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Research in combinatorics on words goes back a century. Berstel and Boasson introduced the partial words in the context of gene
comparison. Alignment of two genes can be viewed as a construction of two partial words that are said to be compatible. In this
paper, we examine to which extent the fundamental properties of partial words such as compatbility and conjugacy remain true
for partial arrays. This paper studies a relaxation of the compatibility relation called 𝑘-compability. It also studies 𝑘-conjugacy of
partial arrays.

1. Introduction

The genetic information in almost all organisms is carried by
molecules of DNA. A DNAmolecule is a quite long but finite
string of nucleotides of 4 possible types: 𝑎 (for adenine), 𝑐 (for
cytosine), 𝑔 (for guanine), and 𝑡 (for thymine). The stimulus
for recent works on combinatorics is the study of biological
sequences such as DNA and protein that play an important
role in molecular biology [1–3]. Sequence comparison is one
of the primitive operations in molecular biology. Alignment
of two sequences is to place one sequence above the other
[2, 4] in order to make clear correspondence between similar
letters or substrings of the sequences. Partial words appear
in comparing genes. Indeed, alignment of two strings can
be viewed as a construction of two partial words that are
compatible. The compatibility relation [5] considers two
arrays with only few isolated insertions (or deletions). In
some cases, it allows insertion of letters which relate to errors
or mismatches. A problem appears when the same gene is
sequenced by two different labs that want to differentiate the
gene expression. Also, when the same long sequence is typed
twice into the computer, errors appear in typing.

Partial array 𝐴 of size (𝑚, 𝑛) over Σ, a finite alphabet, is
partial function 𝐴 : 𝑍

2

+
→ Σ, where 𝑍

+
is the set of all

positive integers. In this paper, we extend the combinatorial
properties of partial words to partial arrays. Also, this paper

studies a relation called 𝑘-compatibility where a number of
insertions and deletions are allowed as well as 𝑘-mismatches.
The conjugacy result [6] which was proved for partial words
is extended to partial arrays. 𝑘-Conjugacy of partial arrays is
discussed.

2. Preliminaries on Partial Words

In this section, we give a brief overview of partial words [7].

Definition 1. Partial word 𝑢 of length 𝑛 over 𝐴, a nonempty
finite alphabet, is partial map 𝑢 : {1, 2, . . . , 𝑛} → 𝐴. If 1 ≤ 𝑖 ≤

𝑛, then 𝑖 belongs to the domain of 𝑢 (denoted by Domain(𝑢))
in the case where 𝑢(𝑖) is defined, and 𝑖 belongs to the set of
holes of 𝑢 (denoted by Hole(𝑢)), otherwise.

A word [8–10] is a partial word over 𝐴 with an empty set
of holes.

Definition 2. Let 𝑢 be a partial word of length 𝑛 over 𝐴. The
companion of 𝑢 (denoted by 𝑢

◊
) is map 𝑢

◊
: {1, 2, . . . , 𝑛} →

𝐴 ∪ {◊} defined by

𝑢
◊
(𝑖) =

{

{

{

𝑢 (𝑖) if 𝑖 ∈ Domain (𝑢)

◊ otherwise.
(1)
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The symbol ◊ is viewed as a “do not know” symbol. Word
𝑢
◊
= 𝑏𝑎◊𝑎𝑏◊ is the companion of the partial word.The length

of the partial word is 6.𝐷(𝑢) = {1, 2, 4, 5}.𝐻(𝑢) = {3, 6}.

Let 𝑢 and V be two partial words of length 𝑛. Partial
word 𝑢 is said to be contained in partial word V (denoted by
𝑢 ⊂ V), if Domain(𝑢) ⊂ Domain(V) and 𝑢(𝑖) = V(𝑖) for all
𝑖 ∈ Domain(𝑢). Partial words 𝑢 and V are called compatible
(denoted by 𝑢 ↑ V), if there exists partial word 𝑤 such that
𝑢 ⊂ 𝑤 and V ⊂ 𝑤 (in which case we define 𝑢 ∨ V by 𝑢 ⊂ 𝑢 ∨ V
and V ⊂ 𝑢∨V andDomain(𝑢∨V) = Domain(𝑢)∪Domain(V)).
As an example, 𝑢

◊
= 𝑎𝑏𝑎◊◊𝑎 and V

◊
= 𝑎𝑏𝑎𝑏◊𝑎.

The following rules are useful for computing with partial
words:

(i) Multiplication: If 𝑢 ↑ V and 𝑥 ↑ 𝑦, then 𝑢𝑥 ↑ V𝑦.

