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Abstract: Microscopic imaging is essential and the most popular method for in situ monitoring and
evaluating the outcome of various organ-on-a-chip (OOC) platforms, including the number and
morphology of mammalian cells, gene expression, protein secretions, etc. This review presents an
overview of how various imaging methods can be used to image organ-on-a-chip platforms, includ-
ing transillumination imaging (including brightfield, phase-contrast, and holographic optofluidic
imaging), fluorescence imaging (including confocal fluorescence and light-sheet fluorescence imag-
ing), and smartphone-based imaging (including microscope attachment-based, quantitative phase,
and lens-free imaging). While various microscopic imaging methods have been demonstrated for
conventional microfluidic devices, a relatively small number of microscopic imaging methods have
been demonstrated for OOC platforms. Some methods have rarely been used to image OOCs. Specific
requirements for imaging OOCs will be discussed in comparison to the conventional microfluidic
devices and future directions will be introduced in this review.

Keywords: OOC; microfluidic device; transillumination; fluorescence; smartphone-based microscopy

1. Introduction

Organ-on-a-chip (OOC) devices mimic human organs, which can be used for many
different applications, including drug tests (efficacy and toxicity) [1–5], environmental
toxicology [6,7], disease models [8], stem cell differentiation, carcinogenesis [9], etc. [10].
Various analytical methods have been used for OOCs to monitor the number and morphol-
ogy of cells, gene expression inside the cells, protein secretions outside the cells, and the
extent of cell metabolism [10,11]. These methods include various gas and liquid chromato-
graphic analyses, spectroscopic analyses, in vitro immunoassays, on-chip immunosensors,
nucleic acid amplification methods (including polymerase chain reaction or PCR), etc. [12].
Microscopic imaging methods are the most popular methods used for OOCs, which can
monitor the number and morphology of cells, gene expression, protein secretions, etc.
There are a variety of imaging techniques that can be applied to an OOC platform. This
review will investigate many examples for three different categories of imaging techniques,
including the advantages and disadvantages of each. This review will also discuss the
challenges in microscopic imaging from the microfluidic channels within OOCs, e.g., micro-
sized samples [13,14]. Microscopic imaging from the conventional microfluidic devices
(OOCs have frequently been considered a subset of microfluidic devices) are also included
in this review since they are not very different from OOCs. ‘Microfluidic device’ is a more
generalized term for devices featuring microfluidic channels which are used for various
chemical and biological analytical applications. The applications include point-of-care
diagnostics, drug screening, cell analysis, genotyping, etc. [13]. OOCs offer a more special-
ized function, where the microchannels are seeded with various cells towards mimicking
a human organ. Drug toxicity studies are currently one of the primary needs and trends
of OOC platforms. OOC platforms offer the advantage of a low-cost option to assess the
safety of various drugs and therapeutics [15,16]. A variety of examples, among others, will
be provided in this review of how various imaging methods can be combined with OOC
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platforms to assess parameters such as drug toxicity, cell–cell interactions, and more. The
three different categories of imaging techniques for OOCs that will be discussed in this
review include transillumination imaging techniques, fluorescence imaging techniques,
and smartphone-based imaging techniques, including lens-free smartphone-based imaging.

2. Transillumination Imaging

One of the most standard methods for imaging microfluidic devices and OOCs comes
in transillumination. Transillumination is a method that requires a microscope and consists
of light being transmitted through a sample on the platform [17–23]. For transillumination
imaging, a light source is needed on one side of the platform, and then a detector is
required on the other side [22]. Guan et al. demonstrated a typical transillumination
imaging setup with an LED as a light source, the 40× objective as the microscopic lens,
and a charged coupled device (CCD) as the detector, as shown in Figure 1b [19]. The light
travels through the device and to the other side, hitting the chosen detector to form an
image [19]. Sapuppo et al. set up their transillumination imaging around microfluidic
devices with a halogen lamp as the light source and a fiber optic as the light collector [24].
Since transillumination does not require labeling the sample—e.g., fixing and staining for
fluorescence imaging—cells can be imaged in situ within the microfluidic channels. Such a
no-labeling feature is one of the advantages that transillumination offers, which saves time
and adds to the ease of the method. Transillumination forms that are commonly used with
microfluidic devices include brightfield imaging, phase-contrast imaging, and holographic
optofluidic microscopy.
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Figure 1. Transillumination imaging of a microfluidic device. Panel (a) represents a schematic
of the microfluidic device used by Guan et al. Panel (b) demonstrates the traditional setup of
transillumination imaging where the LED is used as the light source and a microscopic objective lens
and a CCD detector on the other side of the microfluidic device that is being imaged. Reproduced
from [19] under Creative Commons Attribution 4.0 License.

