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Abstract

Objective—Enhanced fatty acid desaturation by stearoyl-CoA desaturase enzyme-1 (SCD1) is 

associated with obesity. This study determined desaturation in cord plasma of newborns of 

mothers with and without gestational diabetes (GDM).

Study design—Newborns of mothers with GDM (n=21) and without (Control, n=22) were 

recruited. Cord plasma fatty acid desaturation indices (palmitoleic/palmitic, oleic/stearic ratios) 

were compared, and correlated with anthropometrics and biochemical measures. A subset of 

VLDL desaturation indices were determined to approximate liver SCD1 activity.

Results—The total oleic/stearic index was higher in GDM, despite adjustment for cord glucose 

concentrations. Among GDM and Controls, the oleic/stearic index correlated with cord glucose 

concentrations (rs=0.36, p=0.02). Both palmitoleic/palmitic and oleic/stearic indices correlated 

with waist circumference (r=0.47, p=0.001; r=0.37, p=0.01). The VLDL oleic/stearic index was 

higher in GDM.

Conclusion—The elevated total oleic/stearic index suggests increased lipogenesis in GDM 

newborns. Factors in addition to glucose supply may influence fetal SCD1 activity.
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Introduction

Fetal metabolism is dependent upon substrates from the maternal nutrient environment. 

While evidence suggests that fatty acid synthesis is active before term 1, 2, little is known 

about fetal fatty acid desaturase pathways, which are subject to hormonal and nutrient 

regulation. Mouse fetal lung tissues have demonstrated Δ9 stearoyl-CoA desaturase 

expression 3, while human fetal liver samples have been shown to exhibit Δ5 and Δ6 

desaturase activities 4. Whether maternal conditions during pregnancy affect (i.e. 

“program”) fetal desaturase activity is not known.

Stearoyl CoA desaturase enzyme-1 (SCD1) is a lipogenic Δ9 desaturase 5 that is upregulated 

in obesity and insulin resistance 6, 7. SCD1 converts saturated fatty acids (SFA) (16-carbon 

palmitic acid, 16:0, and 18-carbon stearic acid, 18:0) to monounsaturated fatty acids 

(MUFA) (palmitoleic 16:1n-7, and oleic 18:1n-9, respectively) for incorporation into 

triglycerides. Using gas chromatography/mass spectrometry (GC/MS), the fatty acid 

composition of tissues can be determined. Through GC/MS, SCD1 activity can be estimated 

from the desaturation indices, the product-to-precursor ratios (palmitoleic/palmitic 

16:1n-7/16:0, and oleic/stearic 18:1n-9/18:0) 8, 9. In obesity, the desaturation indices 

correlate with measures of adiposity in animal tissues 10, and in human subjects 11, 12. SCD1 

expression is responsive to the nutrient and hormonal environments, with induction by 

carbohydrates 13 and fat 14, but with suppression by polyunsaturated fatty acids (PUFA) 15. 

SCD1 is induced by insulin, but suppressed by leptin 16.

Gestational diabetes (GDM) exposes the fetus to changes in the in utero nutrient 

environment. While adult human studies have shown that plasma reflects hepatic SCD1 

expression 9, this has not been confirmed in fetal life, and we explore this concept in the 

present study. Preterm infants have demonstrated de novo synthesis of monounsaturated 

fatty acids, supporting the likelihood that hepatic SCD1 is active in utero 17. Therefore, we 

hypothesized that unfavorable maternal conditions in GDM may stimulate fetal SCD1 

activity, resulting in increased cord plasma desaturation. The objectives of this study were 1) 

to compare the cord plasma desaturation indices in GDM and Control newborns, and 2) to 

determine whether the indices were related to infant anthropometric or biochemical 

measures. We demonstrated a higher oleic/stearic desaturation index in cord plasma of 

GDM newborns, which may be related to measures of infant adiposity.

Materials and Methods

Study subjects and cord blood sample collection

The study was approved by the Human Subjects Committee at the Los Angeles Biomedical 

Research Institute at Harbor-UCLA (the study center, Torrance, CA). When expectant 

mothers were admitted for labor, informed consent was obtained from those who were 

interested in enrolling their infants in a prospective study intended to follow up to three 

years of age. Infants born to mothers with GDM (GDM), and normal weight infants of 

mothers without diabetes (Control) were recruited at 37-42 weeks gestational age. (Small-

for-gestational age infants were also recruited, but there were insufficient numbers for 

analysis.) GDM in the mother was determined using previously established diagnostic 
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criteria 18, and managed by their personal physicians. Control infants had estimated weight 

>10th percentile and <90th percentile for age and gender 19, confirmed after delivery.

