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Simple Summary: The growing evidence suggested that competing endogenous RNAs (ceRNAs)
have significant associations with tumor occurrence and progression, yet the regulatory mechanism
of them in lung adenocarcinoma remains unclear. Identification of the regulatory modules for
lung adenocarcinoma is a critical and fundamental step towards understanding the regulatory
mechanisms during carcinogenesis. Deep neural network (DNN) models have become a powerful
tool to intelligently recognize the sophisticated relationships of ceRNAs appropriately. In this
paper, multiple deep neural network models were constructed using the expression data to identify
regulatory modules for lung adenocarcinoma in biological networks. Three identified regulatory
modules association with lung adenocarcinoma were validated from three aspects, i.e., literature
review, functional enrichment analysis, and an independent dataset. The regulatory relationships
between RNAs were validated in various datasets, including CPTAC, TCGA and an expression profile
from the GEO database. Our study will contribute to improving the understanding of regulatory
mechanisms in the carcinogenesis of lung adenocarcinoma and provide schemes for identifying novel
regulatory modules of other cancers.

Abstract: Lung adenocarcinoma is the most common type of primary lung cancer, but the regulatory
mechanisms during carcinogenesis remain unclear. The identification of regulatory modules for lung
adenocarcinoma has become one of the hotspots of bioinformatics. In this paper, multiple deep neural
network (DNN) models were constructed using the expression data to identify regulatory modules
for lung adenocarcinoma in biological networks. First, the mRNAs, lncRNAs and miRNAs with
significant differences in the expression levels between tumor and non-tumor tissues were obtained.
MRNA DNN models were established and optimized to mine candidate mRNAs that significantly
contributed to the DNN models and were in the center of an interaction network. Another DNN
model was then constructed and potential ceRNAs were screened out based on the contribution of
each RNA to the model. Finally, three modules comprised of miRNAs and their regulated mRNAs and
lncRNAs with the same regulation direction were identified as regulatory modules that regulated the
initiation of lung adenocarcinoma through ceRNAs relationships. They were validated by literature
and functional enrichment analysis. The effectiveness of these regulatory modules was evaluated
in an independent lung adenocarcinoma dataset. Regulatory modules for lung adenocarcinoma
identified in this study provided a reference for regulatory mechanisms during carcinogenesis.

Keywords: regulatory module; deep neural network; competing endogenous RNA; lung adenocarci-
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1. Introduction

Lung cancer is one of the most common causes of cancer deaths in the world [1], of
which the most common type is lung adenocarcinoma that comprises about 40% of all lung
cancer cases. It remains one of the most aggressive and lethal tumor types [2], despite the
understanding of the pathogenesis and new treatments for lung adenocarcinoma having
improved [3]. Many experiments have confirmed that regulations of RNA molecules are
closely related to the occurrence and development of lung adenocarcinoma [4]. Therefore,
regulatory modules of lung adenocarcinoma identified based on biological networks and
expression data are beneficial to understand the carcinogenesis.

Most proteins activate and function through their interactions. Thus, protein interac-
tions and their networks are very important in most biological functions and processes [5].
Protein interaction networks can help us better understand the disease process, which is of
great significance in the identification of disease proteins/gene [6,7]. Roudi et al. identified
differentially expressed genes (DEGs) at each stage of lung adenocarcinoma in four datasets
from the Gene Expression Omnibus (GEO) database. Co-expression clusters and biological
pathways were identified for common and unique DEGs, respectively. Five hub genes
crucial for lung adenocarcinoma were observed from a protein interaction network of
common DEGs among all stages, and confirmed using an independent dataset collected
from The Cancer Genome Atlas (TCGA) [8]. Better understanding of diseases could be
obtained through disease proteins/genes identified from protein interaction networks.

A competing endogenous RNA (ceRNA) network links the function of protein-coding
mRNAs with the function of non-coding RNAs (ncRNAs, including microRNAs (miRNAs)
and long non-coding RNAs (lncRNAs)) [9], which better explains the respective roles of dif-
ferent RNAs in biological processes. Dysregulation of their expression has been implicated
in various diseases, including cancer. For example, Jafarinejad-Farsangi et al. predicted top
miRNAs targeting SARS-CoV-2 genome and differentially expressed genes (DEGs) in the
lungs of patients infected with SARS-CoV-2 [10]. Hsa-mir-130a has been proven by many
clinical trials and bioinformatics studies to be a marker gene that widely participated in
various types of tumors by down-regulating a variety of key proto-oncogenes [11]. Li et al.
identified 11 gastric cancer-specific lncRNAs, 9 miRNAs, and 41 mRNAs from a gastric
cancer ceRNA network generated from miRcode and miRTarBase based on bioinformat-
ics [12]. These ncRNAs have been extracted through ceRNA regulatory relationships and
served as determined or potential tumor suppressors or therapeutic targets [13]. A better
understanding of the underlying mechanisms of these regulations and their roles in cancer
initiation is essential for the development of more robust clinical diagnostic tools.