2.1. Brightfield Imaging with Microfluidic Devices

Brightfield imaging has extensively been demonstrated for various microfluidic de-
vices. It includes a variety of specialized sub-methods, such as shadow imaging and
spatiotemporal image correlation spectroscopy (STICS). Jagannadh et al. utilized bright-
field imaging to capture the images of the flow of red blood cells through their glass-based
microfluidic device [25]. Instead of traditional polydimethylsiloxane (PDMS)-based mi-
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crofluidic devices, they demonstrated good accuracy and high throughput imaging even
with glass-based microfluidic devices. Lange et al. specifically chose to use shadow imaging
by combining a microfluidic chamber with a camera chip and an illumination system to
capture shadow images of a nematode [26]. The nematode sample is placed directly on
the imaging sensor (camera chip) to produce a shadow image in this method. The image
resolution was 320 × 240 pixels. A drawback of this imaging technique is the blur captured
in the images; however, Lange et al. found that sufficient lighting could reduce blur. As-
ghar et al. demonstrated another example of shadow imaging in microfluidic devices [27].
They captured the shadow images of the cells of interest, and automatically processed
and counted them using custom software. This is one of the reasons shadow imaging can
be beneficial for imaging microfluidic devices as these researchers automatically counted
the cells present in the device from the shadow images captured [27]. When thresholded
correctly, their software counted the number of cells with higher accuracy compared to
manual cell counting, which requires more time to complete [27]. Another type of bright-
field imaging is spatiotemporal image correlation spectroscopy (STICS), which combines
brightfield imaging with a fast camera [28,29]. Travagliati et al. used this imaging technique
to examine the flow velocities of samples in a microfluidic device [29]. They demonstrated a
resolution of 5 µm; however, this method could no longer effectively collect flow velocities
at low concentrations of particles in the sample. Ceffa et al. used STICS imaging to measure
the 3D flow within their microchannels with a micrometer resolution [28]. The downfall
was the need for a traditional microscope that is high in cost and not easily transportable.
On the other hand, virtual microscopy can offer accessibility of digital images over a large
population [30,31]. Transportability becomes essential when developing imaging platforms
that can be used in the field.

2.2. Brightfield Imaging with OOC Platforms

Brightfield imaging can also be used specifically to image organ-on-a-chip (OOC)
devices. van der Meer et al. created an OOC device with human umbilical vein endothelial
cells (HUVECs), human embryonic stem cell (hESC)-derived pericytes, and rat collagen
into their microfluidic device to mimic vascular tissue [32]. In this work, the pericytes
were labeled to recognize the different cell types once brightfield images were taken [32].
It was found that the brightfield imaging was able to distinguish the tubular structures
of pericytes, as seen in Figure 2, but this imaging method did not have good enough
resolution for monitoring cell–cell interactions [32]. Another group, Peel et al., modeled
how brightfield imaging can be used in OOC platforms to automatically determine the
field of view for the second pass of a higher resolution imaging method [33]. This group
developed a liver on a chip model where the bottom layer of the microfluidic channel was
seeded with endothelial cells and the top layer with hepatocytes. They encompassed all
of this in an extracellular matrix [33]. They first obtained the lower resolution brightfield
images from the liver on a chip. Following this, higher resolution images were collected to
analyze the cellular structures of the liver on a chip [33]. Another group, Agarwal et al.,
developed a heart on a chip platform for drug testing studies [34]. Agarwal et al. used
brightfield imaging to image the microfluidic channels when the heart on a chip was in
systole and diastole [34]. These brightfield images were essential to confirm that the heart
on a chip was functioning correctly. Overall, brightfield imaging can be beneficial when
high-resolution images are not of importance. This method can also provide the first step
to ensure the correct structures are formed before putting the time, effort, and resources
into obtaining higher resolution images with a different imaging method. However, all
of this leads to the major disadvantage of low resolution from brightfield imaging. High
resolution is essential when trying to image OOC platforms since the cells and subcellular
structures in the device are on a micron to submicron level. Both van der Meer et al. and
Peel et al. have found advantages of this imaging method as a preliminary step to imaging
OOC devices [30,31], however this imaging technique is not normally the only imaging
method used when imaging OOC platforms.
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Figure 2. Panel (A) represents the brightfield images captured the tubular structures of the pericytes
in an OOC platform. Panel (B) represents the change in the tube width of the pericytes as a function
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2.3. Phase-Contrast Imaging with Microfluidic Devices

Phase-contrast imaging is another method of transillumination imaging that can be
used with microfluidic devices [35–37]. Phase-contrast imaging is used to observe phase
changes in a sample and can be observed through an interferometer or through intensity
images [38]. This type of imaging is beneficial for monitoring changes in refractive index as
when the sample changes phase it is usually the result of a change in refractive index [38].
Jang et al. developed a system that took advantage of quantitative phase microscopy
combined with microfluidic devices. Their system creates a reference field, with the light
obtained through the areas of the microfluidic device without channels, and a setup in
which a reflection-type spatial light modulator was used to control the phase of these
reference fields [39]. This imaging technique could obtain extended field depth, and
neither the objective lens nor the sample needed to be scanned [39]. Overall, this imaging
method can be beneficial in measuring morphological changes in samples on microfluidic
devices [39]. Finally, Kim et al. demonstrated that the combination of a fluorinated polymer
to create microfluidic devices with soft lithography can have unique advantages when
imaging that device with phase-contrast imaging [35]. This main advantage comes from
the similar reflective indexes from the device material and the solution being added to the
device [35]. Overall, this imaging method can be beneficial when the phase changes of the
sample are of interest.

