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Abstract: In this study, a polymer separator with enhanced thermal stability is prepared to solve the
problem of thermal durability of lithium-ion battery separators. This separator is manufactured by
coating a solution of acetyl cellulose and glycerin on polypropylene. The added glycerin reacts with
the acetyl cellulose chains, helping the chains become flexible, and promotes the formation of many
pores in the acetyl cellulose. To improve the thermal stability of the separator, a mixed solution of
acetyl cellulose and glycerin was coated twice on the PP membrane film. Water pressure is applied
using a water treatment equipment to partially connect the pores of a small size in each layer and
for the interaction between the PP and acetyl cellulose. SEM is used to observe the shape, size, and
quantity of pores. TGA and FT-IR are used to observe the interactions. Average water flux data of the
separators is 1.42 LMH and the decomposition temperature increases by about 60 ◦C compared to
the neat acetyl cellulose. It is confirmed that there is an interaction with PP between the functional
groups of acetyl cellulose.

Keywords: separator; battery; thermal stability; cellulose; channel

1. Introduction

As the awareness of environmental problems around the world increases, the interest
in eco-friendly and sustainable products has been increasing. Thus, these changes have
affected the eco-friendly battery industry. There is increasing demand for lithium-ion
batteries in a variety of industries, particularly in the field of electric vehicles and small
mobile devices [1,2]. The fast-growing battery electric vehicle (BEV) industry over the
past five years in Europe, China, and the United States [3–5], and the high utilization and
development of electronic devices around the world are related to the growth of lithium-ion
batteries [6,7]. Lithium-ion batteries have been a key topic for many researchers in recent
years. In particular, many studies are being conducted to improve the energy density, which
is the core of lithium-ion batteries technology [8–11]. However, the stability problem caused
by the battery separator is still an unavoidable problem [12–16]. The battery separator is one
of the main factors influencing the safety since it directly contributes to the thermal stability
of the overall battery system. Although there is no direct chemical reaction within the
separator, the structure and properties of the separator play an essential role in determining
the battery performance [17–19]. The role of separators in lithium-ion batteries can be
roughly summarized into four categories. First of all, the separator separates the positive
and negative electrodes from the inside of the battery. Second, the separator has fine pores
and it plays a role in allowing lithium ions to move between the anode and the cathode
through the pores. Third, when the internal temperature of the battery increases above
a certain level, it blocks the movement of lithium ions through the pores located on the
surface of the separator to prevent an internal short circuit. Lastly, the separator has high
mechanical strength for securing safety when subjected to strong force.
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Since the separator is related to the safety of the battery, several conditions are required.
First of all, for use as a separator, it must be electrochemically stable and show excellent
insulation. This is because the contact between the anode and the cathode must be cut off.
In addition, the separator must have many pores so that lithium ions can pass through
between the separators, and the size should be uniform. If the size of the pores is irregular,
it causes the movement of lithium ions to be difficult. In addition, when the temperature of
the battery exceeds above a certain level, the separator must show shut down to block the
movement of lithium ions to ensure safety. Lastly, in order to improve the energy density
of battery, a larger amount of active material can be loaded when the battery is thin, and
the mechanical strength of the separator must be excellent so that it is not easily collapsed.

Therefore, recently, studies to improve the various performances of these separators
have been conducted. Peng et al. designed a heat/fire-resistant dual-function separa-
tor by coating ammonium polyphosphate on a ceramic-coated separator modified with
phenol-formaldehyde resin and tested it for 30 s at a temperature of 300 ◦C or higher [20].
Ahn et al. significantly reduced costs by using a water-soluble binder to coat reactive
Al2O3 particles on polyethylene (PE) separators and achieved the uniform coating to de-
velop separators for good thermal safety and cycle performance at high temperatures [21].
Costa et al. manufactured poly (vinylidene fluoride-co-trifluoro ethylene) separator film
by removing ZnO nanoparticles from polymer matrix complexes. After 70% removal of
ZnO, the membrane manufactured showed improved speed and cycling performance [22].
Prasanna et al. manufactured the dip-coated polyethylene separator with NiO. Compared
to PE in the neat state, it had a high ion conductivity of 2.12 mS cm−1, with approximately
6 times lower enthalpy values, lower weight loss, and lower heat shrinkage behavior even
when exposed to high temperatures [23]. Zhang et al. succeeded in making a lithium-ion
battery separator with excellent heat resistance and renewable cellulose-based nonwoven
fabric through electrospinning technology and the dip coating process. By manufacturing
a cellulose/PVDF-HFP composite separator having excellent electrolyte wettability, the
excellent heat resistance and high ionic conductivity, a new method for application to
lithium-ion batteries was proposed [24]. Yanilmaz et al. have successfully fabricated a
SiO2/PAN nanofiber separator using sol-gel and electrospinning methods. The SiO2/PAN
hybrid nanofiber membrane showed higher ionic conductivity, thermal stability, and lower
interfacial resistance than the microporous PP membrane. In addition, by increasing the
SiO2 contents, the electrolyte absorption capacity and ionic conductivity were promoted,
leading to excellent C-rate performance and cycling of cells using these membranes [25].

