIRMA and facilitate the m6A modification of the 3′UTR of
GATA3 pre-mRNA. The downstream effect of GATA3 m6A
methylation was disrupted binding of HuR protein, down
regulation of GATA3, and increased metastasis of liver cancer
(Lan et al., 2019). More studies are necessary to elucidate the
mechanism by which lncRNA recruits VIRMA and the structural
changes induced by lncRNA-mRNA binding that would alter
writer complex activity to pattern m6A.

M6A readers and erasers have been described to utilize both
cis- and trans-acting lncRNAs as guides. LINC00857 was
observed to cooperate with reader YTHDC1 to increase the
stability of SLC7A5 mRNA in colorectal cancer cells (Tang
et al., 2021). The lncRNA KB 1980E6.3 was found to form an
RNA: protein complex with the m6A reader IGF2BP1 to facilitate
the recognition and mRNA stability of m6A modified c-Myc in
breast cancer stem cells (Zhu et al., 2021). LncRNAs have been
found to interact with both m6A FTO and ALKBH5 Eraser
proteins. FOXM1-AS increases the interaction of FOXM1 and
ALKBH5, promoting demethylation of FOXM1 decreasing both
FOXM1 expression and tumor growth (Zhang et al., 2017). In a
similar study, the lncRNA GAS-AS1 was found to promote the
ALKBH5-dependent demethylation of GAS mRNA and inhibit
cervical cancer proliferation (Wang et al., 2019; Chen et al., 2020).
Additionally, the lincRNA CASC15 is thought to recruit the
demethylase FTO to SIM2, decreasing SIM2 mRNA stability
and promoting esophageal cancer progression (Qin et al.,
2020). Furthermore, specific lncRNAs such as CACNA1G-AS1
and ACAP2-IT1 have been predicted to regulate m6A readers and
writers expression (Zheng et al., 2021). These initial studies

provide substantial evidence that lncRNAs have dynamic
interactions with m6A proteins, and additional research is
likely to provide further examples.

Chromatin Modifications and m6A
Deposition
There is a growing body of literature that describes bi-directional
interactions between the epigenome and the epitranscriptome
(Figure 3A). This was first observed in the context of m6A
methylation upon knock-down of m6A writer Mettl14, which
altered the expression of histone modifying proteins (Y. Wang Z.
et al., 2018). Since then, manipulations of readers, writers, and
erasers, as well as the m6A modification itself, have been found to
impact histone modifications. See Kan et al. for recent review
(Kan et al., 2022). A clear example was the observation that m6A
could co-transcriptionally direct the demethylation of histone
H3K9me2 (Li et al., 2020). This occurs by m6A reader YTHDC1
physically interacting with the H3K9me2 demethylase KDM3B at
m6A-associated chromatin regions, promoting H3K9me2
demethylation and increasing overall gene expression. In
another example, H3K27me3 was described as a barrier for
m6A modification during transcription. Furthermore, the
histone demethylase KDM6B that targets H3K27me3 directly
recruits writers Mettl3 and Mettl14 to facilitate m6A methylation
of co-transcribing mRNAs while simultaneously promoting
transcription (Wu et al., 2020).

Recently, chromatin remodeling by H3K36me3 was observed
to pattern m6A at the CDS and 3′UTR regions of RNA (Huang
et al., 2019). Specifically, H3K36me3 scantly effected m6A
levels in the 5′UTR in contrast to the CDS and 3′UTR.
Furthermore, the repressive histone mark H3K9me3 was

FIGURE 3 | Epigenetic crosstalk among lncRNAs, histones and m6A regulate gene expression. (A) schematic representation of bi-directional regulation in co-
transcriptional machinery. LncRNAs can change histone dynamics, while histones control lncRNA expression. M6A on lncRNAs modulate RNA metabolism, while
lncRNAs guide m6A patterning. Finally, m6A alters histone modifications, while histone modifications pattern m6A modification. (B) Crosstalk between lncRNAs, histone
modifications and m6A integrate distinct signals that alter upstream epigenetic landscape and downstream RNA metabolism.
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negatively correlated with m6A peaks, and metagene profiles
of m6A at H3K36me3-negative sites correlated with increased
5′UTR methylation (Huang et al., 2019). Additionally, all the
members of the core m6A writer complex, Mettl14, Mettl3 and
WTAP, were found to bind with H3K36me3 and not with
H3K9me3. However, members of the associated writer
complex, VIRMA, Zc3h13, and Hakai were not tested.
Interestingly, individual shRNA silencing of Mettl14,
Mettl3 or WTAP did not dissociate the remaining m6A
writer complex proteins from H3K36me3, which warrants
future investigation.