2.4. Phase-Contrast Imaging with OOC Platforms

Phase-contrast imaging has also been used to image OOC platforms. Paguirigan et al.
developed an enzymatically crosslinked gelatin microdevice for the use of cell culture [40].
The enzyme-crosslinked gelatin more closely mimicked the extracellular matrix than other
in vitro methods, providing a more suitable microenvironment for cell growth [40]. Normal
murine mammary epithelial cell line (NMuMG) cells were seeded into the device, and then
quantitative phase-contrast images were taken to ensure the proper growth and morphology
of the seeded cells [40]. It was found that the cells seeded in the gelatin microchannels
developed a 3D structure, seen in Figure 3d, compared to the other control methods of cell
culture where only monolayers of the cells were able to grow, as seen in Figure 3a–c [40].
As mentioned earlier, this leads to an advantage of this method: phase-contrast imaging
allows for the morphological and phase changes to be analyzed in greater detail than
with other imaging methods. This method also demonstrates the ability of phase-contrast
imaging for other OOC platforms since the device discussed above was intended to closely
mimic the in vivo growth of NMuMG cells and capture the 3D level details of the cells in
the gelatin microchannel. One of the current directions of the OOC platform is in vitro
drug tests that closely model an in vivo organ [41]. The developed OOC needs to model
the disease of interest to test drugs effectively [41]. Huh et al. developed a lung on a chip



Micromachines 2022, 13, 328 5 of 22

platform to model pulmonary edema and imaged their platform through phase-contrast
imaging [41]. These phase-contrast images exposed a space that was previously filled
with air and later filled with a clear liquid as it leaked across the endothelial lining of the
microvascular channel [41]. This depicts how phase-contrast imaging can be used to image
OOC platforms towards one of the current trends of OOC applications.
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the NMuMG cells in standard forms of cell culture. Panel (d) represents the cells that were seeded in the
developed gelation microfluidic device. Top and bottom subfigure sets are collected after 5 and 24 hours,
respectively. Reprinted from [40] with permission. © 2006 Royal Society of Chemistry.

2.5. Holographic Optofluidic Microscopy with Microfluidic Devices

Holographic optofluidic microscopy is another form of transillumination imaging
that can be used in microfluidic devices. It requires a quasi-monochromatic incoherent
light source illuminated onto the microfluidic device, causing scattering and diffraction of
light [42]. Such scattering and diffraction are used to produce the hologram at the sensor of
the imaging set up, which can be seen in Figure 4 [43]. This imaging method is beneficial
because both amplitude and phase images are obtained. Bishara et al. demonstrated how
to produce high-resolution images of Caenorhabditis elegans using this imaging technique.
Around 15 consecutive frames were sufficient for creating high-resolution images of the
C. elegans. A computation algorithm is required to reconstruct these frames into an image.
Some disadvantages include the signal-to-noise ratio that limits the pixel size of the sample
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that can be imaged at an acceptable resolution. Bianco et al. combined a microfluidic device
with holographic imaging through two different grating designs on the microfluidic device,
both parallel and orthogonal to the flow of the microfluidic channel [44]. The orthogonal
design could extend the field of view, and the addition of the grating onto the microfluidic
device platform allowed for a simpler, more portable device. The portability of this device
was the main advantage, allowing point-of-care diagnostics. However, this holographic
imaging method can be more complicated and does not offer as high of a resolution as
other methods.
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2.6. Holographic Optofluidic Microscopy with OOC Platforms

After extensive research, holographic optofluidic microscopy has not in the past or
present been demonstrated to image an OOC platform. However, Bishara et al. demon-
strated how holographic optofluidic microscopy could be applied to smaller micro-sized
objects [43]. This not only lends to this imaging method’s application for microfluidic
devices but also lays the foundation for OOC platforms. However, due to the downfalls of
this method for being complicated and not producing high-resolution images, holographic
optofluidic microscopy has not yet been demonstrated to image OOC platforms. High
resolution imaging is needed to capture images of cells and subcellular structures with
enough detail to illustrate what is occurring in the OOC platform. If the resolution of
holographic optofluidic microscopy imaging can be improved, this method can potentially
be applied to OOC platforms in the future.

3. Fluorescence Imaging

Fluorescence imaging, unlike transillumination techniques, requires the use of flu-
orophores to be conjugated to molecules to obtain an image [45–49]. The setup for this
imaging method is similar to that of transillumination in that a microscope lens and a
detector are needed, which in this imaging method are an epifluorescence microscope and a
CCD detector as shown in Figure 5 [48]. The light travels through the device, bounces back
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through an objective lens, and hits a detector to form an image [48]. The main differences
in fluorescent imaging comes from a different microscope lens being used, optical filters,
and fluorescent labeling of the molecules. Therefore, it is label-based imaging method. The
advantage of conjugating fluorophores to biomolecules is the ability to investigate a cellular
and subcellular level of detail in the sample being imaged [23]. Such detailed observation
is critical in monitoring mammalian cells’ successful proliferation and metabolism within
OOC platforms [50–52]. In some cases, the fluorescence microscope can even be integrated
onto the chip to allow for automatic imaging of the sample [4]. However, fluorescent
probes are not available for all target molecules, meaning that some target molecules may
not be imaged through fluorescence [53–55]. Fluorescent probes consist of a fluorophore
attaching to a molecule and the selection of these probes require a lot of consideration to
minimize complications such as photobleaching effects [56]. This means that there is not
always a suitable fluorescent probe for the molecule of interest that will minimize these
adverse effects [56]. In addition, fluorescent probes can also cause harm to the cell and
prevent it from functioning properly [53,57–59]. Methods of fluorescence imaging used
with microfluidic devices, like OOC platforms, include (1) confocal microscopies combined
with fluorescence and (2) light-sheet fluorescence microscopy (LSFM).
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Figure 5. Schematic of the basic setup for fluorescence imaging where an epifluorescence microscope lens
and CCD detection device are used. Reproduced from [44] with permission, © 2004 Springer Nature.