Infants were excluded for multiple gestation, unknown dates, pre-pregnancy maternal 

diabetes, and syndromic/chromosomal conditions. GDM subjects born SGA were excluded 

from this analysis.

Umbilical venous cord blood was collected by needle and syringe from the clamped cord 

after delivery, except in five samples, for which the mode of collection was not documented. 

The study subjects were evaluated by physical examination, anthropometric measurements, 

chart review, and maternal interview including a 24-hour dietary recall. Newborn findings 

are presented in this report.

Anthropometrics

Birth weights were recorded by hospital personnel immediately after delivery. Recumbent 

infant lengths were determined using a Kiddimeter (Raven Equipment Limited, Essex, UK) 

in all but a few subjects, for whom tape measure lengths were used. Head circumference was 

measured at the widest occipitofrontal circumference. The ponderal index was calculated 20. 

Weight-for-length percentiles were based on CDC growth charts from the year 2000. 

Percent body fat was determined by the summation of skinfold thickness measurements 

(triceps, biceps, suprailiac, and subscapular) obtained by Holtain calipers generally at 12-48 

hours of life, using the following equations for total body density: Male: 

d=1.1690-0.0788Log(sum of skinfolds), Female: d=1.2063-0.0999Log(sum of skinfolds) 21. 

Waist circumference was determined at the level just above the umbilicus.

Biochemical measures of metabolism

Serum (for total cholesterol, LDL, HDL, and triglycerides) and plasma (for all other 

measures) were isolated from cord blood by centrifugation as soon as possible after 

collection. Samples were stored at -80°C until analysis. The following biochemical 

measures were obtained: plasma glucose levels (hexokinase method, Sigma); adiponectin 

(Linco Human Adiponectin ELISA kit, Millipore); leptin (Linco Human Leptin ELISA kit, 

Millipore); C-peptide ( Human C-peptide Radioimmunoassay, Millipore); insulin 

(fluoroimmunoassay, Beckman Coulter); Non-esterified fatty acid (NEFA) levels 

(enzymatic colorimetric method assay, Wako); total cholesterol, LDL cholesterol, HDL 

cholesterol, and triglyceride levels (Beckman Coulter Unicel® DxC 800 system, timed 

endpoint methods).

Plasma fatty acid analysis

Fatty acid extraction and GC/MS—Total fatty acids (including those from 

triglycerides, phospholipids, and cholesteryl esters) were extracted from 50 μl plasma. 

Plasma underwent saponification, acidification, and petroleum ether extraction as previously 

described 22. Fatty acids were derivatized as methyl esters for GC/MS analysis using a 

Hewlett-Packard model 6890 gas chromatograph, with a Bpx70 column (30-m length, 250-

μm diameter, 0.25-μm film thickness; SGE, Inc., Austin, TX), and a model 5973 selective 

mass detector (not flame ionization detector, FID). Gas chromatography conditions were: 
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helium flow rate, 1 ml/min; initial oven temperature, 150°C, programmed to increase at 

3°C/min to a final temperature of 221°C. Expected retention times for palmitic, palmitoleic, 

stearic, and oleic acids based on known standards were: 6.6, 7.2, 9.5, and 10.2 minutes, 

respectively. Mass spectra of fatty acids were obtained through electron impact ionization, 

with the mass detector set in scan mode, and a 2 minute solvent delay. The identities of the 

following fatty acids were confirmed by observation of their characteristic ions between m/z 

200-400: palmitic, m/z 270; palmitoleic, m/z 268 and 236; stearic, m/z 298; oleic, m/z 296, 

264. Fatty acids were considered undetectable if a peak was too low for integration, or the 

mass spectrum of a peak at the expected retention time did not show characteristic ions. 

Samples were run in triplicate and the relative abundance is presented as a percent of total 

fatty acids.

The GC/MS methods were validated by standard curves, demonstrating variation in 

ionization efficiencies among the fatty acids when each one was analyzed against an internal 

standard. Measured-to-actual response factors include: palmitic 0.93, palmitoleic 0.33, 

stearic 1.50, oleic 1.57, arachidonic (ARA) 0.35, and docosahexaenoic acid (DHA) 0.25. 

