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Chemical micro-heterogeneity is an attribute of all living systems and most of

the soft and crystalline materials. Its characterization requires a plethora of

techniques. This work proposes a strategy for quantifying the degree of

chemical micro-heterogeneity. First of all, our approach needs the

collection of time-evolving signals that can be fitted through poly-

exponential functions. The best fit is determined through the Maximum

Entropy Method. The pre-exponential terms of the poly-exponential fitting

function are used to estimate Fuzzy Entropy. Related to the possibility of

implementing Fuzzy sets through the micro-heterogeneity of chemical

systems. Fuzzy Entropy becomes a quantitative estimation of the Fuzzy

Information that can be processed through micro-heterogeneous chemical

systems. We conclude that our definition of Fuzzy Entropy can be extended to

other kinds of data, such as morphological and structural distributions,

spectroscopic bands and chromatographic peaks. The chemical

implementation of Fuzzy sets and Fuzzy logic will promote the development

of Chemical Artificial Intelligence.
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1 Introduction

Microheterogeneity refers to systems that are heterogeneous at the microscopic level

(Kalyanasundaram, 2012). There are numerous examples of micro-heterogeneous

systems in both soft and crystalline materials (Chen, 2022). They might be broadly

classified into five major sets (I) molecular aggregates composed of surfactants, lipids or

other compounds, (II) natural and synthetic polymeric systems (III) nanomaterials and

colloidal dispersions, (IV) adsorbed and intercalated guest-host solid materials (V) the

multi-compartments and multiphase assemblies of living beings and their mimicries

(Cheng and Perez-Mercader, 2020). The heterogeneity can be at the level of single particles

(i.e., intra-entities) and/or inter-entities (Chen, 2022) (Rabanel et al., 2019).
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No single technique can unveil all the details of these micro-

heterogeneous systems. Techniques such as electron,

fluorescence, Raman and atomic force microscopies,

diffraction of X-rays and neutrons allow taking two- and

three-dimensional snapshots of these micro-heterogeneous

systems at intra- and inter-entities levels (Rabanel et al.,

2019). Other relevant data on the collective features of micro-

heterogeneous samples can be collected by techniques such as

NMR and ESR. The Kirkwood-Buff theory (Kirkwood and Buff,

1951) describes solution mixtures containing any number of

components; and it has been proven a solid framework for

providing expressions of macroscopic thermodynamic features

for any stable solution mixture as a function of its composition

(Pierce et al., 2008) (Newman, 1994). In time-resolved

spectroscopies or other techniques, transient signals monitor

the dynamics and kinetics of molecular events occurring in

the micro-heterogenous systems, thus providing a picture of

their time evolution, including during non-equilibrium stages.

The time-evolving signal I(t) of a micro-heterogeneous sample

reaching an equilibrium state after a temporary perturbation or a

steady-state condition when permanently maintained out-of-

equilibrium can be expressed as a weighted infinite sum of

exponentials, i.e.,

I(t) � ∫∞

0
w(τ)e−t/τdτ (1)

In many cases, decay kinetics from complex systems and

fractal structures have been fitted by stretched exponential

functions (Berberan-Santos et al., 2005) of the type:

I(t) � I0e
−(t

τ)β
(2a)

or the less-known compressed hyperbola (or Becquerel) function

(Menezes et al., 2013) of the type:

I(t) � 1

(1 + ct/τ0)1/c (2b)

However, it has been shown (Hirayama et al., 1990) that

stretched exponential functions can be substituted by the fitting

function appearing in Eq. 1. In certain conditions, a sum of

compressed hyperbolas can be replaced by a sum of exponential

functions (Menezes et al., 2013). In Eq. 1, the determination of the

“image w(τ)” (also called “eigenvalue spectrum” (Berberan-

Santos et al., 2005)) is the inverse Laplace transform of the

measured time-resolved profile (R(t)), possibly deconvoluted

from the instrument response function (IRF), i.e., I(t):
R(t) � (IRF) ⊗ (I(t)) (3)

Although deconvolution is well conditioned, inverting the

Laplace transform is ill-conditioned (McWhirter and Pike, 1978).

This implies that minor errors in the data can lead to

considerable uncertainty in the reconstruction of w(τ), a

problem for which the Maximum Entropy Method (MEM)

offers reliable solutions (Jaynes, 1988) (Livesey and Brochon,

1987) (Brochon, 1994) (Steinbach et al., 2002).