In the field of biology, deep learning has greatly improved the reliability of biological
big data analysis, when compared to traditional machine learning with the advantages
of self-learning and high generalization ability. The evaluation criteria obtained by deep
learning using a large volume of patient data not only have a wide range of confidence, but
also greatly reduce the cost of clinical diagnosis [14]. Deep neural network (DNN) models
have become a powerful tool of deep learning and artificial intelligence. Good progress has
been made in the application of DNNs in various biological branches, and the diagnosis
applying DNNs can even reach the level of experienced clinical experts [15–17].

In this paper, regulatory modules for lung adenocarcinoma were identified using
multiple DNN models in interaction and ceRNA networks (Figure 1). This would not only
improve the ability in the identification of regulatory modules for lung adenocarcinoma, but
also provide a basis for the understanding of regulatory mechanisms during carcinogenesis.
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Figure 1. The workflow of this study. Firstly, expression data of mRNAs, miRNAs and lncRNAs were
extracted from CPTAC, and differential analysis was performed to obtain significant differentially
expressed mRNAs, miRNAs and lncRNAs. Protein interaction and co-expression analysis were
performed on differential mRNAs to construct the interaction network, and DNN models were
established to screen out candidate mRNAs with significant contribution to the DNN models. In
addition, multiple experimentally validated miRNA target databases were combined for these
candidate mRNAs, differential miRNAs and lncRNAs to form a ceRNA network. Then a ceRNA
DNN model was performed to identify potential ceRNAs. Finally, modules comprised of miRNAs
and their regulated mRNAs and lncRNAs with the same regulation direction were identified as
regulatory modules for lung adenocarcinoma from the potential ceRNA subnetwork. These valuable
tumor regulatory modules were validated by literature review, functional enrichment analysis and
an independent lung adenocarcinoma dataset from The Cancer Genome Atlas (TCGA-LUAD).

2. Materials and Methods
2.1. Data

In this study, RNA-Seq data of 204 samples (including 102 tumor tissues and matched
paracancerous non-tumor tissues) and miRNA-Seq data of 202 samples (including 101
tumor tissues and matched paracancerous non-tumor tissues) for lung adenocarcinoma
were acquired from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) project.
A total of 100 pairs of tumor tissues and matched paracancerous non-tumor tissues) shared
by RNA-Seq and miRNA-Seq data were selected for data analysis. The pathological
characteristics of the lung adenocarcinoma patients are presented in Table 1.

Table 1. The pathological characteristics of the lung adenocarcinoma patients.

CPTAC

Patient (n) 100
Age, years

median 63.5
range 35–81

Sex (%)
male 63 (63%)

female 37 (37%)
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Table 1. Cont.

CPTAC

Tumor_grade (%)
G1 7 (7%)
G2 55 (55%)
G3 37 (37%)
GX 1 (1%)

Ajcc_pathologic_stage (%)
Stage I 54 (54%)
Stage II 29 (29%)
Stage III 17 (17%)

For RNA-Seq data, the Ensemble database was used to annotate symbol and gene_biotype
attributes. According to the gene_biotype attribute, 14,560 lncRNAs and 19,450 mRNAs
were extracted. Fragments per kilobase of exon per million reads mapped (FPKM) values
were chosen as the representative measure of mRNA or lncRNA expression. Read counts
for 1886 miRNAs were first obtained from the miRNA-Seq data. Then Reads Per Kilobase
per Million mapped reads (RPKM) values were calculated for each sample using the Reads
per million mapped reads (RPM) for each miRNA.

The data have undergone quality control and normalization using the edgeR TMM
method after removing RNAs with more than 1/3 of the missing values for RNA-Seq
data or 2 missing values for miRNA-Seq data. Then edgeR was used to detect signifi-
cant differentially expressed mRNAs, lncRNAs and miRNAs between lung adenocarci-
noma and corresponding paracancerous non-tumor tissues based on their read counts.
|log2(fold-change)| >1 and FDR adjusted p value < 0.05 were used as thresholds.