(Therefore, in comparison to other studies 23, 24, the palmitic acid and DHA abundances 

with our methods seem lower, while stearic acid seems higher.)

Calculation of desaturation indices—The area under each GC peak is proportional to 

the relative abundance of each fatty acid. Desaturation indices were determined by 

calculating the ratios of relative abundances of the MUFA products (palmitoleic, oleic) to 

saturated fatty acid (SFA) precursors (palmitic, stearic). The palmitoleic/palmitic and oleic/

stearic desaturation indices 8, 11, 12 were calculated.

VLDL isolation—Cord plasma VLDL desaturation indices were determined as a surrogate 

measure of fetal liver SCD1 activity 9 from 10 Control and 10 GDM subjects. (Insufficient 

samples to analyze in the whole cohort.) Preliminary chylomicron separation was not done 

due to their absence in cord plasma 25. A previously published method for VLDL 

isolation 26 was adapted for smaller volumes. Briefly, 250 μl of plasma was overlaid with 

150 μl 1.006 g/mL density NaCl/KBr solution in Ultra Clear thin-walled tubes, then 

ultracentrifuged with tube adaptors (SWTi55 rotor, Beckman Coulter) for 20 hours at 45,000 

rpm at 4°C. VLDL was removed in the top 120 μl of supernatant. Fatty acids were extracted 

and analyzed as above with tri-deuterated heptadecanoic acid as an internal standard.

Maternal dietary intake – 24 hour recall

Maternal dietary intake was estimated by recall of the 24 hour period before food was 

withheld before delivery. The Nutrition Data System for Research Software generated intake 

values based on the University of Minnesota Nutrition Coordinating Center Food and 

Nutrient Database. Mothers were asked whether the recall represented “typical” (average), 

more, or less than usual intake.

Statistical Methods

Based on data available at the time of the study design 8, 20 subjects per group was 

estimated to provide 80% power to detect a 36% difference in the 16:1/16:0 ratio and a 20% 
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difference in the 18:1/18:0 ratio between groups with p<0.05. The primary outcomes were 

the palmitoleic/palmitic and oleic/stearic indices. Secondary outcomes included infant and 

maternal data, anthropometrics, cord plasma biochemical measures, and maternal dietary 

data. Statistical analysis was performed using SYSTAT (v13) and SigmaPlot 11.0. Values 

below limits of detection were assigned numerical values that were half of the lowest 

detectable limit of each assay. Normally distributed data was analyzed by ANOVA. Non-

parametric data (e.g. glucose, insulin, leptin, triglycerides, dietary data) was analyzed by the 

Kruskal-Wallis ANOVA on Ranks. The significance level was set at 0.05. The data sets that 

include nonparametric data are presented as medians with 25-75% IQR for consistency in 

presentation. Gender distribution was compared using Fisher's exact test.

The primary ANOVA was extended to multiple regression analysis that adjusted for 

baseline variation (gestational age and gender), and potential confounding characteristics 

that were significantly different between groups (maternal age, log-transformed glucose). 

Insulin was not included due to non-normal distribution despite log-transformation.

Each desaturation index was correlated to maternal and infant factors related to adiposity 

and insulin resistance in the whole cohort, and in each group separately, using Pearson's 

correlations for normally distributed data, and Spearman's correlations for non-parametric 

data. The correlations were determined to determine if GDM status affected the 

relationships. Linear regression was performed to assess effect of maternal diabetes 

treatment within GDM. No mathematical correction was made for these secondary 

exploratory analyses, but note that they comprise over 50 correlations.

Results

Infant Characteristics

The ethnic group composition was representative of the patient population at the study 

center. In the Control group, 20 subjects were Hispanic, 1 was Black, and 1 was mixed 

Hispanic/White. In the GDM group, 19 were Hispanic, 1 was Asian, and 1 was mixed 

Hispanic/White.

Of the GDM mothers, 9 were treated by diet and lifestyle modification, 9 received 

metformin treatment, 2 were treated by glyburide alone, and 1 mother received insulin.

Of the subject characteristics (Table 1), the GDM group demonstrated higher maternal age 

(p=0.002). GDM mothers trended toward less weight gain during pregnancy (p=0.07). The 

remaining maternal characteristics were similar between groups. Mean maternal HbA1c 

(available from 18 GDM mothers, majority drawn during third trimester) was 5.6% (Table 

1), indicating adequate glycemic control 27. Infant birth weight and percent body fat were 

similar between Controls and GDM.