In the following paragraphs, the basic principles of the MEM

are briefly recalled. Then, a discretization of the “image w(τ) ” is
proposed along with its relationship to a discretized entropy.

Such an entropy is related to the possibility of implementing

Fuzzy sets through the micro-heterogeneity of chemical systems,

and we therefore call it “fuzzy”. “Fuzzy Entropy” becomes a

quantitative estimation of the Fuzzy Information that can be

processed through micro-heterogeneous chemical systems. The

chemical implementation of Fuzzy sets and Fuzzy logic promotes

the development of Chemical Artificial Intelligence (Gentili,

2021).

2 The basics of maximum entropy
method

The MEM’s roots reside in Bayesian probability (Jaynes,

1957) (Brochon, 1994). It provides “the least biased estimate

possible on the given information; i.e., it is maximally non-

committal with regard to missing information”. According

to Bayes’ theorem, the probability of the hypothesis h(w)
about the “image w(τ) ” of the weight coefficients appearing
in Eq. 1, given the data D, is the posterior

probability Pr(h|D):

Pr(h|D) � Pr(D|h)Pr(h)
Pr(D) (4)

The term Pr(D|h) is the “likelihood” and it represents the

probability of obtaining the data D if the true “image h(w) ” is
known. In the case of Gaussian noise statistics, the likelihood is:

Pr(D|h) � e−
1
2 χ

2

Zl
(5)

In Eq. 5,

1
2
χ2 � 1

2
(D − Rh)T[σ−2](D − Rh) (6)

with Rh being the calculated data from the “image h(w) ”, σ−2 is
the covariance matrix for the data, and Zl a normalization factor

(In the case of Poisson noise, Poissonian deviance is used in the

definition of the “likelihood”).

The term Pr(D) in Eq. 4 is the “plausibility” of the data based
on the prior knowledge of the system. When the prior knowledge

of the system remains constant, Pr(D) is like a normalization

factor, ZD.

The term Pr(h) is the “prior probability” that represents the
experimenter’s knowledge about a possible “image h(w) ” before
collecting experimental data. It has an exponential form (Gull

and Daniell, 1978):

Pr(h)∝ e−αS (7)
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where α is a positive constant and S the Information Entropy of

the true image:

S(h) � −∫ h(w)log[h(w)]dw (8)

By introducing all the terms in Eq. 4, the explicit definition of

the “posterior probability” Pr(h|D) is obtained as:

Pr(h|D) � eαS−
1
2 χ

2

ZDZS(α) �
eQ

ZDZS(α) (9)

where ZS(α) is a normalization factor. A solution to the inverse

Laplace transform’s problem of determining w(τ) can be

obtained by maximizing Pr(h|D). The maximization of the

“posterior probability” requires finding the maximum of the

exponent Q � αS − 1
2χ

2. Q is maximized through a tug of war

between the maximization of the Entropy S(h) and the

minimization of the value of χ2.

3 The discretization of the
“image w(τ)”

A possible shape of w(τ) is shown in Figure 1. The range of τ

is divided into bins of equal width Δ. It is assumed that w(τ) is
continuous within the bins. Then, according to the mean value

theorem (Cover and Thomas, 2006), there exists a value τi within

each bin such that

w(τ i)Δ � ∫(i)·Δ

(i−1)·Δ
w(τ)dτ (10)

The quantized variable τΔ is introduced through the

following statement:

τΔ � τ i if(i − 1) · Δ≤ τ ≤ (i) · Δ (11)

Then, the probability that τΔ � τi, is (Friar et al., 2016)

p(τi) � ∫(i)·Δ

(i−1)·Δ
w(τ)dτ � w(τ i) · Δ (12)

As Δ → 0, it is possible to approximate the integral by

the sum

I(t) � ∫∞

0
w(τ) · e−t/τdτ ≈ ∑N→∞

i�1 w(τi) · Δ · e− t
τi (13)

If ∑
i
w(τi)Δ � 1, then

I(t) � ∑N→∞
i�1

w(τ i)∑iw(τ i)
e−

t
τi (14)

4 Definition of fuzzy entropy

The information entropy of the continuous probability

distribution function w(τ) is

H(w(τ)) � −∫∞

0
w(τ)log(w(τ))dτ (15)

Introducing the quantized variable τΔ, the definition of

entropy becomes:

H(τΔ) � −∑N→∞
i�1 w(τ i) · Δ · log(w(τi) · Δ) (16)

H(τΔ) � −∑N

i�1w(τi) · Δ · log(w(τi)) −∑N

i�1w(τ i) · Δ · log(Δ)
(17)

Since ∑N
i�1w(τi) · Δ � ∫∞

0
w(τ)dτ � 1, it follows that:

H(τΔ) � −∑N

i�1
w(τ i)∑iw(τ i)

log(w(τ i)) − log(Δ) (18)

But asw(τ)log(w(τ)) is Riemann integrable, the first term of

Eq. 18 approaches the integral of −w(τ)log(w(τ)) as Δ → 0, by

definition of Riemann integrability (Cover and Thomas, 2006).

Hence, we get that H(τΔ) + log(Δ) � H(τΔ) + log( 1∑i
w(τi)) �

H(τΔ) − log(∑
i
w(τi)) → H(w(τ)) as Δ → 0.

The fitting procedure of the time-resolved signals through

the MEM allows determining the weights w(τi) for each of the N
lifetimes τi. Then, the values of the weights can be normalized:

μi �
w(τi)∑N
i�1w(τi)

(19)

The variable μi can range between 0 and 1, i.e., 0≤ μi ≤ 1, and∑N
i�1μi � 1 , where N is typically greater than 100,

H(τΔ) � −∑N

i�1μi log(w(τ i)) − log⎛⎝ 1∑iw(τi)
⎞⎠ � (20a)

� −∑N

i�1μi log(w(τ i)) −∑N

i�1μi log
⎛⎝ 1∑iw(τ i)

⎞⎠ (20b)

FIGURE 1
Quantization of the continuous variable τ.
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H � −∑N

i�1μilog(μi) (20c)

The distribution of lifetimes, obtained by fitting a specific

time-resolved signal, I(t), using the MEM, allows one to

implement a Fuzzy set (Gentili, 2018). A Fuzzy set is different

from a classical Boolean set (Zadeh, 1965) because an element

belongs to a Fuzzy set with a degree of membership (μi) that can
be any real number between 0 and 1. The relative weight μi of the

ith lifetime (τi) represents its degree of membership to the Fuzzy

set of lifetimes, which granulates the time variable. The shape and

position of the lifetimes’ Fuzzy set depends on the “chemical

context” like any other Fuzzy set in Fuzzy logic. The output from

applying the MEM gives the degree of membership μi for every

lifetime τi. It is possible to determine its Fuzzy Entropy H

through Eq. 20c. According to this definition, the Fuzzy

Entropy H has the following two properties:

α)H � 0, if and only if we have just one lifetime, whose μi � 1

(i.e., the lifetime distribution looks like a crisp set).

β)H reaches its maximum value (which is log(N)) when all

the lifetimes have the same degree of membership μi � 1/(N).
Based on this second property, it is reasonable to propose the

normalized version of the Fuzzy Entropy that becomes

independent of the number of exponential terms used in the

fitting procedure:

Hnor � − 1
log(N)∑N

i�1μilog(μi) (21)

The α property ofH also holds forHnor. The second property

partly changes. It becomes:

βbis)Hnor ranges between 0 and 1. It is 1 when all the lifetimes

have the same degree of membership μi � 1/(N).
Finally, both H and Hnor share another property:

γ) The value of Fuzzy Entropy depends on the

physicochemical context of the chemical system: the more

significant its micro-heterogeneity, the larger its Fuzzy Entropy.

Some experimental proofs of this third property are reported

in the next paragraph. This paragraph is concluded by asserting

that among the different definitions of Fuzzy Entropy that have

been proposed (Al-sharhan et al., 2001), only that presented in

Eqs. 20c and 21 is valuable for our case. The Fuzzy Entropy,

appearing in Eqs. 20c and 21, is appropriate for characterizing the

micro-heterogeneity of a chemical sample, based on the

information retrieved by fitting any exponential time-resolved

signal using the MEM.

5 Determination of fuzzy entropy for some
chemical systems

The γ property of normalized Fuzzy Entropy, defined in Eq.