In order to ensure the stability and reliability of the obtained significant differen-
tially expressed mRNAs and lncRNAs, due to their large size, 4/5 of the samples were
randomly selected each time to detect significant differentially expressed mRNAs and
lncRNAs. The intersection of the differentially expressed mRNAs and lncRNAs obtained
after 50 times of randomization was taken as the significant differentially expressed mR-
NAs and lncRNAs. Because of the small number of miRNAs and sparse expression
values, the differential expression analysis was performed one time to obtain signifi-
cant differentially expressed miRNAs [18]. A total of 4888 significant differentially ex-
pressed RNAs, including 3399 mRNAs (1463 up-regulated and 1936 down-regulated), 1098
lncRNAs (519 up-regulated and 579 down-regulated) and 391 miRNAs (330 up-regulated
and 61 down-regulated) were obtained.

2.2. DNN Model
2.2.1. DNN Model Feature

The interaction network for significant differentially expressed mRNAs was con-
structed according to interactions between proteins they encoded and their expression cor-
relation. Interactions with confidence >700 from the STRING database and significantly co-
expressed (p-value < 0.05) were screened out. An interaction network containing 1122 mRNAs
and 13455 pairs of interactions was obtained. The FPKM values of these 1122 mRNAs were
the features for the mRNA DNN models.

Based on experimentally validated miRNA targets (mRNAs and lncRNAs) from
TarBase, mirTarBase, miRrecords, targetScan and starBase, the ceRNA triplets (mRNA-
miRNA-lncRNA) were constructed if miRNAs were negatively correlated with lncRNAs
and mRNAs, respectively, and mRNAs positively correlated with lncRNAs (Z-Score > 0,
p-value < 0.05). The ceRNA network was constructed accordingly. The FPKM/RPKM
values of these mRNAs, miRNAs and lncRNAs were employed as the features for the
ceRNA DNN models.
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2.2.2. DNN Model Construction

Multiple fully connected DNN models were built with Google TensorFlow 2.0 archi-
tecture. The architecture of each fully connected DNN model is composed of an input layer,
multiple hidden layers, and an output layer. The output layer with 1/0 label indicates the
sample to be a cancer one or not. The Adaptive Moment Estimation (ADAM) optimizer
with default parameters supplied by Keras was chosen due to the small sample size [19].
Here, the loss function of binary cross-entropy was used.

The performance of a DNN model is associated with many model training related
parameters, including batch size, number of epochs and the learning rate in the training
process. The model training requires the accumulation of multiple learning rounds. In
each round, a batch of training sets will be randomly selected according to the learning
rate. The more samples each batch has, the faster the convergence of the model will be,
and the weaker the generalization ability will be. Since the purpose of this analysis was to
obtain regulatory modules for lung adenocarcinoma, and the sample size and characteristic
number were relatively small, the batch size = 16 and epoch >= 1000 was set. The learning
rate should be high to prevent under-fitting if the batch number is large and be low to
prevent overfitting when the batch number is small. Therefore, the learning rate was set
to 0.0001 for more learning epochs.

In order to prevent overfitting in the learning process, DNNs could be further opti-
mized from two aspects: regularization layer and Drop layer. In the regularization layer,
each multidimensional feature is regularized after the neuron layer to make the gap smaller
and reduce the dependence of high-weight features; while in the Drop layer, some eigen-
values are discarded randomly. In order to preserve the integrity of features, regularization
was used to prevent overfitting in this paper.

Features that contributed significantly to the DNN models were more biologically
significant. SHapley Additive exPlanations (SHAP) is a game-theoretic approach to explain
the output of a machine learning model. The SHAP value represents the contribution
of a feature to the machine learning model. In this paper, DeepExplainer of the python
SHAP module was used to approximate SHAP values for the DNN models [20]. The
impact of each feature on each sample was obtained using force_plot. Then the arithmetic
average of absolute values for the impact representing the importance of the feature to all
samples, denoted as the SHAP value, was calculated by summary_plot. The larger the
SHAP value is, the greater the contribution of the feature to the corresponding DNN model.
The identification of candidate and potential RNAs in this paper was based on the SHAP
values of RNAs in DNN models.

2.2.3. DNN Model Evaluation

The samples were split randomly into a 70% training set and 30% validation set. The
randomization was repeated 50 times. The model was then evaluated with the closeness
between the expected output and the actual output by two measures: accuracy and loss
function. Accuracy indicates the precision of deep learning. The closer the accuracy
approaches to 1, the more accurate the prediction will be. The accuracy of training sets is
generally higher than that of validation sets. The loss represents the degree of deviation
between the training or validation results and the real results. The closer to 0, the better the
fitting with the real results will be. The loss of the validation sets is generally not less than
that of the training sets. DNN models were evaluated via the accuracy and loss curves for
the training and validation sets.