Our research group has also tried various attempts to improve the performance of
the separator. Acetyl cellulose (AC) polymer was selected as the main material for these
polymer membranes [26–29]. Cellulose derivatives refer to products obtained by oxidation,
substitution, and other chemical treatment of wood-based materials, and are used as raw
materials in various chemical industries depending on the type of functional group to be
substituted. Various derivatives can be obtained by substitution by esterification or etheri-
fication, and the derivatives include cellulose nitrate, acetyl cellulose, and methyl/ethyl
cellulose. Among them, AC, a cellulose ester series, has been mass-produced since the 1930s
and has been used to replace cellulose nitrate. As a sufficiently commercialized product, it
has the advantage of being inexpensive and the main raw material is eco-friendly [30–32].

In general, the most common method for forming pores in a separator is a method
using radiation and phase separation. Radiation is advantageous in forming straight-like
channels. However, the process is very disadvantageous in terms of price. Thus, separators
have been mainly prepared through phase separation. However, in the case of using
the phase separation method, it is difficult to form uniform size pores and straight-like
channels. Therefore, we conducted a study on pore formation through hydraulic pressure
and additives such as wetting agents and metal salts. This method has the advantage that it
can be reused in the process if the used water goes through a filter, and the amount and size
of pores can be easily adjusted by the number of additives or water pressure [26–29]. Since
metal salts are more expensive than wetting agents, glycerin was used in this study. In
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addition, in order to improve the thermal stability of the separator, an AC polymer solution
containing glycerin was coated on a nanoporous polypropylene (PP) support. Through
these materials, we proposed a method to interconnect the nanopores of AC/glycerin and
PP with only solvent and water pressure without adhesive.

2. Materials and Methods
2.1. Materials

For preparation of polymer solution, acetyl cellulose (AC, Mw 30,000) was purchased
from Sigma-Aldrich. Acetone (99.8%) and glycerin (Gly, 99%) were purchased from Daejung
chemicals and metals Co., Ltd., Seoul, Korea. Polypropylene membrane filter (PP, pore
size avg.: 100 nm; diameter: 90 mm; thickness: 110 µm) as a support was purchased from
GVS KOREA., Ltd., Namyangju-si, Gyeonggi-do, Korea (disk and sheet type filters model
No. 1220824).

2.2. Methods
2.2.1. Separator Preparation

A 10 wt% AC/Gly solution was prepared by mixing 0.05 mol of glycerin and 1 g of
acetyl cellulose. The 0.05 mol of glycerin was inserted to monomeric 1 mol of AC, and
cosolvent (acetone:distilled water 8:2 wt%) was used as the polymer solvent. This AC/Gly
solution was stirred for 15 h (25 ◦C and 50%). The AC/Gly solution was cast on the PP film
using a blade with a thickness of 300 µm. Then, the film was dried in a thermo-hygrostat
for 20 min. After that, the AC/Gly solution was coated once more on the PP film coated
with AC/Gly solution to a thickness of 300 µm. Then, it was dried in a thermo-hygrostat
for 20 min. Water pressure was applied to the completed PP/AC/Gly separators for 1.5 h
at 8 bar, and then the pressure increased to 10 bar for 3.5 h. A total of 5 h of water pressure
formed water channels in the polymers and induced the adhesion between the PP film and
AC/Gly film (Figure 1). The flux data were measured as L m−2 h−1 (LMH).
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Figure 1. Appearance of the manufactured PP/AC/Gly separator. (a) Top view of the separator,
(b) side view of the separator.

