Involved: Self): Research Grant or Support: OPEX Biopharma (Individual(s) Involved: Self): Research Grant or Support; Rhode Island Hospital (Individual(s) Involved: Self): Research Grant or Support; RIHML (Individual(s) Involved: Self): Research Grant or Support; Roche (Individual(s) Involved: Self): Research Grant or Support; Roivant (Individual(s) Involved: Self): Research Grant or Support; Salvat (Individual(s) Involved: Self): Research Grant or Support; Scynexis (Individual(s) Involved: Self): Research Grant or Support; SeLux Diagnostics (Individual(s) Involved: Self): Research Grant or Support; Shionogi (Individual(s) Involved: Self): Research Grant or Support; Specific Diagnostics (Individual(s) Involved: Self): Research Grant or Support; Spero (Individual(s) Involved: Self): Research Grant or Support; SuperTrans Medical LT (Individual(s) Involved: Self): Research Grant or Support; T2 Biosystems (Individual(s) Involved: Self): Research Grant or Support; The University of Queensland (Individual(s) Involved: Self): Research Grant or Support; Thermo Fisher Scientific (Individual(s) Involved: Self): Research Grant or Support; Tufts Medical Center (Individual(s) Involved: Self): Research Grant or Support: Universite de Sherbrooke (Individual(s) Involved: Self): Research Grant or Support; University of Iowa (Individual(s) Involved: Self): Research Grant or Support; University of Iowa Hospitals and Clinics (Individual(s) Involved: Self): Research Grant or Support; University of Wisconsin (Individual(s) Involved: Self): Research Grant or Support; UNT System College of Pharmacy (Individual(s) Involved: Self): Research Grant or Support; URMC (Individual(s) Involved: Self): Research Grant or Support; UT Southwestern (Individual(s) Involved: Self): Research Grant or Support; VenatoRx (Individual(s) Involved: Self): Research Grant or Support; Viosera Therapeutics (Individual(s) Involved: Self): Research Grant or Support; Wayne State University (Individual(s) Involved: Self): Research Grant or Support Timothy B. Doyle, AbbVie (formerly Allergan) (Research Grant or Support)Bravos Biosciences (Research Grant or Support)GlaxoSmithKline (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Pfizer, Inc. (Research Grant or Support)Shionogi (Research Grant or Support)Spero Therapeutics (Research Grant or Support) Valerie Kantro, n/a, Melinta Therapeutics, Inc. (Research Grant or Support) Rodrigo E. Mendes, PhD, AbbVie (Research Grant or Support)AbbVie (formerly Allergan) (Research Grant or Support)Cipla Therapeutics (Research Grant or Support)Cipla USA Inc. (Research Grant or Support)ContraFect Corporation (Research Grant or Support)GlaxoSmithKline, LLC (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Melinta Therapeutics, LLC (Research Grant or Support)Nabriva Therapeutics (Research Grant or Support)Pfizer, Inc. (Research Grant or Support)Shionogi (Research Grant or Support)Spero Therapeutics (Research Grant or Support) Dee Shortridge, PhD, AbbVie (formerly Allergan) (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Melinta Therapeutics, LLC (Research Grant or Support)Shionogi (Research Grant or Support)

1219. Unfavorable Clinical Outcomes with Polymyxins Compared to Ceftolozane/ Tazobactam for the Treatment of Carbapenem-Resistant *Pseudomonas aeruginosa* Jessica Howard-Anderson, MD¹; Michelle Earley, MS²;

Toshimitsu Hamasaki, PhD³; Chris W. Bower, MPH⁴; Gillian Smith, MPH⁴; David van Duin, MD, PhD⁵; Scott R. Evans, PhD³; Jesse T. Jacob, MD, MSc¹; ¹Emory University, Decatur, GA; ²George Washington University, Rockville, Maryland; ³The George Washington University, Rockville, Maryland; ⁴Georgia Emerging Infections Program, Decatur, GA; ⁵University of North Carolina, Chapel Hill, North Carolina

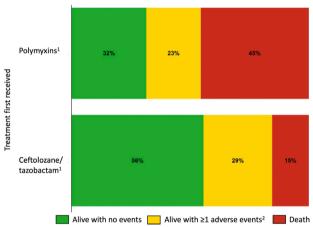
Session: P-72. Resistance Mechanisms

Background. Patients with carbapenem-resistant *Pseudomonas aeruginosa* (CRPA) have high in-hospital mortality rates. It is unknown if patients with CRPA treated with ceftolozane/tazobactam (C/T) have improved clinical outcomes compared to those treated with polymyxins.