Biochemical measures of metabolism, fatty acid profile, and desaturation indices

In the cord plasma biochemical measures (Table 2A), GDM plasma exhibited significantly 

higher glucose (p=0.006) and insulin measurements (p=0.04). For the lipid panels, 3 samples 

were insufficient for analysis in each of the Control and GDM groups, but results were 
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similar between groups. There was a trend toward higher leptin concentrations (p=0.07) in 

GDM.

Of the percentages of total of the fatty acids of interest (Table 2B), GDM infants show lower 

abundance of palmitic (p=0.01), and stearic acid (p<0.001), while the abundances of 

myristic (a minor product of de novo synthesis), vaccenic (elongation product of palmitoleic 

acid) were similar. Of the PUFAs, the percentages of linoleic, ARA, and DHA were similar. 

Less than half of the subjects had detectable α-linolenic acid (ALA) or eicosapentaenoic 

acid (EPA), and the percent of total for each averaged less than 1% (not shown).

The total plasma palmitoleic/palmitic acid index was similar between the two groups (Table 

2B). The GDM infants demonstrated significantly higher oleic/stearic acid indices than 

Controls (p<0.001).

VLDL desaturation indices

Palmitoleic acid was not detected in two Controls. Among the SFA and MUFA, there were 

similar percentages of total of palmitic (expressed as median and IQR) (Control 17.8, IQR 

15.7-20.4%; GDM 19.6, IQR 16.6-23.7%), and stearic (Control 43.4, IQR 27.9-54.4%; 

GDM 29.6, IQR 21.4-48.2%) acids. GDM trended toward higher palmitoleic abundance 

(Control 0.4, IQR 0.2-0.7%; GDM 1.4, IQR 0.4-2.8%), but had significantly higher oleic 

(Control 7.0, IQR 3.5-21.0%; GDM 19.3, 17.3-25.1%) and vaccenic acid proportions 

(Control 0.2, IQR 0.0-0.3%; GDM 1.5, IQR 1.0-2.1%). GDM demonstrated higher VLDL 

oleic/stearic indices than Controls (p=0.03) (Table 2B).

Multiple regression

The total plasma desaturation indices between Control and GDM groups were compared in 

multiple regression analyses, with adjustment for potential confounding factors. After 

adjustment for gestational age and gender, the palmitoleic/palmitic ratio was still similar 

between groups, with the least square means (LSM) ± SEM 0.11±0.01 in Controls, versus 

0.12±0.01 in GDM, p=0.25. The oleic/stearic ratio remained significantly higher in the 

GDM group (Control 0.72±0.09; GDM 1.24±0.09, p<0.001). After further adjustment for 

factors that were increased in the GDM group - maternal age and glucose concentrations 

(log-transformed for regression) - the palmitoleic/palmitic ratio remained similar between 

groups (Control 0.10±0.01; GDM 0.12±0.01, p=0.09), and the oleic/stearic ratio remained 

higher in the GDM group (Control 0.67±0.11; GDM 1.29±0.11, p=0.001).

Maternal dietary intake – 24 hour recall

There were no differences in dietary intake measures between the groups (Supplemental 

Table 1). Subjectively, mothers often had trouble recalling their food intake prior to delivery 

(dietary interviews were conducted postpartum). One mother in the Control group and 2 

mothers in the GDM group could not tell study personnel whether their reported intake 

represented more, less, or “typical” intake (average amount). Of the mothers who did 

answer, intake was reported to be typical by 36% of Control mothers, and 57% of GDM 

mothers, while the remaining mothers reported less intake.
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Correlations

With regards to measures of adiposity, the palmitoleic/palmitic index correlated positively 

with birth weight (p=0.03; Figure 1A), while the oleic/stearic index trended to a positive 

correlation (p=0.06, Figure 1B). Neither desaturation index correlated significantly with 

percent body fat (palmitoleic/palmitic, r=0.23; oleic/stearic, r=0.24), or the weight-for-

length percentile (palmitoleic/palmitic r=0.03; oleic/stearic r=-0.05). Of note, both indices 

positively correlated with waist circumference (palmitoleic/palmitic p=0.001, Figure 1C; 

oleic/stearic p=0.01, Figure 1D), with GDM contributing more to the associations than 

Controls.