2.2.2. Characterization

The separators used during all the analysis procedures were vacuum dried for 3 days to
completely remove the solvent before use. The water flux was measured using a hydraulic
treatment machine (test cell system). The test cell equipment is specially manufactured, and
the following paper can be referred to for a detailed description of the equipment [30]. A
scanning electron microscope (SEM, JSM-5600LV, JEOL, Tokyo, Japan) was used to observe
the surface state of the separator. Thermogravimetric analysis (TGA, Universal V4. 5A,
TA instruments, Mettler Toledo, Columbus, OH, USA) and Fourier transform infrared
spectroscopy (FT-IR, VERTEX 70V FT-IR spectrometers, Bruker, Billerica, MA, USA) were
used to observe the interconnected bonding of films and thermal stability.
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3. Results and Discussion
3.1. Water Flux Data

In this experiment, the PP side was exposed to water first, and water flowed towards
the AC/Gly side. After applied to a water pressure of 8 bar for 1.5 h, the weakened area
of composites started to form the pores. To ensure reproducibility, the complete water
channels were created by exposing to 10 bar for 3.5 h. If only 1.5 h of water pressure is
applied at 8 bar, the flux data is not uniform. However, reproducible flux data could be
obtained by applying water pressure for an additional 3.5 h at 10 bar. This phenomenon is
expected to connect some pores at a pressure of 8 bar and form the complete water channels
at a pressure of 10 bar. As shown in Table 1, in the case of neat PP, there are abundant pores
and the membrane itself is thin. Thus, when it is fastened to water treatment equipment,
water flows so rapidly that it cannot measure the flux. On the other hand, when neat AC
(acetone:H2O = 8:2, no additives) was coated twice, no water came out at all. Under these
circumstances, the PP/AC/Gly separator showed an average of 1.42 (±0.5) LMH, and
reproducible results were obtained. It was found that the water channels were successfully
created by connecting the pores of the existing PP film with the pores of the AC/Gly film
through the two layers. Since proper pore formation through which lithium ions can move
is essential for the separator, reproducible pore formation through additives is expected to
be meaningful in this experiment.

Table 1. Water flux data of separators.

Neat AC at 10 Bar Neat PP at 10 Bar PP/AC/Gly at 10 Bar

LMH 0 Not measurable 1.42 (±0.5)

Scheme 1 described the manufacturing process of separator with water treatment
equipment. To be specific about the water treatment equipment in Scheme 1, the separator
was placed in the equipment and screwed up securely. Therefore, water with constant
pressure from the bottom to the top cannot go out without going through the separator.
If no channels are formed in the separator, the water flows back through the pipe below
towards the inlet (in Scheme 1: ‘Water out’ at the bottom). However, if a water channel is
formed in the separator, the water that comes out through the separator comes out through
the external pipe (in Scheme 1: ‘Water out’ at the top).
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3.2. SEM Images

For the PP films (average pore size = 100 nm) purchased from the manufacturer, large
pores of 2 µm were also observed in SEM. In addition, the SEM image supported that the
flux value of neat PP is so high that it cannot be measured. Using these films, PP/AC/Gly
separators were prepared, and water pressure was applied up to 10 bar. When the PP side
was observed (Figure 2b), there was no change in the shape of the chains. However, the side
of acetyl cellulose was different. After adding glycerin to neat AC and dried (Figure 3a), the
cosolvent (acetone and distilled water) was vaporized and there were pore-like substances.
It was thought that pores were not generated inside since it is in the state before applying
water pressure. When the water pressure was applied up to 10 bar (Figure 3a), the upper
surface of polymers was slightly changed by water pressure (Figure 3b), and the channels
were formed inside. When the AC/Gly solution prepared was coated on PP and observed
toward AC (Figure 3c), some pores were connected to form new water channels.

Membranes 2022, 12, x FOR PEER REVIEW 5 of 10 
 

 

Scheme 1. Preparation process of the PP/AC/Gly separator. 

3.2. SEM Images 
For the PP films (average pore size = 100 nm) purchased from the manufacturer, large 

pores of 2 μm were also observed in SEM. In addition, the SEM image supported that the 
flux value of neat PP is so high that it cannot be measured. Using these films, PP/AC/Gly 
separators were prepared, and water pressure was applied up to 10 bar. When the PP side 
was observed (Figure 2b), there was no change in the shape of the chains. However, the 
side of acetyl cellulose was different. After adding glycerin to neat AC and dried (Figure 
3a), the cosolvent (acetone and distilled water) was vaporized and there were pore-like 
substances. It was thought that pores were not generated inside since it is in the state 
before applying water pressure. When the water pressure was applied up to 10 bar (Figure 
3a), the upper surface of polymers was slightly changed by water pressure (Figure 3b), 
and the channels were formed inside. When the AC/Gly solution prepared was coated on 
PP and observed toward AC (Figure 3c), some pores were connected to form new water 
channels. 