Methods. The CDC-funded, Georgia Emerging Infections Program performed active population- and laboratory-based surveillance for CRPA isolated from sterile sites, urine, lower respiratory tract and wounds in metropolitan Atlanta, GA from 8/1/2016–7/31/2018. We reviewed charts of adults without cystic fibrosis who were hospitalized within 1 week of CRPA culture. Using a desirability of outcome ranking (DOOR) analysis which incorporates both benefits and risks into a single outcome, we estimated the probability that a patient treated first with C/T would have a more desirable clinical outcome at 30-days than a patient treated with polymyxins (polymyxin B or colistin). We adjusted for confounding using inverse probability of treatment weighting (IPTW) based on culture source and need for dialysis at baseline. A partial credit analysis allowed for variable weighting of DOOR ranks and calculation of differences in mean partial credit scores.

Results. Among 710 cases from 18 different hospitals, we identified 73 patients treated for CRPA infections with polymyxins (n=31) or C/T (n=42). Most patients were male (64%) and Black (80%), and those receiving polymyxins were more likely to have required dialysis at baseline (35% vs. 14%, p=0.03) (Table 1). At 30 days after culture, 34 (47%) were alive with no adverse events, 21 (29%) were alive with ≥ 1 adverse event, and 18 (25%) had died. Patients first treated with C/T had a lower 30-day mortality rate than those treated with polymyxins (14% vs 39%, p=0.03). Additionally, those receiving C/T had better overall clinical outcomes, with an adjusted DOOR probability of having an improved outcome of 67% (95% CI 53%–80%) compared to those receiving polymyxins (Figure 1). Partial credit analyses indicated consistent results across different patient values of survival with adverse events (Figure 2).

Table 1: Characteristics of hospitalized patients with carbapenem-resistant *Pseudomonas aeruginosa* in metropolitan Atlanta, GA stratified by treatment regimen


	Polymyxins (n=31)	Ceftolozane/ tazobactam (n=42)	Total (n=73)	P-value ¹
Age category (years)				
19 – 49	8 (26)	11 (26)	19 (26)	
50 - 64	9 (29)	11 (26)	20 (27)	0.95
65 – 79	10 (32)	16 (38)	26 (36)	
>79	4 (13)	4 (10)	8 (11)	
Male	23 (74)	24 (57)	47 (64)	0.13
Race (n=70)				
Black	26 (90)	30 (73)	56 (80)	0.21
White	3 (10)	10 (24)	13 (19)	0.21
Other or multiracial	0	1 (2)	1(1)	
Charlson comorbidity index >2	19 (61)	24 (57)	43 (59)	0.72
Required dialysis prior to admission	11 (35)	6(14)	17 (23)	0.03
Residence 3 days prior to culture				
Inpatient	20 (65)	22 (52)	42 (57)	0.54
Long-term facility (LTCF or LTACH)	8 (25)	13 (31)	21 (29)	0.54
Private residence	3 (10)	7 (17)	10 (14)	
Culture source				
Sterile site	2 (6)	10 (24)	12 (16)	
Lower respiratory tract	17 (55)	15 (36)	32 (44)	0.13
Urine	7 (23)	7 (17)	14 (19)	
Wound	5 (16)	10 (24)	15 (21)	
Admitted to ICU in prior week	15 (48)	15 (36)	30 (41)	0.28
ID consult within week of culture	28 (90)	40 (95)	68 (93)	0.65
Days from culture to start of polymyxin or C/T, median (IQR) ²	4 (3-6)	3 (3-5)	4 (3-6)	0.67
Days from culture to discharge or death, median (IQR)	15 (14–25)	16 (10–23)	16 (10–23)	0.60
Duration of polymyxins or C/T (whichever given first)	8 (4-12)	9 (6-15)	8 (5-13)	0.22

All values are presented as number (%) unless otherwise stated 1. Determined by X² or Fisher exact test for categorical variables and Wilcoxon rank-sum test for continuous

variables 2. If antibiotics had been started prior to the culture, this was counted as zero days

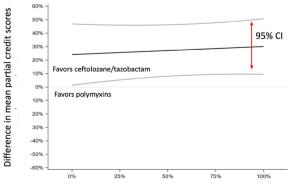

Abbreviations: LTCF, long term care facility; LTACH, long term acute care hospital; ICU, intensive care unit; ID, infectious diseases; IQR, interquartile range

Figure 1: Inverse probability of treatment weighting-adjusted desirability of outcome ranking (DOOR) distributions by treatment group, accounting for adverse events and survival status that occurred up to 30 days after CRPA culture.

1. Percentages are adjusted using inverse probability of treatment weighting, controlling for culture source and need for dialysis at baseline 2. Adverse events measured included: acute kidney injury, discharge to higher acuity location than previous residence, or being hospitalized 30 days after culture

Figure 2: Inverse probability of treatment weighting-adjusted partial credit analysis.