21, implies that Hnor is a quantitative estimation of the micro-

heterogeneity of any chemical system. Three examples

supporting the validity of the statement γ are shown in

Figure 2 and described hereinafter. Other proofs can be found

in other works regarding biopolymers (Comez et al., 2021)

(Chakraborty et al., 2018), microemulsions (Penconi et al.,

2014), nanomaterials (Bellacanzone et al., 2020), dyes (Gentili

et al., 2010) in different micro-environments, and membranes

(Krishnamoorthy and Ira, 2001; Haldar, 2022)1.

The first example refers to the fluorescent salt 2-[(1-pyrenyl)-

ethenyl]-1-methylpyridinium (Pyr). The Pyr’s fluorescent

lifetimes distribution is susceptible to its micro-environment

(Cesaretti et al., 2016). When Pyr is dissolved in pure water,

the distribution is rather sharp (see Figure 2A): there are two

principal components (τ1 � 0.35 ns with μ1 � 0.61, and τ2 �
0.37 ns with μ2 � 0.37) and the Fuzzy Entropy is pretty low:

Hnor � 0.13. When Pyr is embedded within micelles of the

anionic surfactants SDS and pOoBSK (see Figure 2A for their

molecular structures), it experiences remarkably different micro-

heterogeneities from that in pure water. The lifetimes’

distributions become broader, and Fuzzy Entropy becomes

much larger: Hnor � 0.49 and 0.55 in SDS’s and pOoBSK’s

micelles, respectively. The micro-heterogeneity experienced by

Pyr increases further when Pyr is dissolved in two surfactant

hydrogels of intertwined wormlike micelles, made of the

zwitterionic pDoAO and cationic Gemini surfactants,

respectively (see Figure 2A for the molecular structures of

pDoAO’s and Gemini’s surfactants). The normalized Fuzzy

Entropy assumes the values of 0.80 and 0.81 in pDoAO’s and

Gemini’s hydrogels, respectively.

The second example refers to another fluorescent

N-methylpyridinium iodide, i.e., 2–4-(diphenylamino)

phenyl-ethenyl-1-methylpyridinium iodide (PyI) used to

probe the effect of water into the microheterogeneity of a

Deep Eutectic Solvent (DES), which is made of phenylacetic

acid (PhAA) and N,N,N,N-dimethyldidodecylammonium

chloride (dMdDNCl) mixed in 2:1 M ratio (Tiecco et al.,

2021). Figure 2B reports the fluorescent lifetimes’

distribution for PyI dissolved in PhAA/dMdDNCl and

determined after addition of different amounts of water. The

distribution in black (see graph on top of Figure 2B) has been

determined for the DES having only its hydration water: the

1 We remind the reader that De Luca and Termini (1972) were the first to
propose a definition of the entropy H′ of a Fuzzy set. Then, many other
definitions have been proposed (Singh and Sharma, 2019; Prakash
et al., 2008; Bathia et al., 2013). These definitions have been utilized in
many applications (Bathia et al., 2015): for instance, in the field of
machine learning for features selections in pattern recognition
problems. They assure that the Fuzzy Entropies of a Fuzzy set and
its complement are equivalent. This condition does not have any
physicochemical meaning because the chemical implementation of
a Fuzzy set based on the states of a single compound cannot
simultaneously include the above and the potential states associated
with the complement. Therefore, the contribution of the complement
is excluded from the definition proposed in Eq. 21 for quantitatively
characterizing chemical micro-heterogeneity. This is akin to when in
chemical kinetics concentrations are always greater than zero.
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weighted averaged lifetime (�τav � ∑N
i�1μiτi) is 1.67 ns and

Hnor � 0.61. By adding increasing amounts of water, the

weighted averaged lifetime of PyI decreases progressively

from 1.13 ns (after adding 5% of water) to 0.76 ns (10% of

water) down to 0.59 ns (15% water). On the other hand, Hnor

grows monotonically from 0.68 (with 5% of water) to 0.73 (10%

of water) up to 0.76 (15% of water). The introduction of water

molecules into the hydrophobic DES determines an appreciable

increase of its microheterogeneity as probed by PyI and in

agreement with previous studies (Ma et al., 2018).