3.1. Confocal Fluorescence Microscopy with Microfluidic Devices

Confocal microscopes combined with fluorescence imaging are used often in combi-
nation with microfluidic devices [60–65]. Confocal microscopy allows the acquisition of
multiple 2-D images at different depths towards reconstructing 3D structures. The sample
is optically sectioned, and the slice images of the sample can be obtained [23]. Addition
of fluorescence imaging to the confocal microscopy provides the structural details at high
resolution, which is beneficial for the imaging microfluidic platforms [60]. The downfalls to
this method include photobleaching and phototoxicity of the sample [66]. Photobleaching
reduces the time that sample is viable for imaging [67,68]. If this time is surpassed, the
images will not reflect the actual state of the sample. Some studies have found methods that
reduce the amount of photobleaching; however, photobleaching to any extent still presents
an obstacle to obtaining high-quality images [69,70]. Overall, this imaging method offers
good image resolution but suffers from photobleaching and phototoxicity to the samples.
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3.2. Confocal Fluorescence Microscopy with OOC Platforms

When confocal microscopy is used with fluorescence imaging, cellular and subcellular
details can be imaged over different depths of microfluidic channels, which is beneficial for
OOC platforms [71]. This imaging technique can image various sized samples from single
molecules to millimeter-sized samples [23]. Such single-molecule imaging is essential for
OOCs, since the target molecules (subcellular details) are micron-sized. In this method, the
microscopes can either be integrated onto the chip or as an external component to capture
the fluorescence images [23]. Some examples of this imaging method were demonstrated in
an OOC platform discussed earlier in this review. As discussed earlier, van der Meer et al.
began with taking brightfield images of their OOC device to find that this form of imaging
was incapable of imaging the cell-to-cell interactions [32]. In order to overcome this,
confocal microscopy images of the fluorescently labeled cells were taken and found to
produce a higher resolution than the brightfield images, as seen in Figure 6B [32]. Peel et al.
followed a similar path in using confocal fluorescence microscopy after using brightfield
imaging. As discussed earlier, Peel et al. used brightfield imaging on their liver on a chip
device to define a field of view for their next step of higher resolution imaging which was
confocal fluorescence microscopy [33]. Their imaging method was automated and could
obtain single-cell resolution on their liver on a chip device [33]. This lends high resolution
to be the significant advantage of confocal microscopy when used for OOC devices. The
blood–brain barrier on a chip is also currently of importance to develop further due to its
ability to study complex neurological disorders such as Alzheimer’s disease [72]. Herland
et al. developed a blood–brain barrier on a chip, consisting of human brain microvascular
endothelial cells, pericytes, and astrocytes [72]. Fluorescent images were taken to determine
the correct 3D vessel structure formation in the microfluidic channels [72]. These images
can depict the cell distributions within the blood–brain barrier on a chip lending to the
high-resolution advantage of this imaging method [72]. Another current direction with
OOC platforms is disease modeling such as cancer to test novel drugs and therapeutics. A
specific tumor on a chip can be created to test therapeutics and drugs for the treatment of
that tumor [73–75]. Fluorescent images can be taken from these tumor on a chip devices
to ensure the formations of the correct 3D microvascular environment [73] and desired
cell structure [74] before testing therapeutics and drugs in the device. Fluorescent images
of a tumor on a chip device can also be taken to monitor how the cells mimicking the
tumor can respond to a novel drug [75]. All of this depicts how fluorescence imaging can
provide high-resolution images with cellular-level details from the OOC platforms, and
how therapeutics and drugs affect these organ-like structures. This imaging technique holds
the same disadvantages of photobleaching, phototoxicity, and a non-label-free method, as
seen with other microfluidic devices.

3.3. Light-Sheet Fluorescence Microscopy (LSFM) with Microfluidic Devices

Light-sheet fluorescence microscopy (LSFM) combines the optical sectioning confocal
microscopy with a high-speed laser scanning confocal over a large field of view [76–82].
Due of this combination, LSFM has advantages in a high acquisition rate with a reduced
level of phototoxicity [83–88]. This high acquisition rate makes this method ideal for
imaging OOCs allowing minimum phototoxicity to cells and high throughput screen-
ing [89,90]. Memeo et al. combined a microscope on a chip to image Drosophila embryos
using LSFM [79]. They found that this imaging technique obtained a lateral resolution of
0.99 µm and 1.05 µm depending on the illumination wavelengths. Overall, LSFM benefits
from a higher resolution than the other fluorescence imaging and a lower phototoxicity
level, leading to high-quality images.
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permission, © 2013 Royal Society of Chemistry.

