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Cannabinoid type 1 receptor mediates depot-specific
effects on differentiation, inflammation and
oxidative metabolism in inguinal and epididymal
white adipocytes

IV Wagner, N Perwitz, M Drenckhan, H Lehnert and J Klein

Department of Internal Medicine I, University of Luebeck, Luebeck, Germany

Objective: The endocannabinoid system is a major component in the control of energy metabolism. Cannabinoid 1 (CB1)-
receptor blockade induces weight loss and reduces the risk to develop the metabolic syndrome with its associated cardiovascular
complications. These effects are mediated by central and peripheral pathways. Interestingly, weight loss is mainly achieved by
a reduction of visceral fat mass. We analyzed fat depot-specific differences on adipocyte differentiation, inflammation and
oxidative metabolism in CB1-receptor knockout cells.
Materials and methods: We used newly generated epididymal/inguinal adipose cell lines from CB1-receptor knockout mice.
Differences in differentiation were measured by fat-specific Oil Red O staining and quantitative analysis of key differentiation
markers. Induction of apoptosis was evaluated by cell death detection and investigation of p53 phosphorylation. Inflammation
markers were quantified by real-time PCR. For analyzing the process of transdifferentiation we measured oxygen consumption
and mitochondrial biogenesis.
Results: Differentiation was reduced in visceral adipocytes from CB1-receptor knockout mice as compared with wild-type
controls. Moreover, we found an induction of apoptosis in these cells. In contrast, subcutaneous adipocytes from CB1-receptor
knockout mice showed an accelerated differentiation and a reduced rate of apoptosis. Inflammation was increased in visceral fat
cells, as analyzed by the expression pattern of interleukin-6, monocyte chemoattractant protein 1 (MCP-1), tumor necrosis
factor-a, whereas in subcutaneous adipocytes these markers were decreased. Furthermore, subcutaneous CB1-receptor
knockout cells were more sensitive toward a conversion into a brown fat phenotype. Uncoupling protein-1 as well as PGC-1a
expression was significantly elevated. This was accompanied by an increase in mitochondrial biogenesis and oxygen
consumption.
Conclusion: In conclusion, we found depot-specific effects on differentiation, apoptosis, inflammation and oxidative
metabolism in CB1-receptor knockout cells. Thus, CB1-receptor-mediated pathways differentially target adipose tissue depots
to a dual effect that minimizes cardiometabolic risk, on the one hand, by diminishing visceral fat, and that enhances
thermogenesis in subcutaneous adipocytes, on the other.
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Introduction

Obesity and related cardiovascular complications are one of

the major health problems at present. Obesity is commonly

seen as a disorder of energy balance, where energy

intake exceeds energy expenditure.1,2 Alteration of adipocyte

function is a critical component in the pathogenesis of

obesity and its related cardiometabolic complications.3

The endocannabinoid (EC) system is emerging as a key

player in the control of energy homeostasis.4 It stimulates a

positive energy balance via both central and peripheral

pathways. The cannabinoid 1 (CB1) receptor is distributed in

brain areas and is associated with motor control, emotional

responses, motivational behavior and energy homeostasis. In

the periphery, the same receptor is expressed in adiposeReceived 2 March 2011; revised 14 June 2011; accepted 10 July 2011
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tissue, pancreas, liver–gastrointestinal tract, skeletal muscles,

the heart and in the reproduction system. Stimulation of the

CB1-receptor with a specific agonist WIN 55212.2 has a

negative impact on thermogenesis in brown adipocytes and

favors a positive energy balance by regulating glucostatic

adipokines.5 In contrast, CB1-receptor-deficient mice have

less fat mass than their wild-type littermates and are protected

against diet-induced obesity.6 Blocking the receptor with a

selective CB1-receptor antagonist rimonabant induces weight

loss, increases insulin sensitivity, and improves cardiovascular

risk factors in overweight patients.7 The mechanisms respon-

sible for these effects remain only partially elucidated.

Recently, Tedesco et al.8 and our group presented several lines

of evidence, that a direct blockade of peripheral CB1-receptor

action in adipose tissue induces transdifferentiation in white

adipocytes toward a thermogenic active brown fat cell

phenotype and enhances insulin sensitivity.3

Different depots of white adipose tissue appear to exert

different endocrine functions.9–11 Excess of visceral abdominal

fat is known to be metabolically harmful and is associated with

high levels of cholesterols, hyperlipidemia, insulin resistance

and a high risk to develop atherosclerotic cardiovascular

disease.9–11 By contrast, subcutaneous fat may behave differ-

ently and even have a protective role.12–15 Porter et al.10

concluded after having analyzed more than 3001 patients

(Framingham heart study) that although adiposity increases

the absolute risk of metabolic and cardiovascular disease,

abdominal subcutaneous fat is not associated with a linear

increase in the prevalence of factors that are related to obesity.