With respect to glucose metabolism, the palmitoleic/palmitic index (Figure 1E) was 

unrelated to glucose, while the oleic/stearic index correlated positively (Figure 1F). Neither 

index correlated with insulin (palmitoleic/palmitic, rs=0.22; oleic/stearic, r=0.24) or C-

peptide (palmitoleic/palmitic, r=0.05; oleic/stearic, r=0.11). While neither index correlated 

with leptin in the total cohort of Control and GDM subjects (palmitoleic/palmitic, rs=0.0013, 

Figure 1G; oleic/stearic, rs=0.19), the two groups exhibited different patterns in the 

palmitoleic/palmitic index, with the Controls demonstrating a trend to negative association 

with leptin (Control rs= -0.40, p=0.06; GDM rs=0.18). Neither index correlated significantly 

with adiponectin (palmitoleic/palmitic, r=0.24; oleic/stearic, r=0.13). Neither desaturation 

index correlated overall with maternal prepregnancy BMI (palmitoleic/palmitic, rs=-0.22, 

Figure 1H; oleic/stearic, rs=0.01). However the Control group palmitoleic/palmitic index 

was negatively associated (Control rs= -0.57, p=0.006; GDM rs=-0.1). Within the GDM 

group, neither desaturation index correlated significantly with type of maternal diabetes 

treatment (palmitoleic/palmitic, R2=0.18, oleic/stearic R2=0.28). Neither desaturation index 

correlated with maternal intake of palmitic, palmitoleic, stearic, or oleic acids (not shown).

Discussion

While increased SCD1 desaturation has been demonstrated in obesity in multiple 

populations 12, 28, 29, we sought to determine whether increased desaturation was present in 

newborns of mothers with gestational diabetes as well. Despite average birth weights and 

percent body fat, GDM infants demonstrated higher cord plasma oleic/stearic desaturation 

indices, which may be partially influenced by maternal supply of glucose. Both desaturation 

indices may be related to certain measures of adiposity. Our data also suggests that fetal 

liver SCD1 activity contributes to the higher cord plasma oleic/stearic desaturation index in 

GDM infants.

The GDM group demonstrated a greater total plasma oleic/stearic desaturation index, with 

lower stearic acid abundance that may represent increased turnover of stearic in conversion 

to oleic acid. A similar decrease in palmitic acid abundance in GDM did not lead to a 

difference in the palmitoleic/palmitic desaturation index, suggesting that the 16-carbon and 

18-carbon fatty acid desaturation pathways may be functionally compartmentalized or 

differentially regulated 30. Other potential explanations include influence from maternal 

blood, or dilution from fatty acids released by lipolysis. However, our data is limited by lack 

of maternal fatty acid profiles for comparison.
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Regarding maternal characteristics, the mothers varied in treatment of diabetes, and were 

predominantly Hispanic. Metformin (but not glyburide) crosses the placenta 31, and data 

published after the inception of this study suggests that metformin may suppress hepatic 

SCD1 32. However, there was no correlation between either desaturation index and type of 

diabetes treatment. The predominance of Hispanic subjects in this study enhanced 

comparability between groups, but limits generalizability to other populations. Therefore, 

further studies are needed to determine whether maternal diabetes treatment or ethnicity 

influence SCD1 desaturation in cord plasma.

Both glucose and insulin are known to stimulate SCD1 activity 33. Cord glucose may be 

influenced by maternal supply, while insulin concentrations reflect the fetal response 34. The 

correlation between glucose concentrations and the oleic/stearic indices in our study 

suggests a fetal elevation of SCD1 activity in response to maternal glucose supply in GDM. 

However, adjustment for glucose measurements in the multiple regression analysis did not 

diminish the elevation in the oleic/stearic index in the GDM group. Along with the 

acceptable HbA1c values, these findings would suggest that factors in addition to glucose 

influence the fetal desaturation indices in GDM pregnancies, and the indices are unlikely to 

be modified by even tighter glucose control.

The higher VLDL oleic/stearic desaturation index in GDM suggests that the fetal liver 

contributes to the difference in the total plasma oleic/stearic index. Cord plasma fatty acids 

are derived from maternal 35, placental 36, and fetal sources 1. However, maternal 

lipoproteins do not cross the placenta intact, and therefore we analyzed cord VLDL as a 

fetal-specific lipoprotein. As the main lipid export product of the liver, VLDL includes 

products of liver fatty acid metabolism. VLDL desaturation indices have been shown to 

correlate with liver SCD1 mRNA expression in humans 9, and are therefore, markers of liver 

SCD1 expression. Low sample numbers and volumes in the VLDL analysis limited our 

ability to detect the less abundant palmitoleic acid, but the difference in the oleic/stearic 

desaturation index remains. Future studies are needed to define how the maternal, placental, 

and fetal contributions affect the cord plasma desaturation indices.