(ii) Simplification: If 𝑢𝑥 ↑ V𝑦 and |𝑢| = |V|, then 𝑢 ↑ V and
𝑥 ↑ 𝑦.

(iii) Weakening: If 𝑢 ↑ V and 𝑤 ⊂ 𝑢, then 𝑤 ↑ V.

Lemma 3. Let 𝑢, V, 𝑥, 𝑦 be partial words such that 𝑢𝑥 ↑ V𝑦.

(i) If |𝑢| ≥ |V|, then there exist partial words𝑤, 𝑧 such that
𝑢 = 𝑤𝑧, V ↑ 𝑤, and 𝑦 ↑ 𝑧𝑥.

(ii) If |𝑢| ≤ |V|, then there exist partial words𝑤, 𝑧 such that
𝑏 = 𝑤𝑧, V ↑ 𝑤, and 𝑥 ↑ 𝑧𝑦.

Definition 4. Twopartial words𝑢 and V are called conjugate, if
there exist partial words 𝑥 and 𝑦 such that 𝑢 ⊂ 𝑥𝑦 and V ⊂ 𝑦𝑥.

Definition 5. Two partial words 𝑢 and V are called 𝑘-
conjugate, if there exist nonnegative integers 𝑘

1
, 𝑘
2
whose

sum is 𝑘 and partial words 𝑥 and 𝑦 such that 𝑢⊂
𝑘
1

𝑥𝑦 and
V⊂
𝑘
2

𝑦𝑥.

3. Preliminaries on Partial Arrays

This section is devoted to review the basic concepts on partial
arrays [11].

Definition 6. Partial array𝐴 of size (𝑚, 𝑛) over Σ, a nonempty
set or an alphabet, is partial function𝐴 : 𝑍

2

+
→ Σ, where𝑍

+
is

the set of all positive integers. For 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, and if
𝐴(𝑖, 𝑗) is defined, then we say that (𝑖, 𝑗) belongs to the domain
of 𝐴 (denoted by (𝑖, 𝑗) ∈ 𝐷(𝐴)). Otherwise, we say that (𝑖, 𝑗)
belongs to the set of holes of 𝐴 (denoted by (𝑖, 𝑗) ∈ 𝐻(𝐴)).

An array [5] over Σ is a partial array over Σwith an empty
set of holes.

Definition 7. If 𝐴 is a partial array of size (𝑚, 𝑛) over Σ, then
the companion of 𝐴 (denoted by 𝐴

◊
) is total function 𝐴

◊
:

𝑍
2

+
→ Σ ∪ {◊} defined by

𝐴
◊
(𝑖, 𝑗) =

{

{

{

𝐴(𝑖, 𝑗) if (𝑖, 𝑗) ∈ 𝐷 (𝐴)

◊ otherwise,
(2)

where ◊ ∉ Σ.

The bijectivity of map 𝐴 → 𝐴
◊
allows defining the

catenation of two partial arrays in a trivial way.

Example 8. Partial array 𝐴 = (
𝑏 𝑎 𝑏

◊ 𝑎 𝑏

𝑏 ◊ 𝑏

) is the companion of
partial array 𝐴 of size (3, 3), where 𝐷(𝐴) = {(1, 1), (1, 2),
(1, 3), (2, 2), (2, 3), (3, 1), (3, 3)},𝐻(𝐴) = {(2, 1), (3, 2)}.

Let

𝑋 = (

𝑎
11

⋅ ⋅ ⋅ 𝑎
1𝑛

.

.

.
.
.
.

𝑎
𝑚1

⋅ ⋅ ⋅ 𝑎
𝑚𝑛

),

𝑌 = (

𝑏
11

⋅ ⋅ ⋅ 𝑏
1𝑛
󸀠

.

.

.
.
.
.

𝑏
𝑚
󸀠
1
⋅ ⋅ ⋅ 𝑏
𝑚
󸀠
𝑛
󸀠

).

(3)

By column catenation, we mean

𝑋—𝑌 = (

𝑎
11

⋅ ⋅ ⋅ 𝑎
1𝑛

𝑏
11

⋅ ⋅ ⋅ 𝑏
1𝑛
󸀠

.

.

.
.
.
.

.

.

.
.
.
.

𝑎
𝑚1

⋅ ⋅ ⋅ 𝑎
𝑚𝑛

𝑏
𝑚
󸀠
1
⋅ ⋅ ⋅ 𝑏
𝑚
󸀠
𝑛
󸀠

). (4)

By row catenation, we mean

𝑋 ⊖ 𝑌 =

(
(
(
(
(
(
(

(

𝑎
11

⋅ ⋅ ⋅ 𝑎
1𝑛

.