3.4. Light-Sheet Fluorescence Microscopy (LSFM) with OOC Platforms

To date there have not been a substantial amount of LSFM being used to image
OOC platforms. However, Sala et al. demonstrated the integration of a microscope onto
their OOC device that could image through LSFM [91]. Their OOC platform was seeded
with human mammary epithelial cells which are around 15 µm in size and the attached
microscope was able to obtain high resolution images at a high acquisition rate of around
1 sample/s. They went on to further discuss that finer sampling of the samples could be
obtained through reducing this acquisition rate. The importance of this work comes from
the ability to obtain 3D images of the human mammary epithelial cells in their microfluidic
device, as seen in Figure 7 [91]. This demonstrates this imaging method’s ability to obtain
high-resolution 3D cell images, which is necessary for imaging OOC platforms. 3D cell
images within a micro-size scale can provide important information on how the cells within
an OOC are functioning and growing.
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Figure 7. 3D images captured in a microfluidic channel of human mammary epithelial cells taken
in each 2D plane, panels (a–c). Panel (d) represent images of the mammary epithelial cells in an XY
plane with various sizes of z being used to image. Reproduced from [91] under Creative Commons
Attribution 4.0 License.

Another group, Vargas-Ordaz et al. focuses on single-cell 3D imaging in a microfluidic
device [81]. They combined a submicron light-sheet within their microfluidic device. This
design formed the light-sheet by focusing a laser beam into the microfluidic channel, as
shown in Figure 8. A lateral resolution of 0.65 µm could be obtained, and that this method
could be potentially beneficial due to this method’s low phototoxicity levels. Even though
their device did not attach the cells in the microfluidic channels like commonly seen in OOC
platforms, this work demonstrates the possibility to image cells at the micron scale using
the LSFM technique. As seen in microfluidic devices, OOC platforms could benefit from
this imaging method as it produces high quality images while reducing phototoxic effects
commonly seen in fluorescent imaging. Not all phototoxic effects can be fully eliminated,
however, leading to the drawback of LSFM used to image OOC platforms.

Micromachines 2022, 13, x FOR PEER REVIEW 11 of 23 
 

 

 
Figure 8. Panel (A) is a schematic of light-sheet fluorescence microscopy (LSFM) on a microfluidic 
device. Panel (B) represents a micrograph of the optical setup and panel (C) represents a photograph 
of the microfluidic device being imaged. Reproduced from [81] with permission, © 2021 Royal So-
ciety of Chemistry. 

4. Smartphone-Based Imaging 
Another form of imaging microfluidic devices and OOCs is the smartphone-based 

platforms. Smartphone-based imaging has been on the rise in recent years due to improve-
ments in these devices’ hardware and software. These improvements have allowed better 
imaging of the samples [92–97]. A basic setup of smartphone imaging is provided in Fig-
ure 9a, where a light source, objective lens, smartphone, and microfluidic device are 
needed [94]. The light source travels through the microfluidic device, then travels through 
an objective lens to magnify the detail, and then hits the detector located in the 
smartphone to form an image [92]. In some cases, such as the lens-free-based smartphone 
imaging, the objective lens is not needed, which will be discussed further in Sections 4.5 
and 4.6. Advantages include the low cost, compared to traditional and portable imaging 
systems [93,98–102]. In addition, smartphone platforms can provide a point of care testing 
[93,103–108]. Such low cost and point of care testing are beneficial to provide testing in 
rural or underdeveloped areas, without expensive and sometimes bulky testing equip-
ment. However, disadvantages lie within the smartphone’s default imaging application 
(app). Such apps are not designed for microscopic imaging. They perform numerous 
touch-ups to the images, such as spatial light bias adjustments, white balancing, localized 
focusing and defocusing, etc., which are inappropriate for imaging proteins and cells 
within microfluidic devices and OOCs. Therefore, apps must be further developed to ob-
tain the best resolution images using smartphones [93]. Future software development and 
smartphone updates can provide this ability to process the images. Some imaging meth-
ods commonly combined with OOC platforms include microscope attachment-based 
smartphone microscopy, quantitative phase smartphone microscopy, and lens-free 
smartphone microscopy. 

Figure 8. Panel (A) is a schematic of light-sheet fluorescence microscopy (LSFM) on a microfluidic
device. Panel (B) represents a micrograph of the optical setup and panel (C) represents a photograph
of the microfluidic device being imaged. Reproduced from [81] with permission, © 2021 Royal Society
of Chemistry.



Micromachines 2022, 13, 328 11 of 22

4. Smartphone-Based Imaging

Another form of imaging microfluidic devices and OOCs is the smartphone-based plat-
forms. Smartphone-based imaging has been on the rise in recent years due to improvements
in these devices’ hardware and software. These improvements have allowed better imaging
of the samples [92–97]. A basic setup of smartphone imaging is provided in Figure 9a,
where a light source, objective lens, smartphone, and microfluidic device are needed [94].
The light source travels through the microfluidic device, then travels through an objective
lens to magnify the detail, and then hits the detector located in the smartphone to form an
image [92]. In some cases, such as the lens-free-based smartphone imaging, the objective
lens is not needed, which will be discussed further in Sections 4.5 and 4.6. Advantages
include the low cost, compared to traditional and portable imaging systems [93,98–102]. In
addition, smartphone platforms can provide a point of care testing [93,103–108]. Such low
cost and point of care testing are beneficial to provide testing in rural or underdeveloped
areas, without expensive and sometimes bulky testing equipment. However, disadvan-
tages lie within the smartphone’s default imaging application (app). Such apps are not
designed for microscopic imaging. They perform numerous touch-ups to the images, such
as spatial light bias adjustments, white balancing, localized focusing and defocusing, etc.,
which are inappropriate for imaging proteins and cells within microfluidic devices and
OOCs. Therefore, apps must be further developed to obtain the best resolution images
using smartphones [93]. Future software development and smartphone updates can provide
this ability to process the images. Some imaging methods commonly combined with OOC
platforms include microscope attachment-based smartphone microscopy, quantitative phase
smartphone microscopy, and lens-free smartphone microscopy.
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4.1. Microscope Attachment-Based Smartphone Microscopy with Microfluidic Devices