 
Figure 2. Images of (a) the neat PP film and (b) the PP side of the PP/AC/Gly at 10 bar. 

 
Figure 3. Images of (a) and (b): the upper surfaces of AC/Gly film before and after water pressure 
treatment, respectively, and (c) the AC side of the PP/AC/Gly separators at 10 bar. 

In detail, the glycerin as an additive has three hydroxyl groups, and thus it could be 
well hydrated with water. It is dispersed among the dense chains of acetyl cellulose, mak-
ing it flexible by increasing the distance between the polymer chains. AC/Gly solution was 
coated on PP film, and when water pressure was applied to this separator, the additive 
came out together with water and pores were formed in acetyl cellulose. In addition, due 
to the physical pressure caused by water pressure, the PP chains and AC chains were 
entangled and strongly bonded to each other, and at the same time, pores were connected 
to form water channels. With this method, it was possible to form nanochannels by con-
necting microscopic nano-sized pores without a separate adhesive. 

  

Figure 2. Images of (a) the neat PP film and (b) the PP side of the PP/AC/Gly at 10 bar.

Membranes 2022, 12, x FOR PEER REVIEW 5 of 10 
 

 

Scheme 1. Preparation process of the PP/AC/Gly separator. 

3.2. SEM Images 
For the PP films (average pore size = 100 nm) purchased from the manufacturer, large 

pores of 2 μm were also observed in SEM. In addition, the SEM image supported that the 
flux value of neat PP is so high that it cannot be measured. Using these films, PP/AC/Gly 
separators were prepared, and water pressure was applied up to 10 bar. When the PP side 
was observed (Figure 2b), there was no change in the shape of the chains. However, the 
side of acetyl cellulose was different. After adding glycerin to neat AC and dried (Figure 
3a), the cosolvent (acetone and distilled water) was vaporized and there were pore-like 
substances. It was thought that pores were not generated inside since it is in the state 
before applying water pressure. When the water pressure was applied up to 10 bar (Figure 
3a), the upper surface of polymers was slightly changed by water pressure (Figure 3b), 
and the channels were formed inside. When the AC/Gly solution prepared was coated on 
PP and observed toward AC (Figure 3c), some pores were connected to form new water 
channels. 

 
Figure 2. Images of (a) the neat PP film and (b) the PP side of the PP/AC/Gly at 10 bar. 

 
Figure 3. Images of (a) and (b): the upper surfaces of AC/Gly film before and after water pressure 
treatment, respectively, and (c) the AC side of the PP/AC/Gly separators at 10 bar. 

In detail, the glycerin as an additive has three hydroxyl groups, and thus it could be 
well hydrated with water. It is dispersed among the dense chains of acetyl cellulose, mak-
ing it flexible by increasing the distance between the polymer chains. AC/Gly solution was 
coated on PP film, and when water pressure was applied to this separator, the additive 
came out together with water and pores were formed in acetyl cellulose. In addition, due 
to the physical pressure caused by water pressure, the PP chains and AC chains were 
entangled and strongly bonded to each other, and at the same time, pores were connected 
to form water channels. With this method, it was possible to form nanochannels by con-
necting microscopic nano-sized pores without a separate adhesive. 

  

Figure 3. Images of (a,b): the upper surfaces of AC/Gly film before and after water pressure
treatment, respectively, and (c) the AC side of the PP/AC/Gly separators at 10 bar.

In detail, the glycerin as an additive has three hydroxyl groups, and thus it could
be well hydrated with water. It is dispersed among the dense chains of acetyl cellulose,
making it flexible by increasing the distance between the polymer chains. AC/Gly solution
was coated on PP film, and when water pressure was applied to this separator, the additive
came out together with water and pores were formed in acetyl cellulose. In addition,
due to the physical pressure caused by water pressure, the PP chains and AC chains were
entangled and strongly bonded to each other, and at the same time, pores were connected to
form water channels. With this method, it was possible to form nanochannels by connecting
microscopic nano-sized pores without a separate adhesive.