2.3. Regulatory Modules for Lung Adenocarcinoma
2.3.1. Candidate mRNA Selection

In order to select candidate mRNAs that not only contributed significantly to the
mRNA DNN models, but also were in the center of the interaction network, their contribu-
tion to mRNA DNN models and centrality values were jointly analyzed by Jointplot of the
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python Seaborn module. Jointplot is a Seaborn function that plots a scatter graph for two
variables with distinct histograms at the plot’s upper edge and right sides.

On the one hand, the contribution of each mRNA to the mRNA DNN models was
evaluated by SHAP values. On the other hand, central mRNAs were identified by the
plug-in cytoHubba of Cytoscape using Maximal Clique Centrality (MCC) algorithm since
MCC had a better performance in predicting PPI network central nodes among all the
centrality measures [21]. Therefore, Candidate mRNAs were selected as those with high
values of both measures.

2.3.2. Potential ceRNA Screening

In order to reveal the ceRNA regulatory mechanism in lung adenocarcinoma, a ceRNA
DNN model was constructed. SHAP values were also used to evaluate the contribution
of each RNA (mRNA, miRNA or lncRNA) to the ceRNA DNN model. RNAs with SHAP
value > 0.0001 were screened out as potential ceRNAs and used to reconstruct a potential
ceRNA subnetwork with ceRNA regulatory and mRNA interaction relationships.

2.3.3. Regulatory Module Identification and Validation

Modules comprising one miRNA and its regulated lncRNAs and mRNAs with the
same up/down regulation direction were selected from the potential ceRNA subnetwork
as regulatory modules for lung adenocarcinoma.

Literature review was conducted by searching in the PubMed database for all articles
published in English Language on the topics of the identified regulatory modules and lung
adenocarcinoma.

The metascape platform was used to conduct functional enrichment analysis based
on GO, KEGG, wikiPathways and Hallmark databases for mRNAs in regulatory mod-
ules for lung adenocarcinoma. Categories with the minimum overlap number 3 and the
hypergeometric test Benjamini–Hochberg adjusted p-value < 0.05 were selected.

In order to reflect the effectiveness of identified regulatory modules for lung adeno-
carcinoma, 551 unpaired samples from the lung adenocarcinoma dataset from The Cancer
Genome Atlas (TCGA-LUAD) (including 497 tumor and 54 paracancerous non-tumor sam-
ples, completely different from the training dataset) were used as an independent dataset.
Traditional machine learning methods, including K-nearest neighbor (KNN), Support Vec-
tor Machine (SVM), decision tree, Multi-feature Bayesian, Logistic regression, and random
forest were also applied to sample classification using identified regulatory modules. Their
performance was compared to that of the DNN model by area under receiver operating
characteristic curves (AUC) values of the area under the receiver operating characteristic
(ROC) curves.

3. Results
3.1. Candidate mRNAs

For the mRNA DNN models, the initial input layer was set to the FPKM values
of 1122 mRNAs from the interaction network, and two hidden layers of 400 and 100 neurons
were established, with the 0/1 label as the output layer (Figure 2a).

The accuracy curve and the loss curve were both accordant with the general law
of deep learning (Figure 2b,c). The loss curve for the training set and the validation set
decreased with the increase in iteration number. However, when the training times were
between 5 and 10 the loss for the training set decreased, while for the validation set it was
stable, indicating the occurrence of overfitting.

In order to alleviate the imbalance of each feature and eliminate the phenomenon
of overfitting, regularization layers were added after each hidden layer. The python
SHAP module was applied to interpret the contribution of each mRNA to the DNN
model (Figure 3).
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Figure 2. The mRNA DNN model: (a) The DNN model structure, (b) accuracy curve, and (c) loss curve.

Figure 3. The SHAP values of the mRNAs: (A) Contribution of each mRNA to partial individual
sample. Red represents the positive influence, and blue represents the negative influence. The
abscissa represents the samples, and the ordinate represents the SHAP values. (B) The SHAP values
of top 10 mRNAs based on their contribution to all samples.

The 18 mRNAs with SHAP value = 0 were removed and the DNN model was relearned
(Figure 4). The accuracy was 97.04%. The validation loss was slightly greater than the
training loss, and the two curves tended to converge. Hence, the regularization optimization
was effective.
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Figure 4. The accuracy and loss of the optimized mRNA DNN model after removing mRNAs with
SHAP value = 0. (a) Accuracy curve and (b) loss curve.