.

.
.
.
.

𝑎
𝑚1

⋅ ⋅ ⋅ 𝑎
𝑚𝑛

𝑏
11

⋅ ⋅ ⋅ 𝑏
1𝑛
󸀠

.

.

.
.
.
.

𝑏
𝑚
󸀠
1
⋅ ⋅ ⋅ 𝑏
𝑚
󸀠
𝑛
󸀠

)
)
)
)
)
)
)

)

. (5)

If 𝐴 and 𝐵 are two partial arrays of equal size, then 𝐴 is
contained in 𝐵 denoted by 𝐴 ⊂ 𝐵 if𝐷(𝐴) ⊆ 𝐷(𝐵) and

𝐴 (𝑖, 𝑗) = 𝐵 (𝑖, 𝑗) ∀ (𝑖, 𝑗) ∈ 𝐷 (𝐴) . (6)

Definition 9. Partial arrays 𝐴 and 𝐵 are said to be compatible
denoted by 𝐴 ↑ 𝐵, if there exists partial array 𝐶 such that
𝐴 ⊂ 𝐶 and 𝐵 ⊂ 𝐶.

4. Compatibiltiy and 𝑘-Compatability of
Partial Arrays

4.1. Compatibility. The rules mentioned for partial words are
also true for partial arrays.

Let 𝐴, 𝐵, 𝑋, 𝑌 be partial arrays.

(i) Multiplication: If 𝐴 ↑ 𝐵 and 𝑋 ↑ 𝑌, then 𝐴𝑋 ↑ 𝐵𝑌

either by column catenation or by row catenation.
(ii) Simplification: If 𝐴𝑋 ↑ 𝐵𝑌 either by column catena-

tion or by row catenation with𝐴 and 𝐵 being of same
size, then 𝐴 ↑ 𝐵 and𝑋 ↑ 𝑌.
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(iii) Weakening: If 𝐴 ↑ 𝐵 and 𝐶 ⊂ 𝐴, then 𝐶 ↑ 𝐵.

Lemma 3’s version for partial arrays can be stated as
follows.

Lemma 10. Let 𝐴, 𝐵, 𝑋, 𝑌 be partial arrays such that 𝐴𝑋 ↑

𝐵𝑌, either by column catenation or by row catenation.

(i) If order of𝐴 ≥ order of𝐵, then there exist partial arrays
𝐶, 𝑍 such that 𝐴 = 𝐶𝑍, 𝐵 ↑ 𝐶, and 𝑌 ↑ 𝑍𝑋.

(ii) If order of𝐴 ≤ order of𝐵, then there exist partial arrays
𝐶, 𝑍 such that 𝐵 = 𝐶𝑍, 𝐴 ↑ 𝐶, and 𝑋 ↑ 𝑍𝑌.

4.2. 𝑘-Compatibility

Definition 11. If 𝐴 and 𝐵 are two partial arrays of same size
and 𝑘 is nonnegative integer, then𝐴 is said to be 𝑘-contained
in 𝐵 denoted by𝐴⊂

𝑘
𝐵 if𝐷(𝐴) ⊂ 𝐷(𝐵) and there exists subset

𝐸 of𝐷(𝐴) of cardinality 𝑘 called the error set such that

𝐴 (𝑖, 𝑗) = 𝐵 (𝑖, 𝑗) ∀ (𝑖, 𝑗) ∈ 𝐷 (𝐴) \ 𝐸,

𝐴 (𝑖, 𝑗) ̸= 𝐵 (𝑖, 𝑗) ∀ (𝑖, 𝑗) ∈ 𝐸.

(7)

Definition 12. If 𝐴 and 𝐵 are two partial arrays of same order
and 𝑘 is a nonnegative integer, then 𝐴 and 𝐵 are called 𝑘-
compatible denoted by𝐴↑

𝑘
𝐵 if there exist partial array𝑍 and

nonnegative integers 𝑘
1
, 𝑘
2
such that

(i) 𝐴⊂
𝑘
1

𝑍 with error set 𝐸
1
;

(ii) 𝐵⊂
𝑘
2

𝑍 with error set 𝐸
2
;

(iii) 𝐸
1
∩ 𝐸
2
= 𝜙;

(iv) 𝑘
1
+ 𝑘
2
= 𝑘.