3.3. TGA Data

TGA data in Figure 4 showed that the decomposition of neat AC and neat PP started
at about 265 and 350 ◦C, respectively. In the case of a film prepared by mixing neat AC with
glycerin (AC/Gly at 0 bar), the polymer chains became flexible due to the hydration effect
of the OH functional groups of glycerin, and thus the rapid weight change from 140 ◦C was
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observed. However, the glycerin removed by the physical pressure of water of 8 bar was
decomposed at a temperature higher than 140 ◦C (AC/Gly at 8 bar). On the other hand,
in the case of PP/AC/Gly separators, the decomposition started at a higher temperature
(325 ◦C) than neat AC. Water pressure could induce the surface adhesion between AC/Gly
chains and PP chains, and it was presumed to cause the crosslinking effects between the two
polymer films. These phenomena were consistent with previous studies [33]. Polyethylene,
a lithium-ion battery separator material that is currently commercially available, shows
the shut-down at 130 ◦C and completely molten at 150 ◦C. In the case of polypropylene, it
is only about 15 ◦C higher. As this temperature increases, the internal short circuit of the
battery can be prevented. Thus, by coating AC (Tg: 160–180 ◦C, Tm: 230–300 ◦C) on PP,
AC can serve as a support even when PP starts to become molten. The TGA measurement
data show indirectly that the thermal stability was not significantly reduced despite the
plasticization of acetyl cellulose through additives, and thermal stability was maintained
even when combined with PP.
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3.4. FT-IR Data

As a result of FT-IR analysis for ether groups in the 960–1100 cm−1 on the PP side of
the PP/AC/Gly separator, it was clearly confirmed that it moved to a higher wavenumber
than the AC/Gly film (Figure 5a,b). It can be inferred that the AC/Gly film was coated on
the PP and the new interactions in the functional groups affected the existing ether groups.
When the deconvolution was performed on the AC side, the peaks tended to be symmetric
at 1034 cm−1 in the PP/AC/Gly separator, compared to the AC/Gly film in which peaks
were widely distributed at 8 bar. (Figure 5c,d and Table 2). These results could also be
presumed to be due to the new interactions with PP in the ether functional groups.

Table 2. Deconvoluted % of FT-IR data (ether functional group).

Peak (cm−1)
Area (%)

AC/Gly PP/AC/Gly

989–996 14.41 8.16
1033–1034 59.80 73.77
1066–1071 25.79 18.07
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luted data of the carbonyl functional group (1690–1780 cm−1) of the PP/AC/Gly separators.
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Table 3. Deconvoluted % of FT-IR data (carbonyl functional group).

Peak (cm−1)
Area (%)

AC/Gly PP/AC/Gly

1732 81.74 85.90
1753 18.26 14.10

In the case of the carbonyl functional groups, it clearly moved to a higher wavenumber
from the PP side when the PP/AC/Gly separator was prepared as in the case of ether
functional group analysis (Figure 5e,f). When deconvolution was performed on the AC
side (Figure 5g,h), it was confirmed that it moved about 4.16% to the lower wavenumber
than AC/Gly film at 8 bar. This demonstrated that PP formed new interactions with the
carbonyl groups of AC, and that these interactions could generate the cross-linking as
shown in TGA.

3.5. Electrochemical Performance

This study was carried out as a series of studies conducted by our research team. Re-
ferring to our previous research, the excellent electrochemical properties of acetyl cellulose
were observed [34]. An LTO/AC separator (after hydraulic treatment)/Li metal composi-
tion battery with 1.3M LiPF6 of EC/DEC (50 v/50 v) with 10% FEC was constructed. As
a result, the stable performance of discharging/charging plateaus at 1.54 and 1.58 V was
measured. In addition, when various current rates from 1 to 15 C using this half-cell were
measured, the cell’s current rate monotonically decreased for the average capacity from
160 to 50 mAh/g and recovered to the 1C rate [34]. These data can prove the electrochemical
stability of the cellulose materials we are currently developing. Thus, similar results are
expected to be observed at the PP/CA/Gly separator since PP is just utilized as support.

4. Conclusions

In this study, the stable battery separator was prepared to solve the stability problem.
The main purpose was to prepare a stable separator using an inexpensive material as
well as nano-sized pores connected without a separate adhesive. As shown in Scheme 2,
a polypropylene (PP) film, a widely commercially available material, was used as the
support layer, and acetyl-cellulose containing glycerin was coated on PP. Since glycerin
used as an additive has three -OH functional groups at one molecule, it was effectively
hydrated on the AC chains, and it could generate the plasticizing effect to easily form pores.
When water pressure was applied to the PP/AC/Gly separators, the carbonyl group and
ether group of AC caused new physical interactions with the PP chains. Furthermore, the
adhesion was generated and nano-sized pores were connected between the two polymer
layers. In addition, when compared with the existing neat AC, the PP/AC/Gly separators
were able to prove that the thermal stability was improved, confirmed by measuring the
decomposition temperature increased by about 60 ◦C as well as the enhanced mechanical
property by PP support.
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