In order to select candidate mRNAs that had not only high contribution on DNN
models, but also central properties in the interaction network, the SHAP values of DNN
models and the MCC values of network nodes were jointly analyzed. It was demonstrated
that the mRNAs were mainly clustered in two categories (Figure 5). Therefore, a total of
699 mRNAs with MCC > 8 and SHAP value > 10−4 were selected as candidate mRNAs.

Figure 5. The joint distribution of SHAP and MCC values. MRNAs are mainly clustered in
two categories.
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3.2. Potential ceRNAs

Based on miRNA target information, candidate mRNAs obtained by previous DNN
models and significant differentially expressed lncRNAs targeted by significant differ-
entially expressed miRNAs were extracted. Pearson correlation coefficients of miRNA-
lncRNA, miRNA-mRNA and mRNA-lncRNA were calculated to screen ceRNA triplets
(p-value < 0.05). Finally, 518 ceRNAs triplets were screened out, containing 309 mRNAs,
13 miRNAs and 12 lncRNAs. Combing the interaction network and screened ceRNA
triplets, a ceRNA network comprised of 270 mRNAs, 13 miRNAs and 12 lncRNAs was
constructed after removing isolated nodes.

To achieve a better performance, the regularization layers in the previous optimized
mRNA DNN model were removed and a layer of 40 neurons was added to expand the
capacity of the neural network. FPKM values for 13 miRNAs and 12 lncRNAs were used as
features for the ceRNA DNN model (Figure 6a). The accuracy curve finally converged, and
the loss curve uniformly converged to 0 (Figure 6b,c). Therefore, the ceRNA DNN model
was feasible and appropriate.

Figure 6. The ceRNA DNN model: (a) The DNN model structure, (b) accuracy curve, and (c) loss curve.

SHAP values were used to evaluate the contribution of each RNA (mRNA, miRNA or
lncRNA) to the ceRNA DNN model. RNAs with SHAP value > 0.0001 (including 40 mRNAs,
10 miRNAs and 9 lncRNAs) were screened out as potential ceRNAs (Figure 7) and used to
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reconstruct the potential ceRNA subnetwork with ceRNA regulatory and mRNA interaction
relationships (Figure 8).

Figure 7. The SHAP values of top RNAs with SHAP value > 0.0001 in the ceRNA DNN model:
(a) Top 40 mRNAs, (b) top 10 miRNA, and (c) top 9 lncRNA.

With FPKM of these potential ceRNAs as features for the input layer, another ceRNA
DNN model was established and trained. The accuracy increased and the loss decreased
as the training progressed (Figure 9), indicating no overfitting during the process. The
learning process conformed to the law of deep learning, and the learning efficiency of deep
learning ensured the reliability of these potential ceRNAs.

In the DisGeNet database (https://disgenet.org/, accessed on 9 April 2021),
37 potential mRNAs/genes were cancer/tumor related genes, among which 25 were di-
rectly related to lung tumors and complications. GO functional enrichment analysis showed
that potential mRNAs mainly enriched in GO-BP functions such as regulated exocytosis,
transforming growth factor beta receptor signaling, muscle structure development, and
response to extracellular stimulus, referring to the phenomenon of metastases and lung
tissue deterioration during cancer development. The functions of GO-MF were mainly
cell adhesion molecule binding, SMAD binding and other membrane binding protein
activity. These potential mRNAs were mainly enriched in functions directly related to the

https://disgenet.org/
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proliferation, metastasis and diffusion of cancer cells, and were highly correlated with the
occurrence and development of lung adenocarcinoma.

Figure 8. The potential ceRNA subnetwork with ceRNA regulatory and mRNA interaction relationships.

Figure 9. The accuracy and loss of the ceRNA DNN model for potential ceRNAs: (a) Accuracy curve
and (b) loss curve.

3.3. Regulatory Modules for Lung Adenocarcinoma

Modules comprised of one miRNA and its regulated lncRNAs and mRNAs with
the same up/down regulation direction were identified as regulatory modules for lung
adenocarcinoma (Figure 10). MiRNA hsa-mir-30a and lncRNA AC104472.1 constituted
regulatory module for lung adenocarcinoma a with TPI1, KPNA2, MET, HSP90B1, P4HB,
DSP, CDH1, and ENO1 (Figure 10a). Among them, hsa-mir-30a had the highest contri-
bution in potential miRNAs, and its expression level was significantly down-regulated.
Hsa-mir-182, which ranked second in potential miRNA contribution, and lncRNA C5orf64
formed regulatory module for lung adenocarcinoma b (Figure 10b). Among the RNAs
regulated by hsa-mir-182, the hemoglobin β coding gene HBB has the highest contribution
in potential mRNAs. Hsa-mir-145 formed the third regulatory module for lung adenocarci-
noma c with lncRNA C1orf220, which ranked second in potential lncRNAs, and mRNAs
(COL1A2, COL3A1, SPP1, TIMP1 and CDH1) (Figure 10c).