Indeed, in the case of high triglycerides, subcutaneous adipose

tissue may actually be a protective fat depot in obese

humans.10,13 Visceral adipose tissue and subcutaneous adipose

tissue differ not only in their anatomic location and metabolic

function but also in their cytokine secretion profile. Sub-

cutaneous adipose tissue releases two to three times more

leptin than visceral adipose tissue;16 whereas visceral adipose

tissue secretes more adiponectin, interleukin (IL)-6 and -8,

plasminogen activator–inhibitor 1, and angiotensin than does

subcutaneous adipose tissue.17

Finally brown adipose tissue has a role in adaptive

thermogenesis, the part of energy expenditure induced by

cold exposure or diet.18–21 Brown adipose tissue dissipates

energy by uncoupling oxidative phosphorylation from ATP

production. This process is mediated by uncoupling protein-1

(UCP-1). UCP-1 expression, in turn, is critically regulated

by the transcriptional coactivator PGC-1a, which increases

the transcriptional activity of peroxisome proliferator-

activated receptor g (PPARg) on the UCP-1 promoter.22

Ectopic expression of PGC-1a in white adipose cells activates

expression of UCP-1, key mitochondrial enzymes of the

respiratory chain, and also enhances the cellular mitochon-

drial DNA.23 PGC-1a is expressed at higher levels in brown

adipose tissue than in white adipose tissue, and its expres-

sion is increased in response to cold exposure and

b-adrenergic stimulation. PPARg and its coactivators,

PGC-1a and SRC-1, influence brown adipocyte metabolism

and development. Tiraby and Langin1 showed evidence to

support the concept of an alteration in energy balance

through a conversion of white to brown adipose tissue.

Emergence of brown fat cells in white fat depots is associated

with a lean phenotype in transgenic mouse models.24,25

Transgenic expression of PRDM 16, at physiological levels, in

white fat depots stimulates the formation of brown fat

cells.26 It seems therefore possible that therapeutic strategies

aiming at altering the phenotype of white adipocytes could

be developed or used for the treatment of obesity.

The peripheral mechanisms responsible for a reduction

of visceral adipose tissue and the induction of a negative

energy balance when blocking the CB1-receptor remain

only partially elucidated. Here, we demonstrate depot-

specific effects in differentiation, apoptosis, inflammation

and oxidative metabolism in subcutaneous compared with

visceral adipocytes of CB1-receptor knockout mice.

Materials and methods

Materials

Antibody against PGC-1a, phospho-p53 (Ser15), p53 and

Pref-1 were ordered from Cell Signaling Technology Inc.

(Beverly, MA, USA). The UCP-1, cannabinoid type 1 receptor

and actin antibodies were purchased from Chemicon

International (Temecula, CA, USA). The antibodies used

against AP2 and PPARg were from Santa Cruz Biotechnology

Inc. (Santa Cruz, CA, USA). Primers for quantitative real-time

PCR were ordered from Biometra (Goettingen, Germany).

Glucose uptake assays were performed with 2-deoxy-3H

glucose from NEN Life Technologies (Deirich, Germany).

All other chemicals were from Sigma-Aldrich Co. (St Louis,

MO, USA), unless stated otherwise.

Methods

Generation of adipose cell lines. Periepididymal and inguinal

adipose tissues were taken from CB1-receptor knockout and

wild-type mice.

Adipose tissue was taken from periepididymal and

inguinal regions. After collagenase digestion (1 mg colla-

genase in 1 ml isolation buffer containing 0.123 mM NaCl,

5 mM KCl, 1.3 mM CaCl2, 5 mM glucose, 100 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid, 100 U ml�1

penicillin/streptomycin and 4% bovine serum albumin),

cells were transferred to culture plates and grown to 60–70%

confluence. Cells were immortalized with SV40T antigen.

Selection began after 72 h with puromycin (2mg ml�1) and was

maintained for 3 weeks. The study was conducted according

to the NIH guidelines for the care and use of laboratory

animals, and was authorized by the local regulatory authority

(Ministerium fuer Landwirtschaft, Umwelt und laendliche

Raeume des Bundeslandes Schleswig-Holstein).