As described, H3K36me3 peaks were anti-correlated with m6A
at the 5′UTR (Huang et al., 2019). This discrepancy
H3K36me3 relative to m6A patterning can be rationalized
by considering the “histone code.” It is generally accepted that
a gene is occupied by multiple nucleosomes, given that a
nucleosome repeat consists of 140–200 bp of DNA. While the
length of the mammalian 5′UTR can range between few
nucleotides to several thousand, the median length of the
5′UTR in humans and mice is of 218 and 175, respectively
(Leppek et al., 2018). Additionally, the first nucleosome
immediately after the transcriptional start site (TSS), e.g.,
the one that may occupy the 5′UTR, exhibits distinct
regulatory dynamics when compared to those of the CDS
(Zhang and Pugh, 2011). These correlations warrant further
exploration of how the epigenetic landscape patterns m6A on
the 5′UTRs co-transcriptionally. Consequently, other histone
post-translational modifications and the role of 3D DNA
organization need to be explored in the context of m6A
methylation.

LncRNA Interacting With Chromatin
Organizers
There is an extensive body of literature that describes lncRNAs
interacting with the histone modifiers (Yao et al., 2019)
(Figure 3A). Interestingly, lncRNA databases predict that at
least 20% of lncRNAs guide DNA/protein and chromatin
interactions within the nucleus (Volders et al., 2015). This is
impressive, given over 10,000 have been predicted to exist
(Volders et al., 2015). This account supports the abundant
discovery of lncRNAs that interact with chromatin modifiers.
This section reviews major findings of lncRNAs interacting with
histone methylation proteins, as to highlight the potential of
lncRNAs to interact with histone modifiers, enabling m6A
patterning of mRNA transcripts.

As previously mentioned, H3K36me3 can guide m6A
methylation co-transcriptionally (Huang et al., 2019).
Multiple lncRNAs such as MEG3 (Terashima et al., 2017),
Kcnq1ot1 (Pandey et al., 2008) and Air (Nagano et al., 2008)
interact directly with histone methyltransferases for H3K36,
and specifically regulate H3K36me3. LncRNAs have been
found to interact with a variety of histone
methyltransferases. An interesting example is that of
HOTTIP, a divergently expressed lncRNA that promotes
entire gene-expression programs by H3K4me3 patterning

(Wang et al., 2011). In addition, the lncRNA Hotair that
binds to G-A base pair rich DNA, correlates with H3K27me3
peaks (Chu et al., 2011). Deep-sequencing has also revealed
both cis- and trans-acting lncRNAs, with 218 confirmed
lincRNAs that bind directly with the Polycomb repressive
complex 2 (PRC2), a protein complex that exhibits histone
methyltransferase activity primarily on H3K27me3 (Zhao
et al., 2010).

FINAL REMARKS

It is unlikely any specific pathway will be found to exclusively
regulate m6A methylation patterns. This is perhaps due to the
diversity of proteins within the writer complex contributing to
a combinatorial mechanism to dictate m6A deposition. While
lncRNAs may not be the exclusive mechanism that guides
UTR m6A methylation, it is a contributor of m6A patterning
in RNA, as it is for DNA and histones. A continuum of
interesting phenomena hasbeen described to pattern the
RNA modifications, and future research will likely describe
these multiple mechanisms as cofactors in the crosstalk of the
epigenome and the epitranscriptome (Figure 3B). Such
findings will elucidate previously undescribed RNA
interactions to which disease or single nucleotide
polymorphisms (SNPs) may be attributed. Future research
will provide more examples of extensive cross talk between the
epigenome and epitranscriptome. Most likely positive and
negative feedback systems, as well as sources of illness and
targets of intervention.
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GLOSSARY

ANRIL antisense noncoding RNA in the INK4 locus

AS anti-sense

AS-lncRNAs anti sense long non-coding RNAs

Bp base pairs

CDS coding sequence

EMT epithelial mesenchymal transition

FISH fluorescent in situ hybridization

H2A histone H2A

H2B histone H2B

H3 histone H3

H3K4me1 histone H3 lysine 4 methylation

H3K9me2 histone H3 lysine 9 di-methylation

H3K27ac histone H3 lysine 27 acetylation

H3K27me3 histone H3 lysine 27 tri-methylation

H3K36me3 histone H3 lysine 36 tri-methylation

H4 histone H4

HDAC2 histone deacetylase 2

IRES - internal ribosome entry site

lincRNAs large intergenic non-coding RNAs

lncRNA long non-coding RNAs

m6A N6-methyladenosine

miRNA micro RNAs

mRNA messenger RNA

ncRNA non-coding RNA

ORFs open-reading frames

PRC2 polycomb repressive complex 2

rRNAs ribosomal RNAs

scaRNAs cajal-body-associated RNAs

snoRNAs small nucleolar RNAs
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