Example 13. 𝐴 = ( 𝑏 𝑎 𝑏
𝑎 ◊ 𝑐

),𝐵 = ( 𝑎 𝑏 𝑎
𝑎 ◊ 𝑐

), then there exists partial
array 𝑍 = ( 𝑎 𝑏 𝑏

𝑎 ◊ 𝑐
) with 𝐸

1
= {(1, 1), (1, 2)}, 𝐸

2
= {(1, 3)} and

𝑘
1
= 2, 𝑘

2
= 1 ⇒ 𝑘 = 3; that is, 𝐴↑

3
𝐵.

Equivalently, 𝐴 and 𝐵 are 𝑘-compatible, if there exists
subset 𝐸 of 𝐷(𝐴) ∩ 𝐷(𝐵) of cardinality 𝑘 called the error set
such that

(i) 𝐴(𝑖, 𝑗) = 𝐵(𝑖, 𝑗)∀(𝑖, 𝑗) ∈ 𝐷(𝐴) ∩ 𝐷(𝐵) \ 𝐸;
(ii) 𝐴(𝑖, 𝑗) ̸= 𝐵(𝑖, 𝑗)∀(𝑖, 𝑗) ∈ 𝐸.

If𝐴 and 𝐵 are arrays, then𝐴↑
∘
𝐵means𝐴 = 𝐵. We sometimes

use notation 𝐴↑
≤𝑘
𝐵, if set 𝐸 has cardinality ≤ 𝑘.

Multiplication. If 𝐴↑
𝑘
1

𝐵 and𝑋↑
𝑘
2

𝑌, then 𝐴𝑋↑
𝑘
1
+𝑘
2

𝐵𝑌 where
𝐴, 𝐵, 𝑋, and 𝑌 are partial arrays and 𝑘

1
, 𝑘
2
are nonnegative

integers, using column catenation.

Example 14. 𝐴 = (
◊ 𝑎 𝑎

𝑏 𝑏 ◊

𝑎 𝑏 𝑎

), 𝐵 = (
𝑏 𝑏 ◊

𝑎 𝑎 ◊

𝑎 𝑎 𝑏

), 𝑋 = (
𝑏 ◊ 𝑎

𝑎 𝑏 𝑎

𝑎 ◊ 𝑏

), 𝑌 =

(
𝑎 𝑏 𝑏

𝑏 𝑎 𝑏

◊ ◊ 𝑎

).
𝐴𝑋↑
6+7

𝐵𝑌.

Simplification. If 𝐴𝑋↑
𝑘
𝐵𝑌 and order of 𝐴 is equal to order of

𝐵, then𝐴↑
𝑘
1

𝐵 and𝑋↑
𝑘
2

𝑌 for some 𝑘
1
, 𝑘
2
, satisfying 𝑘

1
+𝑘
2
=

𝑘.

Example 15. 𝐴 = (
◊ 𝑎 𝑎

𝑏 𝑏 ◊

𝑎 𝑏 𝑎

), 𝐵 = (
𝑏 𝑏 ◊

𝑎 ◊ 𝑎

𝑏 𝑎 𝑏

), 𝑋 = (
𝑏 ◊

𝑎 𝑏

𝑎 ◊

), 𝑌 =

(
𝑎

𝑏

𝑏
).
𝐴𝑋↑
8
𝐵𝑌 ⇒ 𝐴↑

5
𝐵 and𝑋↑

3
𝑌 with 5 + 3 = 8.

Weakening. If 𝐴↑
𝑘
𝐵 and 𝑍 ⊂ 𝐴, then 𝑍↑

≤𝑘
𝐵.

Example 16. 𝐴 = (
◊ 𝑎 𝑎

𝑏 𝑏 ◊

𝑎 𝑏 𝑎

), 𝐵 = (
𝑏 𝑏 ◊

◊ 𝑎 ◊

𝑏 𝑎 𝑏

), 𝑍 = (
𝑎 𝑎

𝑏 ◊

𝑏 𝑎

).
𝑍↑
≤7
𝐵 with 𝑘 = 7.