Cell culture

Immortalized wild-type cells as well as newly generated

CB1-receptor knockout cell lines from epididymal and
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inguinal depots were differentiated in Dulbecco’s modified

Eagle’s medium supplemented with 20% fetal bovine serum,

4.5 g l�1 glucose, 20 nM insulin and 1 nM triiodthyronine

(differentiation medium) in a humified atmosphere of 5%

CO2 at 37 1C. When preadipocytes reached confluence, cell

differentiation was induced by 250 mM indomethacine,

500 mM isobutylmethhylxanthine and 2 mg ml�1 dexametha-

sone for 24 h (induction medium). Subsequently, cells were

grown in differentiation medium for another 6 days,

depending on the experiments performed.27,28

Western blot analysis/immunoblotting

After washing the cells with ice-cold phosphate-buffered

saline, proteins were isolated using cell lysis buffer contain-

ing 2 mM vanadate, 10 mg ml�1 aprotinin, 10 mg ml�1 leupep-

tin and 2 mM phenylmethylsulphonylfluoride. The protein

content was quantified using the Bradford protein assay

according to the manufacturer’s instructions (Bio-Rad,

Munich, Germany). Proteins were separated by SDS-poly-

acrylamide gel electrophoresis and transferred to nitro-

cellulose membranes (Schleicher and Schuell, Dassel,

Germany). Membranes were blocked with rinsing buffer

(10 mM Tris, 150 mM NaCl and 0,05% Tween, pH 7.2) inclu-

ding 3% bovine serum albumin or 5% skim milk at 4 1C over-

night. Protein bands were visualized using chemiluminescence

(Perkin-Elmer GMbH, Rodgau-Jügesheim, Germany) and

enhanced chemiluminescence films (Amersham Pharmacia

Biotech, Freiburg, Germany). The subsequent quantification

was performed using Quantity One Software (Bio-Rad). Gel

loading was normalized using actin as a control protein.

RNA isolation and quantitative real-time PCR

Total RNA was isolated using QIAzol reagent (Qiagen,

Hilden, Germany). To optimize the RNA quality a clean

up and DNase digestion were performed using the NucleoS-

pin RNA II Kit (Macherey-Nagel, Dueren, Germany). Quality

of RNA was tested by photometric analysis and agarose gel

electrophoresis. An amount of 2mg total RNA was reverse

transcribed using Superscript II (Invitrogen, Karlsruhe,

Germany) and an oligo p(DT)15 primer (Roche Molecular

Biochemicals, Mannheim, Germany) in the presence

of RNase inhibitor (Roche Molecular Biochemicals). Quanti-

tative real-time PCR were performed using 1� SYBR

Premix Ex Taq (TaKaRa Bio Europe, Saint-Germaine-Laye,

France) in a Mastercycler ep realplex (Eppendorf GmbH,

Hamburg, Germany). PCR for all targets was performed as

follows: initial denaturation at 95 1C for 300 s, 40 cycles with

95 1C for 20 s, 60 1C for 30 s. Specific amplification was

confirmed by producing melting curve profiles and by

subjecting the amplification products to agarose gel electro-

phoresis. 36B4 served as a housekeeping gene. Relative

quantification was done by using the Mastercycler ep

realplex software based on the CT method (DDCt method

software for relative quantification).29 Primer sequences are

available on request.

Oil Red O staining

Cells were cultivated in 10-cm plates and fat-specific staining

was performed with Oil Red O at days 0, 3 and 6 after

induction. For this purpose, adipocytes were washed twice

with phosphate-buffered saline and cells were subsequently

fixed with 10% formalin for at least 20 min. Afterwards, cells

were exposed to Oil Red O for 1 h at room temperature

(stocking solution: 0.5 g Oil Red O in 100 ml isopropanol;

working solution: 60% stocking solution plus 40% H2O). To

remove the staining solution, cells were washed several times

with distilled water. Representative macroscopic as well as

microscopic pictures at a 40-fold magnification were taken

using a digital camera (Olympus E330, Olympus Imaging

Europe, Hamburg, Germany). For densitometric analysis, Oil

Red O stain was removed by incubating the cells with

isopropanolol for 15 min. Optical density was measured at a

wavelength of 500 nm in a photometer.