Smartphones can be combined with a microscope attachment that contains lenses
and optical components, to serve as the microscope. The smartphone itself is used as the
camera component needed to capture the images [93,94,109–112]. Kim et al. combined
microfluidics, a smartphone, and a microscope attachment to measure the viscosity of
various samples in a microfluidic device, as shown in Figure 9 [94]. Combining these three
components allowed them to obtain highly accurate viscosity measurements through a
small, portable device. The use of a microscope attachment and a smartphone on microflu-
idic devices enables low-cost microscopic imaging. Compared to commercial and standard
imaging equipment, such as microscopes, the microscope attachment-based smartphone
microscopy is a more cost-effective option. A disadvantage of this imaging method is the
compromised image resolution compared to those from commercial benchtop microscopes.
Navruz et al. developed a microscope attachment for a smartphone that contained LED
transmission with a fiber-optic array [113]. They could obtain a resolution of around 1.6 µm
with a field-of-view of >1.5 mm2. Submicron resolution could potentially be obtained with
a denser fiber-optic array.

4.2. Microscope Attachment-Based Smartphone Microscopy with OOC Platforms

There has been some recent research on the use of a microscope attachment-based
smartphone microscopy with OOC platforms. Yafia et al. used a smartphone with an
attachment that contains a miniaturized microscope lens [111]. This work was in its
preliminary stages and had not yet been extensively tested with microfluidic devices.
However, some experiments were completed to image droplets where conclusions were
made that future work could be conducted to integrate onto an OOC device. They also
confirmed that this imaging method is a low-cost option compared to traditional benchtop
microscopes. Another group, Cho et al., developed a smartphone-based fluorescence
microscope to monitor their OOC device [4]. The OOC platform was a kidney on a chip
device to observe how nephrotoxic drugs reacted with the device, one of the current trends
seen within the OOC applications, which would give an approximation on how these drugs
would respond in a human kidney [4]. This smartphone-based fluorescence microscope
was attached directly to the kidney on a chip device to allow for in situ monitoring and
dual-mode detection, which is beneficial to allow for real-time monitoring [4]. The dual-
mode detection is explained in Figure 10, where both nanoparticle immunoagglutination
and particle capture can be monitored with this imaging method [4]. Furthermore, they
could observe both membrane expression and protein product release in this OOC platform
with microscope-attachment-based smartphone microscopy [4]. While this dual detection
imaging has not been demonstrated in other OOC platforms, this example shows the future
potential of this imaging method to monitor a good level of detail in what is occurring
within the OOC platforms. Overall, these smartphone-based microscope attachments
benefit from low cost but suffer from lower resolution compared to benchtop microscopes.

4.3. Quantitative Phase Smartphone Microscopy with Microfluidic Devices

Quantitative phase microscopy in conjunction with smartphones provides images
of quantitative cellular phases. This method can create high-contrast and high-quality
images [114]. In addition, quantitative phase imaging offers label-free imaging, leading
to less destruction of the sample, such as seen in fluorescence imaging [115]. Meng et al.
used this method by combining a light source, micro-objective, and an eyepiece with a
smartphone to develop their quantitative phase microscope [114]. They combined their
developed platform with an app and computational algorithms to compute the phase
distributions. This imaging platform could image various samples and produce high-
resolution images. Yang and Zhan used quantitative phase imaging to image blood cells
and obtain high-resolution images of around 1 µm [115]. This method reduces the overall
cost compared to the quantitative phase microscopy using transillumination since objective
lenses are not needed, and the lens of the smartphone can be used.
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4.4. Quantitative Phase Smartphone Microscopy with OOC Platforms

Quantitative phase microscopy can also be used with OOC platforms. Diederich et al.
demonstrated imaging of morphological changes in macrophages in an OOC device,
as shown in Figure 11 [116]. In order to obtain these images, a setup was developed
that featured a smartphone and some 3D-printed attachments [116]. Differences in the
morphology of a macrophage can be important indicators to the possible detection of
pathogens or the potential for phagocytosis to occur [116]. This can be important for
OOC platforms as the ability to monitor various cellular level morphology changes can
predict the current status of those cells. They demonstrated the capability of this imaging
method to capture the morphology level detail. However, it was found that a focus drift
occurred when acquiring these images due to temperature-dependent deformation [116].
Nonetheless, the morphological changes could be imaged, which can be beneficial when
the changes in cell structure are of importance to the study. In addition, as Section 4.3 states,
this imaging method also benefits from lower costs than quantitative phase microscopy
using transillumination.