Theorem 17. Let𝐴 and 𝐵 be partial arrays of orders 𝑎× 𝑏 and
𝑎 × 𝑐, respectively. If there exist array 𝑍 of order 𝑎 × 𝑑 and
integers 𝑘

1
, 𝑘
2
, 𝑚, and 𝑛 such that 𝐴⊂

𝑘
1

𝑍
𝑚 with error set 𝐸

1

and 𝐵⊂
𝑘
2

𝑍
𝑛 with error set 𝐸

2
, then there exist integers 𝑝 and 𝑞

such that 𝐴𝑝↑
≤𝑘
𝐵
𝑞 with

𝑘 =
󵄩󵄩󵄩󵄩(𝐷 (𝐴) (𝑎, |𝑏| , 𝑝) ∩ 𝐸

2
(𝑎, |𝑐| , 𝑞))

∪ (𝐷 (𝐵) (𝑎, |𝑐| , 𝑞) ∩ 𝐸
1
(𝑎, |𝑏| , 𝑝))

󵄩󵄩󵄩󵄩 .

(8)

Moreover, if 𝐸
1
(𝑎, |𝑏|, 𝑛) ∩ 𝐸

2
(𝑎, |𝑐|, 𝑚) = 𝜙, then 𝐴

𝑝
↑
𝑘
𝐵
𝑞.

Proof. Let 𝐴 and 𝐵 be partial arrays of 𝑎 × 𝑏 and 𝑎 × 𝑐,
respectively. Let array 𝑧 of order 𝑎×𝑑 exist such that, by using
column catenation, 𝐴⊂

𝑘
1

𝑍
𝑚 and 𝐵⊂

𝑘
2

𝑍
𝑛 for some integers

𝑘
1
, 𝑘
2
, 𝑚, and 𝑛. Let 𝐸

1
be the error set of cardinality 𝑘

1
such

that 𝐴(𝑖, 𝑗) = 𝑍
𝑚
(𝑖, 𝑗) for all (𝑖, 𝑗) ∈ 𝐷(𝐴) \ 𝐸

1
and 𝐴(𝑖, 𝑗) ̸=

𝑍
𝑚
(𝑖, 𝑗) for all (𝑖, 𝑗) ∈ 𝐸

1
and 𝐸

2
be the error set of cardinality

𝑘
2
such that 𝐵(𝑖, 𝑗) = 𝑍

𝑛
(𝑖, 𝑗) for all (𝑖, 𝑗) ∈ 𝐷(𝐵) \ 𝐸

2
and

𝐵(𝑖, 𝑗) ̸= 𝑍
𝑛
(𝑖, 𝑗) for all (𝑖, 𝑗) ∈ 𝐸

2
. We have 𝐴

𝑛
⊂
𝑛𝑘
1

𝑍
𝑚𝑛 with

error set 𝐸
1
(𝑎, |𝑏|, 𝑛) of cardinality 𝑛𝑘

1
and 𝐵

𝑚
⊂
𝑚𝑘
2

𝑍
𝑚𝑛 with

error set 𝐸
2
(𝑎, |𝑐|, 𝑚) of cardinality𝑚𝑘

2
.

Let (1, 1) ≤ (𝑖, 𝑗) ≤ (𝑎, 𝑑
𝑚𝑛
) and 𝑍

𝑚𝑛
(𝑖, 𝑗) = 𝑎 for some

letter 𝑎. There are 4 possibilities.

Case 1. If (𝑖, 𝑗) ∉ 𝐸
1
(𝑎, |𝑏|, 𝑛) and (𝑖, 𝑗) ∉ 𝐸

2
(𝑎, |𝑐|, 𝑚), then

𝐴
𝑛
(𝑖, 𝑗) ∈ {◊, 𝑎} and 𝐵

𝑚
(𝑖, 𝑗) ∈ {◊, 𝑎}. It does not give any

error, when we align 𝐴
𝑛 with 𝐵

𝑚.

Case 2. If (𝑖, 𝑗) ∉ 𝐸
1
(𝑎, |𝑏|, 𝑛) and (𝑖, 𝑗) ∈ 𝐸

2
(𝑎, |𝑐|, 𝑚), then

𝐴
𝑛
(𝑖, 𝑗) ∈ {◊, 𝑎} and 𝐵

𝑚
(𝑖, 𝑗) = 𝑏 for some 𝑏 ̸= 𝑎. It gives an

error in the alignment of 𝐴𝑛 with 𝐵
𝑚 only when 𝐴

𝑛
(𝑖, 𝑗) = 𝑎

or when (𝑖, 𝑗) ∈ 𝐷(𝐴)(𝑎, |𝑏|, 𝑛).