Glucose uptake

Fully differentiated cells were serum deprived 24 h before the

experiment. After washing the cells twice with Krebs–Ringer

buffer, cells were incubated with or without insulin

(1 nM, 10 nM or 100 nM) for 30 min. Then a mix of 1 mM

2-desoxyglucose and 50mCi ml�1 2-desoxy-3H glucose was

added for additional 3 min. Cells were washed in phosphate-

buffered saline, and lysed with 0.1% SDS. The incorporated

radioactivity was determined by liquid scintillation counting.

Apoptosis

A photometric enzyme immunoassay for the qualitative and

quantitative in vitro determination of cytoplasmic histone-

associated DNA fragments after cell death was performed

using a cell death detection ELISA plus kit (Roche Molecular

Biochemicals, Mannheim, Germany) according to the

manufactures’s instructions.

Oxygen consumption

The respiration rate of preadipocytes and adipocytes was

measured by using a Clark-type oxygen electrode (Oxygraph

System, Hansatech, England). Adipocytes at days 0 and 6 of

differentiation were detached off the plate and trypsinated.

Trypsin was stopped with medium and the suspension was

centrifuged for 3 min (1500 r.p.m.) rinsed with phosphate-

buffered saline. The pellet was then resuspended in Dulbecco’s

modified Eagle’s medium without supplements. Each sample

was analyzed by incubating at least 106 cells over a period of

10 min. Measurement was made in a magnetically stirred

chamber, connected to a water circulation system to maintain

a stable chamber temperature (37 1C). The incoming signals

were detected by software from Hansatech and converted into

graphs. The rate of consumption was normalized against the

number of living cells, which were stained with Trypan blue

and were then counted in a Neubauer’s counting chamber.
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Flow cytometry

Adipocytes at day 6 of differentiation were trypsinated,

washed at least twice with phosphate-buffered saline and

were then fixed in 4% paraformaldehyde for at least

30 min. Labelling was done using 100 nM MitoFluor Green

(Invitrogen) for 20 min at room temperature as described by

the manufacturer. After staining the fluorescence intensity of

the cells was determined by FACS Canto (Becton and

Dickinson Biosciences, San Jose, CA, USA) and analyzed by

the Flow Software (Tree Star, Ashland, OR, USA).

Statistical analyses

Statistical analyses were performed with Sigma Plot software

(SPSS Science, Chicago, IL, USA). Results are presented as mean

values±s.e.m. Statistical significance was determined using the

unpaired Student’s t-test. P-values o0.05 were considered

significant, and those o0.01 were defined as highly significant.

Results

Depot-specific effects of CB1-receptor knockout on adipocyte
differentiation

In epididymal adipocytes of CB1-receptor knockout, we

found a lack of differentiation compared with controls,

whereas inguinal CB1-receptor knockout cells demonstrated

an accelerated lipid storage compared with inguinal wild-

type cells as assessed by microscopic pictures after Oil Red O

staining (Figure 1). These observations were confirmed by

densitometric analysis of Oil Red O staining (Figures 2a

and b). Lipid accumulation in epididymal CB1-receptor

knockout cells was significantly reduced on days 3 and 6.

In contrast, inguinal CB1-receptor knockout cells showed an

increase in differentiation on days 3 and 6. Furthermore, we

analyzed main differentiation markers in these cells at days

3 and 6 after induction. The Preadipocyte factor (Pref 1),

which is an inhibitory factor of adipogenesis, was markedly

induced with a maximum of nearly 700% on day 6 in

epididymal CB1-receptor knockout cells, whereas in inguinal

cells this marker was significantly reduced by 70%. In line

with these results, we found a decrease of PPARg, Glut 4 and

aP2 in epididymal CB1-receptor knockout fat cells by 40%,

68% and 52%, respectively. In inguinal CB1-receptor knock-

out cells, the expression of these late differentiation markers

was elevated (233% PPARg, 467% aP2, 33% Glut 4) compared

with their wild-type controls (Table 1).