Partial credit assigned to individuals having ≥1 adverse event

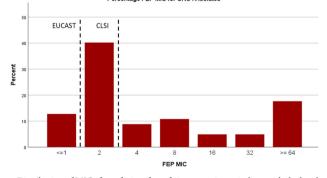
This displays the difference (ceftolozane/tazobactam minus polymyxin) in mean partial credit scores (black line) and associated 95% confidence bands (gray lines) as a function of the partial credit score assigned to an individual having at least one adverse event (range 0 - 100%). A score of 100% is assigned to patients alive with no adverse events and a score of 0% is assigned to patients who die. A difference in mean partial credit scores of approximately zero suggests there was no difference observed between treatment groups.

Conclusion. These findings support the recent Infectious Diseases Society of America guidance favoring C/T over polymyxins for treatment of CRPA infections.

Disclosures. David van Duin, MD, PhD, Entasis (Advisor or Review Panel member)genentech (Advisor or Review Panel member)Karius (Advisor or Review Panel member)Merck (Grant/Research Support, Advisor or Review Panel member)Pfizer (Consultant, Advisor or Review Panel member)Qpex (Advisor or Review Panel member)Shionogi (Grant/Research Support, Scientific Research Study Investigator, Advisor or Review Panel member)Utility (Advisor or Review Panel member) Scott R. Evans, PhD, Abbvie (Consultant)Advantagene (Consultant)Alexion (Consultant)Amgen (Consultant)AstraZeneca (Consultant)Atricure (Consultant)Breast International Group (Consultant)Cardinal Health (Consultant)Clover (Consultant)FHI Clinical (Consultant)Gilead (Consultant)Horizon (Consultant)Genentech (Consultant)International Drug Development Institute (Consultant)Lung Biotech (Consultant)Microbiotix (Consultant)Neovasc (Consultant)Nobel (Consultant)Nuvelution Pharma (Consultant)Novartis (Consultant)Pfizer (Consultant)Rakuten (Consultant)Roche (Consultant)Roivant (Consultant)SAB Biopharm (Consultant)Shire (Consultant)Stryker (Consultant)SVB Leerink (Consultant)Takeda (Consultant)Teva (Consultant)Tracon (Consultant)Vir (Consultant)

1220. Is MIC all that matters? MIC Distributions of Ceftazidime and Cefepime in Ceftriaxone-Resistant *E. coli* and *Klebsiella* spp.

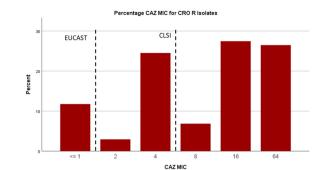
Emily Heil, PharmD, MS, BCIDP¹; Emily Heil, PharmD, MS, BCIDP¹;


Kimberly C. Claeys, PharmD²; Paul Luethy, PhD³; ¹University of Maryland School of Pharmacy; University of Maryland Medical Center, Baltimore, MD; ²University of Maryland School of Pharmacy, Baltimore, Maryland; ³University of Maryland School of Medicine, Baltimore, Maryland

Session: P-72. Resistance Mechanisms

Background. The Clinical and Laboratory Standards Institute (CLSI) lowered MIC breakpoints for many beta-lactam antibiotics to enhance detection of resistance among *Enterobacterales*. This shift was also meant to eliminate the need for routine testing for extended-spectrum beta-lactamases (ESBLs). The recommended treatment for ESBL-producing *Enterobacterales* is carbapenems. The IDSA guidelines for MDR-GN organisms recommend using ceftriaxone (CRO) resistance as a proxy for ESBL production and thus carbapenem treatment. Under CLSI guidelines, alternative beta-lactams such as ceftazidime (CAZ) and cefepime (FEP) may still be reported as susceptible and thus used by clinicians even in light of IDSA recommendations. The aim of this project was to characterize the MIC distributions of CAZ and FEP stratified by CRO susceptibility.

Methods. Clinical *E. coli, K. pneumoniae*, and *K. oxytoca* isolates from blood cultures in adult patients from Nov 2016-Dec 2018 that had MICs tested by the Vitek-2 automated susceptibility testing system for CRO, FEP and CAZ were identified. Descriptive statistics were used to compare MIC distributions across the antibiotics of interest (SPSS).


Results. 573 isolates were included, of these, 17.3% were CRO resistant. Most (53%) CRO-R isolates had FEP MICs ≤ 2 which is considered susceptible per CLSI; 19% had FEP MICs of 4-8 which would be considered S-DD by CLSI (Figure 1A; breakpoints noted by dashed lines). Using the EUCAST breakpoint of ≤ 1 , only 11% of CRO-R isolates would be reported as FEP-S. For CAZ, 40% of CRO-R isolates had CAZ MICs ≤ 4 , which is considered S by CLSI. Using the EUCAST breakpoint of ≤ 1 , only 12% of CRO-R isolates would be reported as CAZ-S (Figure 1B).