Case 3. If (𝑖, 𝑗) ∈ 𝐸
1
(𝑎, |𝑏|, 𝑛) and (𝑖, 𝑗) ∈ 𝐸

2
(𝑎, |𝑐|, 𝑚), then

𝐵
𝑚
(𝑖, 𝑗) ∈ {◊, 𝑎} and 𝐴

𝑛
(𝑖, 𝑗) = 𝑏 for some 𝑏 ̸= 𝑎. It gives an

error in the alignment of 𝐴𝑛 with 𝐵
𝑚 only when 𝐵

𝑚
(𝑖, 𝑗) = 𝑎

or when (𝑖, 𝑗) ∈ 𝐷(𝐵)(𝑎, |𝑐|, 𝑚).

Case 4. If (𝑖, 𝑗) ∈ 𝐸
1
(𝑎, |𝑏|, 𝑛) and (𝑖, 𝑗) ∈ 𝐸

2
(𝑎, |𝑐|, 𝑚), then

𝐴
𝑛
(𝑖, 𝑗) = 𝑏 for some 𝑏 ̸= 𝑎 and 𝐵

𝑚
(𝑖, 𝑗) = 𝑐 for some 𝑐 ̸= 𝑎.

It gives an error in the alignment of 𝐴𝑛 with 𝐵
𝑚 only when

𝑏 ̸= 𝑐.
Therefore, if 𝐸

1
(𝑎, |𝑏|, 𝑛) ∩ 𝐸

2
(𝑎, |𝑐|, 𝑚) = 𝜙 then 𝐴

𝑛
↑
𝑘
𝐵
𝑚

with 𝑘 = ‖(𝐷(𝑎)(𝑎, |𝑏|, 𝑛) ∩ 𝐸
2
(𝑎, |𝑐|, 𝑚)) ∪ (𝐷(𝐵)(𝑎, |𝑐|, 𝑚) ∩

𝐸
1
(𝑎, |𝑏|, 𝑛)‖ and 𝐸

1
(𝑎, |𝑏|, 𝑛) ∩ 𝐸

2
(𝑎, |𝑐|, 𝑚) ̸= 𝜙 then

𝐴
𝑛
↑
≤𝑘
𝐵
𝑚.

Example 18. 𝐴 = (
𝑎 𝑏 ◊

𝑐 𝑎 𝑏

◊ 𝑏 𝑎

), 𝐵 = (
𝑎 𝑐

𝑐 𝑏

◊ 𝑏
), 𝑍 = (

𝑎

𝑐

𝑏
) .
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We have 𝐴⊂
4
𝑍
3 with error set 𝐸

1
= {(1, 2), (2, 2), (2, 3),

(3, 3)}, and 𝐵⊂
2
𝑍
2 with error set 𝐸

2
= {(1, 2), (2, 2)}.

𝑘 = 6:

(i) 𝐷(𝐴) = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2),
(3, 3)}.
𝐷(𝐵) = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 2)}

(ii) 𝐷(𝐴)(𝑎, |𝑏|, 2) = {(1, 1), (1, 2), (2, 1), (2, 2),
(2, 3), (3, 2), (3, 3), (1, 4), (1, 5), (2, 4), (2, 5),
(2, 6), (3, 5), (3, 6)}.
𝐷(𝐵)(𝑎, |𝑐|, 3) = {(1, 1), (1, 2), (2, 1), (2, 2),
(3, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (1, 5),
(1, 6), (2, 5), (2, 6), (3, 6)}

(iii) 𝐸
1
(𝑎, |𝑏|, 2) = {(1, 2), (2, 2), (2, 3), (3, 3), (1, 5),

(2, 5), (2, 6), (3, 6)}.
𝐸
2
(𝑎, |𝑐|, 3) = {(1, 2), (2, 2), (1, 4), (2, 4), (1, 6),

(2, 6)}.
𝐸
1
(𝑎, |𝑏|, 2) ∩ 𝐸

2
(𝑎, |𝑐|, 3) ̸= 𝜙.

𝑘 = ‖(𝐷(𝐴)(𝑎, |𝑏|, 2) ∩𝐸
2
(𝑎, |𝑐|, 3)) ∪ (𝐷(𝐵)(𝑎, |𝑐|, 3) ∩

𝐸
1
(𝑎, |𝑏|, 2))‖ = ‖(((1, 1), (1, 2), (2, 1), (2, 2), (2, 3),

(3, 2), (3, 3), (1, 4), (1, 5), (2, 4), (2, 5), (2, 6),
(3, 5), (3, 6)) ∩ ((1, 2), (2, 2), (1, 4), (2, 4), (1, 6),
(2, 6)))∪(((1, 1), (1, 2), (2, 1), (2, 2), (3, 2), (1, 3), (1, 4),
(2, 3), (2, 4), (3, 4), (1, 5), (1, 6), (2, 5),
(2, 6), (3, 6)) ∩ ((1, 2), (2, 2), (2, 3), (3, 3), (1, 5), (2, 5),
(2, 6), (3, 6)))‖ = ‖(1, 2), (1, 4), (1, 5), (2, 2), (2, 3),

(2, 4), (2, 5), (2, 6), (3, 6)‖.
𝑘 = 9:

𝐴
2
↑
≤9
𝐵
3
(𝐴
2
↑
6
𝐵
3
).