CB1-receptor knockout enhances insulin sensitivity in inguinal
adipocytes

Insulin-induced glucose uptake was found to be impaired

in epidiymal CB1-receptor knockout cells by 10% (1 nM),

Epi CB1R KO

Epi Wildtype

Ing CB1R KO

Ing Wildtype

Day 0 Day 3 Day 6

Figure 1 Depot-specific effects on adipocyte differentiation are demonstrated. Oil Red O staining of newly generated inguinal (Ing) and epididymal (Epi) CB1-

receptor knockout (KO) cells compared with their wild-type control. Lipid accumulation was visualized at days 0, 3 and 6 during adipogenesis. Microscopic pictures

in 40-fold magnification are shown.
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18% (10 nM) and 28% (100 nM). In contrast, inguinal

CB1-receptor knockout cells showed an enhancement in

glucose uptake with an increase of 21% (1nM), 35% (10nM),

30% (100nM) compared with their wild-type controls (Figure 3).

CB1-receptor knockout induces apoptosis in epididymal but not
in inguinal cells

We next assessed the phosphorylation of p53, a marker for

apoptosis. We found a highly significant increase of p53

phosphorylation in epididymal knockout cells compared with

their control cells. This effect was dose-dependent with a 562%

increase on day 3 and 1329% on day 6 of the differen-

tiation cycle. In contrast, inguinal CB1-receptor knockout cells

showed a reduction in p53 phosphorylation by 57% on day 3

and 84% on day 6 (Figure 4). To confirm these data, we next

examined apoptotic cell death in both cell depots at day 0. In

line with the results for p53 phosphorylation, we also found

an increase of cell death in epididymal CB1-receptor knock-

outs by B51%, whereas inguinal CB1-receptor knockout cells

resulted in a significantly decreased apoptotic rate by 41%

when compared with their control cells (Figure 5).

CB1-receptor knockout influences inflammatory adipokine gene
expression in a depot-specific matter

To examine the effect of a CB1-receptor blockade on

inflammation, we measured IL-6, monocyte chemoattractant

protein 1 (MCP-1) and tumor necrosis factor (TNF)-a
mRNA expressions in epididymal and inguinal CB1-receptor

knockout preadipocytes (Figure 6). In epididymal

knockout cells all proinflammatory markers were elevated.

We found a 156% increase of IL-6, MCP-1 was induced by

200% and TNF-a by 192% compared with epididymal

control preadipocytes. In contrast, there was a decrease in

inguinal CB1-receptor preadipocytes of IL-6, MCP-1 and

TNF-a by 40%, 5% and 23%, respectively. These findings

were even more pronounced on day 3 of the differentiation

process. An increase in the expression profile of IL-6, MCP-1

and TNF-a by 357%, 326% and 371%, respectively, was

found in epididymal CB1-receptor knockout cells, as well as

a decreased expression of these inflammation markers in

inguinal CB1-receptor knockout cells (IL-6 60%, MCP-1 26%,

TNF-a 32%) when compared with their wild-type controls.

CB1-receptor knockout enhances brown fat cell marker
expression in inguinal cells, whereas reducing it in epididymal
cells

In epididymal cells, the expression of PGC-1a, a transcrip-

tional activator of PPARg on the UCP-1 promoter, was

slightly but not significant reduced by 23% in preadipocytes

(because of high standard deviation results were not

significant), but was significantly decreased by 64% in

mature cells when compared with controls. In contrast,
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Figure 2 (a, b) Densitometric analysis was performed after Oil Red O staining of the adipocytes. Bar graph analyses showed intensity of Oil Red O (optical density)

measured on days 0, 3 and 6. CB1-receptor knockout (KO) cells were compared with their wild-type (WT) controls. Eight independent experiments are shown in a

and b as mean±s.e.m.,*Po0.05, **Po0.01 comparing wild types to CB1-receptor knockout cells. EPI, epididymal; ING, inguinal.

Table 1 Markers of adipocyte differentiation were decreased in epididymal CB1R KO cells, whereas they were enhanced in inguinal CB1R KO adipocytes

Differentiation marker Pref 1 PPARg aP2 Glut 4

Day of differentiation Day 3 Day 6 Day 3 Day 6 Day 3 Day 6 Day 3 Day 6

Epididymal WT vs KO m 121% m 699% k 44% k 39% k 27% k 52% k 35% k 68%

Inguinal WT vs KO k 69% k 65% m 186% m 233% m 132% m 467% m 49% m 33%

Abbreviations: CB1R, cannabinoid 1 receptor; KO, knockout; PPARg, peroxisome proliferator-activated receptor g; Pref 1, preadipocyte factor; WT, wild type. Table 1a

compares epididymal WT cells to epididymal KO cells, whereas in table 1b the contrast of inguinal wild-type cells to inguinal KO cells is demonstrated. Data are shown

for day 3 and day 6. Pref-1 is an inhibitory marker of early adipogenesis, whereas aP2, PPARg and GLUT 4 are favorable markers of late adipogenesis.