4.5. Lens-Free Smartphone Microscopy with Microfluidic Devices

Lens-free microscopy with a smartphone has been a more recent area of study, as it can
potentially reduce the cost and size of imaging platforms. Traditional microscopes are large
in size and high in price [117–119], which becomes an issue for point-of-care and field-based
imaging [118,120]. Lens-free imaging requires no lens, lasers, or other optical components
and can be attached directly to a smartphone to image [120]. A simple light source, such
as a light-emitting diode (LED), is used to illuminate the samples and is passed through a
large aperture [120]. This filtered light will interact with the sample in which the scattering
of this can be detected through the CMOS array that already exists in the smartphone
camera [120]. After detection, an image can be reconstructed of the sample [120]. Lee
and Yang developed a lens-free imaging platform and did not require a dedicated light
source [118]. In their platform, ambient light was used to illuminate the sample. The sample
was placed directly onto the image sensor of a smartphone, and then ambient light was used
to create shadow images, as shown in Figure 12. After a sequence of images is collected at
varying angles of light, an app is then employed to reconstruct a high-resolution image of
the sample. The downfall to this method is that higher resolution imaging results in slower
processing speed and more extensive data size [118]. However, overall, this is a relatively
low-cost and straightforward option for capturing micron to nanometer scale images.
Guan et al. demonstrated another potential imaging method using a smartphone without
a microscope attachment to capture images of a paper-based blood assay microfluidic
device [121]. In this imaging technique, a smartphone captured the images of the blood
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typing assay, and then an app was developed to analyze the eluting length information
found on the assays. After the image was processed in the app, the app would display
the blood typing result on the smartphone screen. This imaging method allows for rapid
analysis and diagnostic capabilities combined with a paper-based microfluidic device and
a smartphone. In addition, this imaging technique could be beneficial to OOC platforms
as this method demonstrates the ability of a smartphone to perform the steps of image
capture and analysis, all without using a microscope attachment.
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Figure 11. Diedrich et al. demonstrated the ability to continuously monitor morphological changes
in macrophages with a smartphone camera, shown in panels (a–c). Panel (d) represents the growth of
the differentiating cells at various time points where panels (e–n) represent various other types of
images taken of the cells throughout this study. Reproduced from [116] under Creative Commons
Attribution 4.0 License.
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Figure 12. Lens-free microscopy example on a smartphone. The ambient light was used as the light
source shown in panel (a) and the image sensor from the smartphone was used to capture images
seen in panel (b). The samples were placed directly onto the imaging sensor of the smartphone shown
in panel (c). Images of the cells are shown in panel (d). Reproduced from [118] with permission. ©
2014 Royal Society of Chemistry.

4.6. Lens-Free Smartphone Microscopy with OOC Platforms

Lens-free microscopy with a smartphone has not been demonstrated extensively for
imaging OOC platforms. This imaging technique requires the sample to be close or on top
of the imaging sensor in the smartphone [118,120]. This decreases the feasibility of imaging
OOC platforms as the cells are typically seeded into the microfluidic device [40]. In order
for this to work, the cells would have to be able to be imaged through the microfluidic
device which is typically constructed from PDMS [25]. To get around this, Takehara et al.
implemented the use of an ultra-thin glass bottom microfluidic chip so that lens-free on-chip
fluorescence imaging could be used [122]. HeLa cells were seeded onto collagen-treated
microchannels and then imaged using a contact CMOS fluorescent imager, in which the
setup can be seen in Figure 13 [122]. This imaging setup consisted mainly of a CMOS image
sensor, thin-film absorption filter, and a fiber optic plate (FOP) to protect from damage and
maintain a flat surface for the imaging setup [122]. Figure 14 shows the images of these
cells that were obtained with this imaging setup [122]. Of importance to note, Figure 14f,g
represent the activity of the cells without being treated with endothelial growth factor (EGF),
Figure 14f, and the activity of the cells treated with EGF, Figure 14g, where an increase
in fluorescent signal is observed in the cells treated with EGF [122]. This demonstrates
the ability of this imaging method to monitor changes in cells in an OOC platform. This
imaging method is beneficial as a low-cost option to monitor how seeded cells change
in response to various biomolecules. However, this method does suffer from decreased
resolution as the distance between the sample and the imaging sensor increases [122]. This
resolution can be improved by reducing this distance. Overall, this imaging method is
fairly new to imaging OOC platforms; however, there are advantages to using this method
as stated earlier.
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Figure 13. Breakdown of the lens-free on-chip CMOS fluorescent imager, panel (a). Panel (b) is an
image of the CMOS-image sensor ship used. Panel (c) is the transmittance spectrum of the ultra-thin
glass bottom microfluidic device. Panel (d) are brightfield and fluorescent images of the cells using a
table-top microscope in the left and middle image and the CMOS fluorescent imager was used to
capture the image of the cells on the right. Panel (e) are intensity profiles captured of the microsphere.
Reproduced from [122] under Creative Commons Attribution 4.0 License.
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Figure 14. Panel (a) represents the cells in the microfluidic channels and panel (b) represents the
number of cells in the microchannels as a function of time. Demonstration of lens-free on chip
fluorescence imaging HeLa cells seeded on collagen treated microchannels, panels (c,d). Panel
(e) is a schematic of EGF delivered to the microchannels, panel (f,g) are the time course to detected
fluorescence of the cells being imaged. Reproduced from [122] under Creative Commons Attribution
4.0 License.