5. Conjugacy and 𝑘-Conjugacy of
Partial Arrays

5.1. Conjugacy

Definition 19. Two partial arrays 𝐴 and 𝐵 of same order are
called conjugate if there exist partial arrays 𝑋 and 𝑌 such
that 𝐴 ⊂ 𝑋𝑌 and 𝐵 ⊂ 𝑌𝑋 using row catenation or column
catenation.

0-conjugacy on partial arrays with same order is trivially
reflexive and symmetric but not transitive.

Example 20. 𝐴 = (
𝑎 ◊ 𝑏

𝑏 𝑐 𝑎

𝑎 𝑎 ◊

), 𝐵 = (
𝑏 𝑐 ◊

𝑎 𝑎 ◊

𝑎 𝑐 𝑏

), 𝐶 = (
𝑏 𝑎 ◊

𝑏 𝑎 ◊

𝑎 𝑏 𝑐

).

By taking 𝑋 = (𝑎 𝑐 𝑏) and 𝑌 = ( 𝑏 𝑐 𝑎
𝑎 𝑎 ◊

), we get 𝐴 ⊂ 𝑋𝑌

and𝐵 ⊂ 𝑌𝑋 showing that𝐴 and𝐵 are conjugate similarly and,
by taking 𝑋󸀠 = (𝑏 𝑐 ◊) and 𝑌

󸀠
= (𝑎 𝑐 𝑏), we get 𝐵 ⊂ 𝑋

󸀠
𝑌
󸀠

and𝐶 ⊂ 𝑌
󸀠
𝑋
󸀠 showing that 𝐵 and𝐶 are conjugate. But𝐴 and

𝐶 are not conjugate.
That is, conjugate relation is not transitive.

Proposition 21. Let 𝐴 and 𝐵 be nonempty partial arrays of
same size. If 𝐴 and 𝐵 are conjugate, then there exists partial
array 𝐶 such that 𝐴𝐶 ↑ 𝐶𝐵, either by column catenation or by
row catenation.

Proof. Let𝐴 and 𝐵 be nonempty partial arrays of same order.
Suppose 𝐴 and 𝐵 are conjugate and let𝑋, 𝑌 be partial arrays
such that 𝐴 ⊂ 𝑋𝑌 and 𝐵 ⊂ 𝑌𝑋 either by column catenation
or by row catenation; then 𝐴𝑋 ⊂ 𝑋𝑌𝑋 and 𝑋𝐵 ⊂ 𝑋𝑌𝑋. So,
for 𝐶 = 𝑋, we have 𝐴𝐶 ↑ 𝐶𝐵.

5.2. 𝑘-Conjugacy

Definition 22. Two partial arrays𝐴 and𝐵 of same order are 𝑘-
conjugate, if there exist nonnegative integers 𝑘

1
𝑘
2
whose sum

is 𝑘 and partial arrays𝑋 and𝑌 such that𝐴⊂
𝑘
1

𝑋𝑌 and𝐵⊂
𝑘
2

𝑌𝑋

with row or column catenation.

Theorem 23. Let𝐴 and 𝐵 be nonempty partial arrays of same
order. If𝐴 and𝐵 are 𝑘-conjugate, then there exists partial array
𝑍 such that 𝐴𝑍↑

≤𝑘
𝑍𝐵.

Proof. Let𝐴, 𝐵 be twopartial arrays of sameorder. Supposing
that 𝐴 and 𝐵 are 𝑘-conjugate, then, by definition, there exist
nonnegative integers 𝑘

1
, 𝑘
2
whose sum is 𝑘 and partial arrays

𝑋 and 𝑌 such that 𝐴⊂
𝑘
1

𝑋𝑌 with error set 𝐸
1
and 𝐵⊂

𝑘
2

𝑌𝑋

with error set 𝐸
2
using row catenation or column catenation

accordingly.
Then,𝐴𝑋⊂

𝑘
1

𝑋𝑌𝑋with error set 𝐸
1
and𝑋𝐵⊂

𝑘
2

𝑋𝑌𝑋with
error set 𝐸󸀠

2
= {(𝑖 + number of rows of 𝑋, 𝑗)/(𝑖, 𝑗) ∈ 𝐸

2
}

or 𝐸
󸀠

2
= {(𝑖, 𝑗 + number of columns of 𝑋)/(𝑖, 𝑗) ∈ 𝐸

2
}

according to row or column catenation and so, for 𝑍 = 𝑋,
we have 𝐴𝑍↑

≤𝑘
𝑍𝐵.