The percentage of their respective increase (m) or decrease (k) is demonstrated in the table. All data are normalized using 36B4 as a housekeeping gene. On average

six independent experiments are shown. WT control cells are compared to CB1-receptor knockout cells.
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inguinal preadipocytes showed a highly significant increase

of PGC-1a expression by 152% in preadipocytes and a

significant enhancement of 315% in mature cells (Figure 7).

In line with these results, the expression of UCP-1 did not

differ significantly in epididymal preadipocytes, whereas the

mature cells showed a significantly decreased expression by

57% of this brown fat cell marker. There was an increased

basal expression of UCP-1 in inguinal CB1-receptor knockout

cells by 252% at day 0 and 243% at day 6 compared with

inguinal control cells (Figure 8).

CB1-receptor knockout promotes mitochondrial biogenesis
in inguinal white adipocytes

In consequence of our findings of an increased PGC-1a
and UCP-1 content in inguinal CB1-receptor knockout
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adipocytes, we investigated the expression of mitochondrial

markers during adipogenesis in these cells compared with

epididymal CB1-receptor knockout cells. Although there

were no changes in Tfam and NRF-1 expression in pre-

adipocytes, we found an increase of both markers in inguinal

adipocytes on days 3 and 6 of the differentiation process.

In epididymal cells, the expression of these markers was

unaltered (data not shown). To confirm an induction of

mitochondrial biogenesis, we further used a mitochondrial-

specific fluorescent staining. We found a significant decrease

of fluorescent intensity in epididymal cells by 20%. In

contrast, the fluorescent intensity in inguinal cells was

increased by 52% (Figure 9).

Oxygen consumption is increased in inguinal CB1-receptor
knockout cells

We finally examined the rate of oxygen consumption as a

cellular read-out for increased respiratory chain activity.

Epididymal CB1-receptor knockout cells displayed a reduced

rate of oxygen consumption by 30% at day 0 and 27% at
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ING KO cells in % compared with their individual wild-type controls (set as 100%). All data were normalized using 36B4 as a housekeeping gene. Of each

inflammation marker six independent experiments are shown as mean±s.e.m., *Po0.05, **Po0.01 comparing wild-type control cells to CB1-receptor KO cells.
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day 6 compared with wild-type controls. In contrast, oxygen

consumption in inguinal CB1-receptor knockout adipocytes

was found to be significantly elevated by 83% at day 0 and by

92% at day 6 compared with wild-type controls (Figure 10).

Discussion

To distinguish between different fat depot functions has

become the focus of intensive research recently. Visceral

fat distribution in obesity is strongly linked to metabolic

complications of obesity because of a greater infiltration

of adipose tissue with inflammatory cells, excess release of

potentially harmful cytokines and reduced release of bene-

ficial adipokines.11,30 In contrast, abdominal subcutaneous

fat is not associated with a linear increase in the prevalence

for metabolic and cardiovascular diseases. Our results show,

for the first time, a depot-specific effect of a CB1-receptor

knockout in adipocytes. Interestingly, CB1-receptor knock-

out cells promote a metabolically beneficial status for

subcutaneous fat cells, such as increased insulin sensitivity,

decreased inflammation and an enhancement in mitochon-

drial biogenesis combined with an induction of oxygen

consumption when compared with epididymal wild-type

cells. The EC system has a major role in controlling energy

homeostasis via central and peripheral pathways. Clinical

trials showed that blocking of the CB1-receptor, with the

selective antagonist rimonabant, leads to an induction of

weight loss and improves cardiovascular risk factors in obese

patients.7,31–33 CB1-receptor knockout mice are protected

against diet-induced obesity.6,34 Cell proliferation and lipid

accumulation are the major factors contributing to fat mass

development in obesity. Our study demonstrates a depot-

specific effect on adipocyte differentiation. In newly gene-

rated CB1-receptor knockout cell lines from different fat cell

depots, we found an impaired differentiation together with a

decreased expression pattern of differentiation markers in

epididymal cells compared with their wild-type control cells.