Biology 2022, 11, 1291 12 of 19

Figure 10. Three regulatory modules for lung adenocarcinoma. (a) regulatory module for lung
adenocarcinoma a: hsa-mir-30a with its regulated lncRNA AC104472.1 and mRNAs, (b) regulatory
module for lung adenocarcinoma b: hsa-mir-182 with its regulated lncRNA C5orf64 and mRNAs, and
(c) regulatory module for lung adenocarcinoma c: hsa-mir-145 with its regulated lncRNA C1orf220
and mRNAs.

These regulatory modules for lung adenocarcinoma were further validated by litera-
ture review, functional enrichment analysis and an independent dataset.

3.3.1. Literature Review

Related studies have shown that hsa-mir-30a, as an important regulator of tumor
suppressors, could inhibit cell proliferation, migration, and invasion in vitro [22]. When
its expression is down-regulated, cancer is more likely to become worse. The lncRNA
AC104472.1 is one of the cancer lncRNAs of the immune-related function, and is a potential
prognostic marker for the treatment of breast cancer [23]. Additionally, hsa-mir-30a has a
potential role in regulating autophagy in cancer cells. Autophagy-related genes (e.g., P4HB)
are overexpressed if hsa-mir-30a regulation is inhibited. Accelerated autophagy behavior
of normal cells provides a microenvironment enriched with nutrients for cancer cells [24].
Current studies have shown that P4HB is overexpressed in all kinds of tumor cells and is
an important indicator to detect the tumor progression level [25]. In addition to P4HB, the
mRNA targets regulated by hsa-mir-30a also included many cancer therapeutic targets. For
example, DSP is related to the growth and metastasis of cancer cells [26]. CDH1 is a widely
known proto oncogene in the occurrence and development of cancer [27], while a relatively
new oncogenic determinant MET regulates the occurrence, progression, and malignancy of
epithelial carcinomas including lung adenocarcinoma [28].

Hsa-mir-182 was upregulated in lung and other cancers to promote cancer cell mi-
gration and invasion, and was found to have good potential for cancer diagnosis [29].
lncRNA C5orf64, which was regulated by hsa-mir-182, has recently been confirmed by a
large number of bioinformatics methods to be significantly positively correlated with the
abundance of immune neutrophils, and has the potential to regulate tumor microenviron-
ment and help to reshape mutant patterns [30]. In lung adenocarcinoma, the dysfunction
of HBB can directly lead to different degrees of anemia in patients, which has become a
major problem in the treatment of lung adenocarcinoma [31]. In addition, BTG2 is a gene
enriched in the Hallmark of angiogenesis and platelets, whose downregulation is directly
related to the invasion of cancer cells [32]. SPARCL1, which was also down-regulated
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by hsa-mir-182, was proved to be able to optimize clinical efficacy by preventing tumor
invasion and angiogenesis [33].

LncRNA C1orf220 was targeted by hsa-mir-145. Bioinformatics studies have shown
that C1orf220 plays an important role in central gene regulation of lung squamous cell
carcinoma [34]. COL3A1 and COL1A2 higher expressed in tumor samples were hub genes
in a miRNA–gene interaction network and related to the survival time of lung adeno-
carcinoma [35]. Silencing SPP1 was found to reduce EGFR resistance to tyrosine kinase
inhibitors and reduce its invasiveness in lung adenocarcinoma [36]. Tumor-derived protein
tissue inhibitor of metalloproteinases-1 (TIMP1) correlates with poor prognosis in many
cancers [37]. Wang et al. confirmed that TIMP1 regulated metabolism in metastases by acti-
vating the PI3K/Akt pathway and found TIMP1 as a potential biomarker for understanding
lung adenocarcinoma pathogenesis [38].

These regulatory modules for lung adenocarcinoma provided a better insight into the
regulatory role they play in the initiation of lung adenocarcinoma.

3.3.2. Functional Enrichment Analysis

GO, KEGG, wikiPathways and Hallmark functional enrichment analysis was per-
formed for mRNAs in regulatory modules for lung adenocarcinoma (Figure 11). GO
functional enrichment analysis showed that mRNAs in each module mainly enriched in
GO functions such as cell adhesion molecule binding, response to reactive oxygen species,
enzyme inhibitor activity, etc. These functions are all critical factors involved in cancers.
The regulation roles of them in lung adenocarcinoma has been studied [39–41].