Finally, the third example is shown in Figure 2C. It regards

the photochromic spiroxazine PP. When PPUn is irradiated by

UV, the spiro C-O bond of the oxazine is broken, and a

merocyanine (PPCol) is produced. PPCol also absorbs in the

visible region. The spectral modifications that are recorded

upon UV irradiation are shown in the graph below the PP’s

molecular structures. Merocyanine is metastable. If UV

irradiation is discontinued, spontaneous thermal bleaching of

the color can be observed. The PP’s coloration and bleaching

kinetics have been collected in two very different

FIGURE 2
In (A), the fluorescence lifetimes’ distributions of Pyr in water (black points), SDS micelles (pink points), pOoBSK micelles (red points), pDoAO
hydrogel (cyan points), and Gemini hydrogel (blue points) are shown. In (B), the fluorescence lifetimes’ distributions of PyI in PhAA/dMdDNCl after
adding 0% (black points), 5% (blue points), 10% (green points), and 15% (red points) of water are reported. In (C), the photochromism of PP (see the
molecular structures of both colored and uncolored forms and the spectra recorded upon UV irradiation) has been investigated in acetonitrile
and in PMMA. The plots containing the black points refer to the distributions of lifetimes for the coloration (on the left) and bleaching (on the right)
kinetics in acetonitrile. The plots below, with red dots, refer to the same kinetics collected in PMMA.
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micro-environments: PP dissolved in a homogeneous solvent,

such as the acetonitrile, and PP encapsulated in a micro-

heterogeneous and viscous environment, such as a film of

poly(methyl methacrylate) (PMMA) (di Nunzio et al., 2010).

Both the coloration and bleaching kinetics have been fitted by

poly-exponential functions through MEM. The outputs are

shown in Figure 2C. They reveal that PMMA slows down the

PP’s photochromism and that the polymer significantly broadens

the distributions of lifetimes. The black traces, which are

relatively sharp, refer to acetonitrile, whereas the red traces

refer to PMMA. The values of Fuzzy Entropy quantitatively

remark the differences in the lifetimes’ distributions. Hnor �
0.54 and 0.46 for the colouration and bleaching of PP in

acetonitrile, respectively. Such values mainly refer to the intra-

entity micro-heterogeneity of PPCol that exist under many

conformers (Gentili, 2014). On the other hand, Hnor � 0.95

and 0.94 for the same kinetics recorded in PMMA. The

kinetic properties of PP are strongly affected by the degree of

the micro-heterogeneity encompassing the PP’s molecules. Such

high values of Hnor includes both the intra- and inter-entities

microheterogeneity for PP in PMMA.

6 Discussion

This work proposes an approach for quantitatively

determining the degree of micro-heterogeneity of any

chemical sample. Our approach requires, at first, the

acquisition of a time-resolved signal that can be fitted by a

poly-exponential function. Then, the least number of

exponential terms and their relative weights are determined

through the MEM. The relative weights are then used to

calculate the normalized Fuzzy Entropy Hnor according to Eq.

21. The Hnor value becomes a quantitative estimation of micro-

heterogeneity. It might refer to micro-heterogeneity at the intra-

and inter-entities level: it depends on how the original time-

resolved signal was originated. When comparing Hnor

determined for distinct samples and from data collected in

different laboratories, the signal-to-noise ratio must be

pondered since noise can affect the width of the lifetimes’

distributions (Steinbach, 2002).

It is interesting to note that the definition ofHnor can also be

applied to other kinds of data including morphological and

structural distributions, spectroscopic bands or

chromatographic peaks.

Any compound will exhibit different Hnor values depending

on its physicochemical context. Any context-dependent

distribution of a particular variable becomes a way for

implementing a Fuzzy set. The complete granulation of a

variable will require a system of adequately chosen chemical

compounds. Such a system might be the fundamental ingredient

for implementing a Fuzzy Logic System. It will allow processing

Fuzzy logic as it was accomplished by Gentili et al. (2016) after

granulating the UV and visible regions through the absorption

bands of properly chosen photochromic compounds. This

approach allows encoding a chemical language in ways

alternative to those already proposed by Dueñas-Díez and

Perez-Mercader (2019).

7 Methods

In this paper, we point out that there exists a way for

quantifying micro-heterogeneity. The approach we propose is

synthetically the following one.

First, we collect a transient signal generated by our sample in

its environment (for instance, a luminescence decay after photo-

excitation).

Second, we fit the transient signal using the Maximum Entropy

Method (MEM). Then, MEM gives us the least number of

exponential terms needed to describe the experimental signal

(please, see paragraph 2). A weight w(τi) is associated with

each lifetime τi.

Finally, we propose the Normalized Fuzzy Entropy, expressed

through Eq. 21, to quantitatively determine the micro-

heterogeneity which is then based on the weight w(τi) values.
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