Inguinal cells, on the other hand, showed an accelerated

accumulation of lipids accompanied with an increase of

differentiation markers. Effects of ECs on adipogenesis were

investigated in 3T3-L1 adipocytes. Blocking the CB1-receptor

arrested adipocyte proliferation.35 Furthermore, increased

EC levels promote preadipocyte differentiation and chronic

stimulation of the CB1-receptor during adipogenesis induces

the accumulation of lipids and the elevation of PPARã as a

differentiation marker.36,37 These results are in line with our

findings for epididymal fat cells with a lack of differentiation

after CB1-receptor blockage. Thus, blocking the CB1-recep-

tor in adipocytes has an important impact on fat composi-

tion by lipid deposition in inguinal fat on the one hand
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while reducing epididymal fat mass on the other. Higher

amounts of lower subcutaneous body fat in humans seem to

be associated with a reduced risk of metabolic complica-

tions.38 Similar observations are shown for selective PPARg
agonists. Thiazolidinediones may induce differentiation of

human preadipocytes isolated from subcutaneous fat but not

those from visceral fat.39,40 Treatment with PPARg agonists

in rats also redistributes fat by stimulating the lipid uptake

and esterification potential in subcutaneous fat and by

augmentation of oxygen consumption. Conversely, lipid

uptake is minimally altered and energy expenditure is greatly

increased in visceral fat, with consequent reduction in fat

accumulation.41

Recent studies describe a depot-specific effect on inguinal

and epididymal differentiation in cells treated with dehydro-

epiandrosterone. Again, inguinal preadipocyte differen-

tiation was unaffected or increased, whereas omental

preadipocytes showed significantly reduced adipogenesis.42

Reduced adipogenesis might be explained by the induc-

tion of apoptosis. Hallenborg et al.43 showed that p53

inhibits adipogenesis and maintains adipose tissue function.

We demonstrate a significant increase in p53 phosphrylation

in mature epididymal cells compared with their wild-type

controls. In contrast, p53 phosphorylation in inguinal

adipocytes was impaired. These data are in line with other

findings, showing that omental preadipocytes are more

susceptible to apoptotic stimuli than subcutaneous preadi-

pocytes.44 There are also a lot of other stimuli that have

shown to influence the differentiation process and apop-

totic rate in adipose tissue. For example, after Ajoene (a garlic

extract), Guggulsterone, Withaferin A, Chlorella methanol

and Resveratrol (ingredient of red wine) stimulation or

treatment, a reduced lipid accumulation and adipogenesis

and an increase in the number of apoptotic cells was

noted.45–48 Altering fat mass by directly affecting cell

viability, adipogenesis and apoptosis, may have applications

for the treatment of obesity and might be one mechanism

for the beneficial effect of blocking the CB1-receptor

with rimonabant. In clinical trials with rimonabant, patients

mainly loose visceral fat, which is evidenced by a reduced

waist to hip circumference. Redistributing fat from

lipolytic visceral fat to more anabolic subcutaneous fat is

thought to have a role in the insulin-sensitizing effect of

PPARg agonists in humans.41 These results are consistent

with our data showing an elevated glucose uptake in

inguinal CB1-receptor knockout adipocytes and again

underline the insulin-sensitizing effect of rimonabant in

obese patients.

Obesity is associated with chronic inflammation. During

the development of obesity macrophages infiltrate adipose

tissue. This seems to be more pronounced in visceral adipose

tissue rather than in subcutaneous fat.49 In extremely obese

patients, the visceral fat is the main contributor to high

plasma IL-6 concentrations.50 Moreover, MCP-1 and TNF-a
are related to adipocyte dedifferentiation and systematic

insulin resistance.51,52 As compared with subcutaneous

adipose tissue, visceral adipose tissue endocrine activity is

considered to be predominant in contributing to chronic

low-grade inflammation found in obese subjects. This is in

line with our findings demonstrating that CB1-receptor

knockout cells mediate a proinflammatory status by enhan-

cing IL-6, MCP-1 and TNF-a expression in epididymal

cells, whereas reducing these inflammation markers in

inguinal cells.

The conversion of white adipocytes into a thermogenic

active brown fat phenotype is a promising strategy to control

energy homeostasis. We and others have recently published

direct effects of CB1-receptor blockade on thermogenesis,

mitochondrial biogenesis and oxidative metabolism.

A pharmaceutical blockade of the receptor with rimonabant

results in a transdifferentiation of white cells into a brown fat

cell phenotype.3,8 Both studies did not distinguish between

white fat depots. Only Jourdan et al.53 examined the impact

of CB1-receptor antagonism on liver and adipose tissue

metabolism in a mouse model of diet-induced obesity.