Figure 11. Functional enrichment analysis results of mRNAs in three regulatory modules for lung
adenocarcinoma: (a–c) are results for three regulatory modules for lung adenocarcinoma a, b,
and c, respectively.

For KEGG pathway enrichment analysis, mRNAs in the first regulatory module for
lung adenocarcinoma were mainly enriched in pathways in cancer. In addition, the results
of enrichment by wikiPathways showed that mRNAs in the other two regulatory modules
for lung adenocarcinoma were mainly enriched in Regulation of toll-like receptor signaling
pathway and Lung fibrosis. Toll-like receptors (TLRs), such as Toll-Like Receptor 2 and 4,
are pillars of the immune system that have been linked to several forms of malignancy
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including lung adenocarcinoma [42,43]. Lung fibrosis has been reported to be a risk factor
for developing lung carcinogenesis [44].

MRNAs in the third regulatory module for lung adenocarcinoma were enriched mainly
in the Hallmark gene set of EPITHELIAL MESENCHYMAL TRANSITION and ANGIO-
GENESIS. Lung adenocarcinoma could cause severe epithelial-mesenchymal transition
disorder, leading to pulmonary epithelial cell dysfunction [45]. Angiogenesis is the process
of capillary sprouting from pre-existing vessels and plays a critical role in the carcinogenic
process of lung adenocarcinoma [46].

3.3.3. Independent Dataset Validation

To further demonstrate the effectiveness of identified regulatory modules for lung
adenocarcinoma, the DNN model was applied to classify samples of an independent dataset
TCGA-LUAD using three regulatory modules for lung adenocarcinoma, respectively. In
order to further prove that the DNN model was superior to traditional machine learning
methods, KNN, SVM, decision tree, Multi-feature Bayesian, Logstic regression, and random
forest were applied to the independent dataset, respectively. The ROC curve was drawn
according to a series of different cut-off values with true positive as the ordinate and false
positive as the abscissa (Figure 12).

Figure 12. ROC curves and AUC values of regulatory modules for lung adenocarcinoma for the
independent dataset using different machine learning methods. (a–c) are results for three regulatory
modules for lung adenocarcinoma a, b, and c, respectively.

Most machine learning methods had good classification performance (AUC > 0.75),
while the DNN model had the best performance, demonstrating the effectiveness and diag-
nostic values of all three regulatory modules for unpaired lung adenocarcinoma samples.

4. Discussion

In this paper, three regulatory modules for lung adenocarcinoma were identified from
multiple DNN models using expression data in interaction and ceRNA networks. They
participated in the carcinogenesis of lung adenocarcinoma by regulation of miRNAs to
mRNAs and lncRNAs. These modules were further validated in literature and an indepen-
dent dataset and were expected to be used for lung adenocarcinoma diagnosis. The main
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advantage of DNN is that it can modify the multidimensional weight of each feature during
the learning process. Regulatory modules for lung adenocarcinoma identified using DNN
models from paired samples of CPTAC could distinguish disease samples from normal
ones for unpaired samples of the TCGA-LUAD dataset, indicating the effectiveness for both
paired and unpaired samples. The higher accuracy might come from the power of DNN in
describing sophisticated relationships between genes, while the simple classification rules
that traditional machine learning methods used may be not capable enough. The novelty of
our study was summarized as follows: (1) The expression data was acquired from CPTAC
and TCGA, which were all large multi-omic datasets for various cancers. This made our
results covered most scenario.; (2) The ceRNA network constructed based on experimen-
tally validated miRNA targets and correlations could better explain the respective roles
of different RNAs in biological processes; (3) Potential RNAs were screened by multiple
mRNAs and ceRNAs DNN models, which could intelligently recognize the sophisticated
relationships between RNAs appropriately.

Regulatory modules for lung adenocarcinoma regulated the initiation process of lung
adenocarcinoma through ceRNAs relationships. All mRNAs of regulatory modules for lung
adenocarcinoma have been validated to be associated with cancer in DisGeNet, of which 15
were directly related to lung cancer and its complications. LncRNAs and miRNAs were
further searched in ncRNA-disease association databases to further exhibit their disease
association. Two lncRNAs of regulatory modules for lung adenocarcinoma were stored
in LncRNADisease v2.0 as non-small cell lung cancer associated, which integrated com-
prehensive experimentally supported and predicted ncRNA-disease associations curated
from manual literatures and other resources [47]. All miRNAs of regulatory modules for
lung adenocarcinoma were associated with lung adenocarcinoma in HMDD (the Human
microRNA Disease Database) v3.2 curating experimentally supported miRNA and disease
association data [48]. Experimental validation is needed for other RNAs in regulatory
modules for lung adenocarcinoma in the future.