Example 24. Given 𝐴 = (
𝑎 ◊ 𝑏

𝑏 𝑐 𝑎

𝑎 𝑎 ◊

), 𝐵 = (
𝑏 𝑐 𝑏

𝑎 𝑎 ◊

𝑎 ◊ 𝑏

).

There exist 𝑋 = (𝑎 ◊ 𝑏) and 𝑌 = ( 𝑐 𝑎 𝑏
𝑎 𝑎 ◊

) with 𝐴⊂
3
𝑋𝑌

and 𝐵⊂
2
𝑌𝑋, 𝑘 = 𝑘

1
+ 𝑘
2
= 5.

There exist 𝑍 = (𝑎 ◊ 𝑏) such that 𝐴𝑍↑
≤5
𝑍𝐵.

6. Conclusion

Motivated by compatibility and conjugacy properties of
partial words, we define the conjugacy of partial array and
derive the compatibility properties of partial arrays. By
giving relaxation to the compatibility relation, we discuss 𝑘-
compatibility and 𝑘-conjugacy of partial arrays. We prove
that, given partial arrays 𝐴, 𝐵 and integers 𝑝, 𝑞 satisfying
|𝐴|
𝑝
= |𝐵|
𝑞, we find 𝑘 such that 𝐴𝑝↑

𝑘
𝐵
𝑞. Also, there exists

partial array 𝑍 such that 𝐴𝑍↑
≤𝑘
𝑍𝐵.

Disclosure

S. Vijayachitra is a Research Scholar at Department of
Science and Humanity Sathyabama University, Chennai,
India.

Competing Interests

The authors declare that they have no competing inter-
ests.



Computational and Mathematical Methods in Medicine 5

References

[1] D. G. Arquès and Ch. J. Michel, “A possible code in the genetic
code,” in STACS 95, vol. 900 of Lecture Notes in Computer
Science, pp. 640–651, Springer, Berlin, Germany, 1995.

[2] F. Blanchet-Sadri and R. A. Hegstrom, “Partial words and
a theorem of Fine and Wilf revisited,” Theoretical Computer
Science, vol. 270, no. 1-2, pp. 401–419, 2002.

[3] A. Colosimo and A. de Luca, “Special factors in biological
strings,” Journal of Theoretical Biology, vol. 204, no. 1, pp. 29–
46, 2000.

[4] F. Blanchet-Sadri, D. Dakota Blair, and R. V. Lewis, “Equations
on partial words,”RAIRO—Theoretical Informatics and Applica-
tions, vol. 43, pp. 23–29, 2009.

[5] F. Sweety, D. G. Thomas, and T. Kalyani, “Collage of hexagonal
arrays,” in Advances in Visual Computing, G. Bebis, R. Boyle, B.
Parvin et al., Eds., vol. 5359 ofLectureNotes inComputer Science,
pp. 1167–1175, Springer, Berlin, Germany, 2008.

[6] F. Blanchet-Sadri and D. K. Luhmann, “Conjugacy on partial
words,” Theoretical Computer Science, vol. 289, no. 1, pp. 297–
312, 2002.

[7] J. Berstel and L. Boasson, “Partial words and a theorem of Fine
and Wilf,”Theoretical Computer Science, vol. 218, no. 1, pp. 135–
141, 1999.

[8] A. de Luca, “On the combinatorics of finite words,” Theoretical
Computer Science, vol. 218, no. 1, pp. 13–39, 1999.

[9] C. Choffrut and J. Karthumaki, “Combinatorics of words,” in
Handbook of Formal Languages, G. Rozenberg and A. Salomaa,
Eds., vol. 1, chapter 6, pp. 329–438, Springer, Berlin, Germany,
1999.

[10] M. Lothaire, Combinatorics on Words, Cambridge Mathemati-
cal Library, Cambridge University Press, Cambridge, UK, 1997.

[11] F. Sweety, D. G. Thomas, and V. R. Dare, “Subarray complexity
of partial arrays,” in Intelligent Optimization Modeling, pp. 85–
94, Allied, 2006.