His research group demonstrated that in visceral but not
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subcutaneous fat, genes that are involved in transport,

synthesis, oxidation, and release of fatty acidy were upregu-

lated by HSHF feeding, whereas this effect was counteracted

by CB1-receptor antagonism.53 They evaluated the deter-

mining factor for the reversion in liver steatosis that can be

induced by rimonabant (SR141716) and found, in line with

our data, that the blockage of the EC system can have

different effects on visceral and subcutaneous fat. TNF-a
expression was reduced in subcutaneous adipose tissue after

treatment with a CB1-receptor antagonist but inflammation

remained high in visceral adipose tissue, as confirmed in

our experiments. Furthermore, Jourdan et al.53 showed an

increased expression of PPARg in subcutaneous adipose

tissue after CB1-receptor blockage. In addition, we were able

to demonstrate that there is not only a differentiation

benefit in the subcutaneous depot but also furthermore a

lack of differentiation in the metabolically harmful visceral

depot. Furthermore, we observed, in inguinal CB1-receptor

knockout cells, a depot-specific effect of transdifferentiation

in white adipocytes. UCP-1 as well as PGC-1a expressions

were significantly increased in inguinal CB1-receptor knock-

out cells, whereas they were downregulated or not affected

in epididymal cells. Moreover, mitochondrial biogenesis in

inguinal CB1-receptor knockout cells were elevated together

with an increase in oxygen consumption as a final cellular

read-out for increased activity of the respiratory chain. In

contrast, epididymal CB1-receptor knockout cells showed

impairment in both, mitochondrial biogenesis and oxidative

metabolism. Thus, inguinal cells appear to be more sensitive

toward transdifferentiation. The higher expression levels of

markers for brown adipocytes and an increased mitochon-

drial biogenesis in cells that were isolated from subcutaneous

tissues of CB1-receptor knockout mice might partly be due to

the differentiation benefit we noted in these cells compared

with their wild-type controls. In addition, there is likely to

exist another process that induces the transdifferentiation as

we already noted differences at day 0 during the differentia-

tion process independent of lipid accumulation. Relevant

signaling mechanisms currently remain unclear. Interest-

ingly, new studies show that PRDM 16, a key factor for brown

fat cell development, is five- to six-fold higher expressed

in inguinal cells than in epididymal adipocytes, suggesting

that these cells have more potential to convert into brown

fat cells. Previous studies have demonstrated that UCP-1

expression in white adipocytes is increased after chronic

b-adrenergic stimulation or stimulation with a PPARg
agonist. Again this phenomenon is particularly evident in

inguinal depots and less in epididymal adipocytes.54,55 More-

over, rosiglitazone promotes mitochondrial biogenesis

in vivo in white fat of ob/ob mice as well as in human

subcutaneous fat.56 However, emergence of brown fat cells

in white fat depots is associated with a lean phenotype in

transgenic mouse models (FOXC2, 4E-BP1).24,25 These mice

have an enhanced metabolic rate and insulin sensitivity and

are protected against diet-induced obesity. Furthermore,

transgenic mice expressing UCP-1 in white adipose tissue

are protected against genetic and dietary obesity and show

an increase in white adipose tissue oxygen consumption.57

Developing strategies to enhance brown fat cell cluster in

white adipose tissue depots by converting white adipocytes

might be a tool to treat obesity and associated disorders.

In summary, the present study reveals a depot-specific

effect of cannabinoid action in adipose cells from different

fat depots. In newly generated CB1-receptor knock-

out adipose cell lines, this study demonstrates a deficit in

differentiation and an increase in apoptosis in epididymal fat

cells accompanied by increased inflammation and reduced

oxygen consumption. In contrast, inguinal CB1-receptor

knockout cells show less inflammation and tend to be more

sensitive toward a conversion into a thermogenic active

brown fat phenotype. These findings elucidate peripheral

mechanisms resulting in beneficial effects on energy balance

achieved by blockade of the EC system. Enhanced thermo-

genesis represents a peripheral mechanism contributing to

weight loss and improving glucose homeostasis in patients

treated with a CB1-receptor antagonist. In addition, CB1-

receptor blockade promotes the development of subcuta-

neous fat and reduces visceral fat, which is associated

with metabolic complications of obesity. To use this new

understanding of CB1-receptor blockade for the benefit in

obesity treatment the development of adipocyte-specific

CB1-receptor antagonists should be intensified.
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