Although SCD1 activity can be induced by high fat intake 14, our study did not demonstrate 

evidence of increased maternal fat intake among our GDM mothers. Conversely, there were 

no differences with PUFA intake that may suppress desaturation. Despite similar 

concentrations of TGs and NEFAs (which include maternal fatty acids from placental 

transport), we cannot exclude qualitative differences in NEFA or TG composition that may 

have affected fetal desaturase activity.

Low concentrations of adiponectin are associated with insulin resistance in obesity and 

diabetes 37, 38. We found no relationship between adiponectin and the desaturation indices, 

in contrast to published studies finding that the oleic/stearic desaturation index was inversely 

correlated with adiponectin in plasma of healthy adolescent females 39, and in the adipose 

tissue of adults with rare adipose disorders 40. More studies are needed to determine what 

factors determine this relationship (or lack thereof). The similar leptin levels between 

Controls and GDM are consistent with data showing that leptin correlates with birth 

weight 20. With respect to desaturase activity, leptin regulates liver SCD1 expression 
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through suppression 16. However, the palmitoleic/palmitic index in only the Control group 

trended toward a negative association with leptin concentrations. Whether lack of a similar 

trend in GDM suggests an abnormal relationship with leptin requires further investigation.

While the unexpected strong negative association between the palmitoleic/palmitic index 

and maternal pre-pregnancy BMI among Control, but not GDM subjects, suggests a 

relationship that may be dysregulated in GDM, the data overall supports that cord 

desaturation is associated with factors other than maternal obesity. Among the infants, 

however, the correlation between both total desaturation indices and the waist circumference 

among Controls and GDM was of particular interest. Associations between desaturation 

indices and adiposity were previously documented in adolescence 12 and adulthood 11. 

Because the abdominal circumference reflects fetal growth in utero 41, and the waist 

circumference may be a measure of adiposity in very young children 42, 43, 44 and 

adolescents 45, we infer that the waist circumference may represent adiposity in the newborn 

as well. Future investigations are needed to determine whether the correlation between the 

indices and waist circumference can be used to predict future obesity and insulin resistance.

Conclusions

The findings from this study support a complex relationship between maternal, placental, 

and fetal factors and the total cord plasma desaturation indices. Overall, elevations in the 

oleic/stearic desaturation indices are present in GDM, despite normal birth weight and good 

maternal diabetes control during pregnancy. Although the oleic/stearic index appears to be 

influenced by glucose supply from the mother, additional factors are likely involved in 

stimulation of SCD1 activity in GDM. Both desaturation indices appear related to infant 

waist circumference. The difference in the total plasma oleic/stearic index may be 

influenced by liver desaturase activity. Whether the increased oleic/stearic desaturation 

index in GDM persists through early childhood will be determined in our long-term follow-

up study. How the cord plasma desaturation indices may be used as biomarkers of clinical 

outcome in the development of obesity and metabolic disease requires further investigation.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Correlations between total desaturation indices and measures of adiposity or glucose 
metabolism
r indicates Pearson's correlation coefficient, while rs indicates Spearman's correlation 

coefficient. *p<0.05, **p<0.01. The palmitoleic/palmitic index correlated with birth weight 

(A), but the oleic/stearic index did not (B). Both the palmitoleic/palmitic and oleic/stearic 

indices were positively associated with waist circumference (C and D). In relation to glucose 

concentrations, the palmitoleic/palmitic index was not related to glucose (E), but the oleic/

stearic index positively correlated (F). Among Controls only, the palmitoleic/palmitic index 

trended toward a negative correlation with leptin (G), and a significant negative correlation 

with maternal prepregnancy BMI (H).
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Table 1

Characteristics of infants1

Characteristics Control(n=22) GDM(n=21)

 Gender, male/female 10M/12F 12M/9F

 Gestational Age, weeks 39.6 ± 0.2 39.7 ± 0.2

Maternal Characteristics

 Maternal Age, years 27 ± 1 33 ± 1**

 Parity, including subject 2.4 ± 0.4 2.1 ± 0.2

 Maternal Prepregnancy BMI, kg/m2 27.3 ± 2.0 31.0 ± 1.5

 Maternal Pregnancy Weight Gain, kg 12.6 ± 0.8 8.8 ± 1.6

 Maternal Delivery BMI, kg/m2 32.1 ± 1.9 34.7 ± 1.4

 Maternal HbA1c, % N/A 5.6 ± 0.1 (n=18)