The regulatory modules for lung adenocarcinoma we identified were not population
specific, since the CPTAC data contained 66 white, 2 black or African American, 2 Asian,
and 130 not reported samples according to the race data from the clinical information. To
study the regulatory relationships of RNAs in the three regulatory modules for specific
population, we recalculated the correlations between RNAs for different races respectively.
Most RNA pairs for white samples showed the same regulatory relationships (the black or
African American and Asian samples were omitted because the number of them were too
small to be correlated, Table S1). Then similar progress was performed to the TCGA-LUAD
dataset according to the race data, i.e., 456 white, 58 black or African American, 8 Asian
and 29 not reported samples. Similar results were obtained for most cases of white and
black or African American samples (Table S1). Regulatory relationships for Asian samples
(the correlation analysis was not performed for hsa-mir-30a since its expression value in
Asian samples is zero) were not the same as those in the regulatory modules, probably due
to the small sample size. As a result, we searched for other datasets with miRNA, mRNA
and lncRNA expression data of Asian samples in the GEO database, but none was obtained.
Only one expression profile with mRNA and miRNA expression data, GSE128311, was
found. This dataset had 77 Asian samples. It was found that the regulatory relationships
of GSE128311 were consistent with the regulatory relationships in the three regulatory
modules (only the correlations between miRNAs and mRNAs were calculated, as no
lncRNA was in this dataset, Table S1). The above results did not illustrate the population
specificity of the regulatory modules for lung adenocarcinoma.

The prognosis value of regulatory modules for lung adenocarcinoma was then evalu-
ated using the univariate Kaplan–Meier survival analysis and multivariate Cox regression.
Kaplan–Meier curve showed similar results for some mRNAs of regulatory modules for
lung adenocarcinoma in CPTAC and TCGA-LUAD datasets. For example, high expression
of P4HB as well as low expression of BTG2 and CIT was associated with poor overall
survival of lung adenocarcinoma patients (p-value of log-rank test < 0.05, Figure 13).
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Clinical application of these genes was worth further study due to their diagnostic and
prognostic value.

Figure 13. Kaplan–Meier survival analysis results for (a) P4HB, (b) BTG2 and (c) CIT in CPTAC and
TCGA-LUAD datasets.

Other RNAs of regulatory modules for lung adenocarcinoma showed better results
in the TCGA-LUAD dataset. Kaplan–Meier survival analysis in the TCGA-LUAD dataset
showed that the overall survival of patients with the low expression hsa-mir-30a was poorer
than that with the high expression (p < 0.05). Moreover, multivariate Cox analysis confirmed
that each module was a risk factor for overall survival among patients in the TCGA-LUAD
cohort (p < 0.05). A probable reason for better TCGA-LUAD prognostic results was that
it was a more balanced dataset for different stages, while most patients of CPTAC were
in their early stage. In spite of this, regulatory modules for lung adenocarcinoma could
still be used for survival analysis in more balanced datasets for different stages. Further
experimental validation for the regulatory relationships in lung adenocarcinoma would
also be necessary.

In this paper, ceRNA networks were constructed according to experimentally validated
miRNA targets from multiple databases, making the size of ceRNA networks small. The
interactions predicted by confident computational tools should be taken into the analysis to
improve the effectiveness and reliability of regulatory modules for lung adenocarcinoma.

5. Conclusions

To sum up, three regulatory modules for lung adenocarcinoma were identified using
expression data by multiple DNN models in biological networks. MiRNAs hsa-mir-30a,
hsa-mir-182, hsa-mir-145 and their regulated lncRNAs and mRNAs participated in the
carcinogenesis of lung adenocarcinoma through ceRNAs relationships. These regulatory
modules showed the relationship with lung adenocarcinoma in terms of expression levels,
functions, pathways, and literature. They could distinguish disease samples from normal
ones, and thus had potential for lung adenocarcinoma diagnosis. The regulatory relation-
ships between RNAs were validated in various datasets, including CPTAC, TCGA and
an expression profile from the GEO database. These regulatory modules had potential
values for clinic prognosis. Our study will contribute to improving the understanding of



Biology 2022, 11, 1291 17 of 19

the ceRNA network regulatory mechanisms in the carcinogenesis of lung adenocarcinoma
and provide schemes for identifying novel regulatory modules of other cancers.
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