5. Conclusions

Table 1 summarizes the strengths and weaknesses of a variety of imaging methods
discussed in this review. Transillumination methods, including brightfield, phase-contrast,
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and holographic optofluidic imaging, suffer from low resolution, which is not suitable for
imaging the cells and subcellular structures within OOCs. Despite this setback, brightfield
and phase-contrast imaging have been demonstrated for OOCs, presumably due to their
simple operation principles. Phase-contrast imaging may deserve further investigation
due to its ability to measure phase and morphological changes of mammalian cells, if its
resolution can be increased substantially. Holographic optofluidic imaging also deserve
further investigation due to its portability and phase imaging capability; however, its
operation should be simplified and resolution should further be improved for OOC applica-
tions. Fluorescence imaging, including confocal fluorescence and LSFM, has suffered from
photobleaching and phototoxicity to the mammalian cells. Despite these disadvantages,
they have nonetheless been used for OOC platforms. LSFM deserves more investiga-
tion, as it has high acquisition rate leading to reduced photobleaching and phototoxicity.
Smartphone-based imaging, including microscope attachment-based, quantitative phase
microscopy, and lens-free microscopy, is the most promising method since they provide
low-cost, excellent portability, and potentially high resolution (compared to transillumi-
nation imaging). Quantitative phase smartphone microscopy can measure phase and
morphological changes, while it suffers from focus drift. Lens-free smartphone microscopy
is potentially the most promising method due to its simplicity and low cost. However, it
has not been demonstrated extensively at this point in time for OOCs, as the mammalian
cells within OOCs must be placed very close to the camera. If the smartphone camera or
other CMOS camera can be integrated into or very close to the OOCs, it can successfully be
implemented and more often used with OOC platforms in the future.

Table 1. Summary of the imaging methods discussed in this review and their strengths and weak-
nesses when used to image microfluidic devices and OOC platforms.

Method Sub-Method
Strengths for
Microfluidic

Devices

Weaknesses for
Microfluidic

Devices

Strengths for
OOCs

Weaknesses for
OOCs Ref.

Transillumination

Brightfield
Ability to

automatically
count cells

Blur in images;
need for traditional

microscope; less
cost-effective; not

transportable

Preliminary method
before higher

resolution imaging
Low resolution [26,27,30–33]

Phase-contrast

Extended field
depth; Ability to
measure phase

changes

Low resolution

Ability to measure
phase and

morphological
changes

Low resolution [39,40]

Holographic
optofluidic

Phase images can be
obtained; Allow

portability to device

High signal-to-noise
ratio; complicated;
decent but not the

best resolution

None at this time
Not currently

demonstrated in
OOC platforms

[42,43]

Fluorescence

Confocal High resolution
Photobleaching;

phototoxicity; not
label-free

High resolution;
ability to measure

cell–cell interactions

Photobleaching;
phototoxicity; not

label-free
[32,33,45–49,66]

LSFM
High acquisition

rate; reduced
phototoxicity

Some phototoxicity
still exists

High acquisition
rate; reduced
phototoxicity

Some phototoxicity
still exists [23,81,83–88,91]

Smartphone-based

Microscope
attachment-based

Low-cost;
portability

Compromised
resolution

compared to
benchtop

microscopy

Low cost; in situ
monitoring

Compromised
resolution

compared to
benchtop

microscopy

[4,111]

Quantitative phase
microscopy

Ability to measure
phase and

morphological
changes; label-free;

high resolution;
reduced cost

Only suitable for
imaging phase

changes

Ability to measure
phase and

morphological
changes; label-free

Focus drift
can occur [114,115]

Lens-free
microscopy

Reduced cost and
size; high resolution

Slow processing
speed

Low cost; can
monitor cell activity

in response to
biomolecules

Lower resolution if
image sensor is not

close to cells
[118,120,122]
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As summarized in this review, various imaging methods can be used to image samples
in microfluidic devices, as well as OOCs. There are some imaging methods discussed in this
review that are not currently compatible with OOCs. Holographic optofluidic microscopy
has not yet been demonstrated to image OOC platforms. This is due to the lower resolution
that this imaging method provides. OOC platforms requires micron scale resolution,
meaning that higher resolution is needed to capture images from OOC platforms. In
addition, lens-free smartphone-based microscopy has not been demonstrated extensively
for imaging OOC platforms. This is due to this imaging method requiring the sample to be
placed onto or as close as possible to the imaging sensor in the smartphone. For this imaging
method to be used more widely in OOCs in the future, the chip would have to be designed
with a material that would allow the seeded cells to be imaged through that material from
the imaging sensor on the smartphone such as an ultra-thin glass microfluidic device as
discussed in Section 4.6. Overall, some methods are focused on higher resolution, others
are focused more on low cost and ease of transport. As microfluidic devices and OOCs are
low cost and can be transported easily, imaging on microfluidic devices, and OOCs should
also be made low cost and portable. Furthermore, as technology advances, there could also
be improvements in smartphone-based imaging methods, since these methods often rely
on an app or computational algorithm to analyze the images. This means that there should
be advancements in the resolution provided by smartphone-based imaging with OOC
platforms in the future. Due to the low cost and transportability benefits, smartphone-based
imaging could become a widely used imaging method for OOC platforms in the future
over the other imaging methods discussed in this review. Finally, imaging methods that can
be integrated onto the OOC device can be beneficial for real-time and in situ monitoring of
the sample.
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