Infant Anthropometrics

 Infant Birth Weight, kg 3.43 ± 0.07 3.53 ± 0.8

 Infant Birth Length, cm 49.8 ± 0.4 50.7 ± 0.3

 Head Circumference, cm 34.3 ± 0.2 31.3 ± 1.8

 Ponderal Index, kg/m3 2.79 ± 0.05 2.72 ± 0.07

 Weight-to-length Percentile, % 59.0 ± 5.1 48.4 ± 6.3

 Infant Percent Body Fat, %(sum of skinfolds) 10.8 ± 0.6 12.2 ± 0.8

 Infant Waist Circumference, cm 32.3 ± 0.4 33.0 ± 0.5

1
Data are presented as the mean ± SEM.

**
p<0.01 compared with Controls
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Table 2

Biochemical measures, profile of fatty acids of interest, and desaturation indices1

A. Control (n=22) GDM (n=21)

Cord Plasma Biochemical Measures

Glucose,mmol/L 3.8 (3.0-4.2) 4.7 (4.5-5.6)**

Insulin, pmol/L 27.8 (16.7-50.0) 45.8 (26.3-69.5)*

C-peptide, nmol/L 0.13 (0.08-0.17) 0.10 (0.07-0.15)

Total Cholesterol, mmol/L2 1.58 (1.35-1.89) 1.49 (1.14-1.66)

LDL cholesterol, mmol/L2 0.80 (0.67-0.90) 0.71 (0.57-0.85)

HDL cholesterol, mmol/L2 0.67 (0.52-0.92) 0.54 (0.44-0.78)

Triglycerides, mmol/L2 0.19 (0.15-0.32) 0.20 (0.12-0.28)

NEFA, mmol/L 0.12 (0.09-0.17) 0.12 (0.11-0.18)

Leptin, μg/L 8.8 (6.2-10.4) 10.9 (7.6-15.6)#

Adiponectin, mg/L 36.0 (29.7-49.0) 37.6 (32.6-51.0)

B.

Total Plasma Abundance of Fatty Acids of Interest3

 14:0 myristic, % of total 0.35 (0.28-0.39) 0.46 (0.31-0.72)

 16:0 palmitic, % of total 22.1 (20.3-23.3) 19.7 (14.5-21.7)**

 16:1n-7 palmitoleic, % of total 2.3 (1.9-2.8) 2.3 (1.6-2.9)

 18:0 stearic, % of total 22.6 (18.1-25.8) 12.9 (10.5-15.2)**

 18:1n-9 oleic, % of total 15.5 (10.9-16.8) 14.4 (12.1-17.6)

 18:1n-7 vaccenic, % of total 2.5 (2.0-2.9) 2.6 (2.3-2.8)

 18:2 linoleic, % of total 7.8 (6.6-9.5) 6.6 (5.3-10.0)

 20:4n-6 arachidonic (ARA), % of total 7.9 (6.9-10.1) 8.2 (6.0-13.2)

 22:6n-3 docosahexaenoic (DHA), % of total 1.0 (0.84-1.14) 1.2 (0.79-2.47)

Total Plasma Desaturation Indices

 16:1/16:0 palmitoleic/palmitic, arbitrary unit 0.11 (0.09-0.12) 0.11 (0.09-0.14)

 18:1n-9/18:0 oleic/stearic, arbitrary unit 0.67 (0.56-0.90) 1.27 (0.92-1.68)**

VLDL Desaturation Indices4

 VLDL palmitoleic/palmitic index, arbitrary unit 0.03 (0.01-0.05) 0.06 (0.03-0.12)

 VLDL oleic/stearic index, arbitrary unit 0.18 (0.13-0.43) 0.76 (0.41-1.17)*

1
Data are all presented as the median with the 25-75% IQR because some variables exhibited non-normal distribution.

2
n=19 in Control group, n=18 in GDM group due to insufficient samples

3
see Methods for additional information related to interpretation

4
n=10 in each group due to insufficient samples to complete analysis in all subjects

*
p<0.05,
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**
p<0.01, and

#
trend to difference, p<0.1 compared with Controls.
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