Cefepime MIC Distribution for Ceftriaxone Resistant Isolates Percentage FEP MIC for CRO R Isolates

Distribution of MICs for cefepime for ceftriaxone resistant isolates with the breakpoints for EUCAST and CLSI noted with a dashed line

Ceftazidime MIC Distribution for Ceftriaxone Resistant Isolates

Distribution of MICs for ceftazidime for ceftraixone resistant isolates with the breakpoints for EUCAST and CLSI noted with a dashed line

Conclusion. Half of CRO-R *E. coli, K. pneumoniae* and *K. oxytoca* have FEP and CAZ MICs at or below the current CLSI breakpoints. This may lead to their use for serious ESBL infections where a carbapenem is preferred. To prevent unnecessary use, laboratories should consider suppressing FEP and CAZ susceptibilities when CRO-R or adopting more the aggressive EUCAST breakpoints for these agents.

Disclosures. Emily Heil, PharmD, MS, BCIDP, Nothing to disclose Kimberly C. Claeys, PharmD, GenMark (Speaker's Bureau)

1221. Genomic Factors Affecting the Efficacy of Antimicrobial Therapy in **Daptomycin-, Linezolid-, Vancomycin-Resistant** *Enterococcus faecium* (DLVRE) Samuel W. Gatesy, M.S.¹; Nathan B. Pincus, BS¹;

Sanidut W. Gatesy, M.S.; (Valian D. Fildus, BS;
 William Justin Moore, PharmD²; Omar Al-Heeti, MD¹; Tejas Joshi, MS³;
 Kelly E. R Bachta, MD PhD¹; ¹Northwestern University, Libertyville, Illinois;
 ²Northwestern Medicine, Chicago, IL; ³Northwestern Feinberg School of Medicine, Chicago, Illinois

Session: P-72. Resistance Mechanisms

Background. Nosocomial acquisition of vancomycin-resistant *Enterococcus* (VRE) is one of the most challenging problems in healthcare. As *Enterococcus* isolates are increasingly resistant to vancomycin, clinicians now rely on alternative antimicrobial therapies including linezolid and daptomycin (DAP) to treat infections. For multidrug-resistant (MDR) VRE, combination therapy with beta-lactams and daptomycin has been shown to be effective.

Methods. Following initiation of empiric DAP and ceftaroline (CPT) for an MDR *E. faecium* bloodstream infection (VRE_001), we aimed to determine if there existed *in vitro* synergy between both agents that supported their clinical use. Combination synergy testing was performed using E-test strips and minimal inhibitory concentrations (MICs) were read at 24 hours. For whole genome sequence-based analysis (WGS), genomic DNA from VRE_001 was used for both short read (Illumina MiSeq) and long-read sequencing (MinION, Nanopore). The complete genome was assembled and the NCBI AMRFinderPlus program used to identify known resistance mechanisms.

Results. Original MICs of VRE_001 from the clinical microbiology laboratory at Northwestern Memorial revealed an MDR *E. faecium* (Table 1). Combination synergy testing in the experimental laboratory revealed only modest amounts of synergy between CPT and DAP (Table 2). Following WGS, VRE_001 was identified as an ST-584 *E. faecium* with a 3.2 Mbp genome, including a single chromosome and five plasmids. WGS analysis revealed several mechanisms of antimicrobial resistance (Table 3) genetically supporting the observed MDR-DLVRE phenotype.

 Table 1: Minimal Inhibitory Concentrations (MICs) from the Northwestern Memorial Hospital Clinical Microbiology Laboratory

 Antibiotic
 MIC
 CLSI Interoretation
 1

ľ	Ampicillin	32 µg/mL	R
ľ	Daptomycin	12 μg/mL	R
ſ	Linezolid	>256 µg/mL	R
ſ	Vancomycin	32 µg/mL	R
[Ceftaroline	32 µg/mL	n/a

Table 2: Synergistic MIC Investigational Laboratory E-testing

Γ	Antibiotic	Daptomycin E-test	CLSI Interpretation
- [Daptomycin	16 μg/mL	R
Γ	Ceftaroline + Daptomycin Combination	12 μg/mL	R

Table 3: Genomic mechanisms of antimicrobial resistance identified in VRE_001 using NCBI AMRFinderPlus

Antibiotic	Gene(s)	Point Mutations
Daptomycin	liaS	T120A
	liaR	W73C
	cls	N13I
Vancomycin	vanH-A-X	
	vanS-R	
	vanZ-Y	
Fluoroquinolones	gyrA	S83Y
	parC	S80R
Aminoglycosides	aac(6')-I	
	aph(3')-Illa	
	ant(6)-la	
Trimethoprim	dfrF	
	dfrG	
Tetracyclines	tetL	
	tetM	