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Numerous studies have indicated that father absence is associated with earlier

age at menarche, with many evolutionary theories assuming that father absence

is a causal factor that accelerates reproductive development. However, an

alternative interpretation suggests that offspring may reproduce earlier in the

presence of half- or step-siblings as the indirect fitness benefits to investing

in them are lower, relative to delaying reproduction and investing in full sib-

lings. From this perspective, father absence may perform no causal role in

facilitating the onset of menarche. Using data from the Avon Longitudinal

Study of Parents and Children, I find that individuals with only half- or step-

siblings reach reproductive age earlier than those with only full siblings, with

no independent effect of father absence. These results suggest that inclusive fit-

ness benefits to investing in siblings, rather than father absence, may predict

variation in age at menarche. These results provide a greater understanding

of the adaptive mechanisms involved in reproductive decision-making, as

well as potential implications for human life-history evolution and cooperative

breeding more broadly.

1. Introduction
The onset of female reproductive potential—menarche—is an important stage in

women’s development, resulting in profound biological and socio-cultural

change [1], yet the underlying evolutionary reasons for variation in reproductive

development remain unclear. A large body of research has indicated that father

absence is associated with younger age at menarche [2–5]. These findings present

an evolutionary puzzle, as decreased parental investment, such as resulting from

an absent father, ought to negatively impact offspring fitness [6], meaning that

delayed reproduction may instead be expected.

One set of adaptive explanations, grouped under a ‘predictive adaptive

response’ paradigm [7], suggests that individuals adapt their reproductive strat-

egy when their father is absent to maximize future reproductive success. These

theories posit that father absence may cue for a future environment in which it

may be fitness-enhancing to reproduce earlier. Several variations of this general

theory exist, including father absence as a cue for increased adult mortality [8]

and father absence as an indicator of increased early-life adversity, which may

predict a harsher adult environment [9]. However, these predictive adaptive

response theories require that early-life environments are highly correlated with

future environments, which may not be a plausible assumption in many cases

[10]. A further theory suggests that father absence may result in reduced parental

investment, causing children to invest in earlier reproduction rather than

continued growth [2,3].
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Figure 1. Mean age at menarche for each of the categories of sibling
relatedness. Error bars denote 95% CI.
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However, an alternative adaptive theory based on inclusive

fitness considerations [11] suggests that these effects may

not be driven by father absence, but rather differential in-

direct fitness benefits to investing in siblings as a function of

relatedness [6,12]. Individuals may be more likely to forego

immediate reproduction and invest in siblings if these are full

siblings (r ¼ 0.5) as the indirect fitness benefits are greater, rela-

tive to investing in half-siblings (r ¼ 0.25; or r ¼ 0 in the case of

step-siblings). Indeed, previous research has indicated that

the presence of half- or step-brothers is associated with earlier

age at menarche [13]. From this perspective, father absence

performs no causal role in facilitating the onset of menarche,

but rather alters the relatedness between an individual and

their subsequent siblings [6].

I, therefore, aim to explore the relative merits of each of these

adaptive theories for the observed accelerated reproductive

timing associated with father absence. According to predictive

adaptive response or parental investment theories in which

father absence performs a causal role in accelerating menarche,

effects of half- or step-siblings ought to be independent of

father absence. By contrast, theories based on inclusive fitness

predict that the presence of half- or step-siblings may mediate

the impact of father absence on age at menarche as children

invest more in their own reproduction rather than their siblings’

fitness. I find support for inclusive fitness considerations driving

these results, as children with only full siblings reach menarche

later than those with only half- or step-siblings, with no

independent effect of father absence.
2. Material and methods
Data were obtained from the Avon Longitudinal Study of Parents

and Children (ALSPAC) [14]. ALSPAC recruited 14 541 pregnant

women resident in the former Avon Health Authority in south-

west England with an estimated date of delivery between 1st

April 1991 and 31st December 1992. When the oldest children

were approximately 7 years of age an attempt was made to

increase the initial sample with eligible cases who failed to join

the original study. The total cohort is therefore 15 247 pregnan-

cies, resulting in 15 468 fetuses, of which 14 701 were alive at

1 year of age (for more details see the cohort profile paper [14]).

Age at menarche was assessed from a series of nine question-

naires, completed approximately annually between the ages of

eight and 17, and two research clinics attended at ages 13 and

16. First-reported age at onset of menarche was the dependent vari-

able (for additional details, see [4]). Detailed family composition

data obtained from a questionnaire completed by the child’s

mother (when the child was age seven) were used to assess related-

ness between the study child and their siblings. Reproductive

histories for each of the mother’s relationships and those of their

partner were ascertained, from which relatedness between the

study child and siblings was determined. Four categories were

constructed: only full siblings; only half- or step-siblings; both

full and half/step-siblings; and no siblings. Half- and step-siblings

were grouped together for practical reasons owing to small sample

sizes (few individuals had only half- or step-siblings).

Father absence and the child’s age when the biological father

left were queried in three maternal questionnaires when the

study child was aged seven, eight and ten. Any children whose

father left prior to their sixth birthday were coded as ‘father

absent’, while all other cases were coded as ‘father present’ (even

if the father left at an older age). This cut-off was chosen as previous

research with this sample has indicated that age at menarche in chil-

dren with an absent father after age five is no different from those

with a father present [4]. Potentially confounding variables were
also assessed, including: birthweight, mother’s highest education

level, presence of severe financial problems, home ownership

status (all of which may cue early-life adversity and socio-economic

disadvantage), total number of siblings [15] and mother’s

self-reported age at menarche. Other than total number of siblings,

control variables were collected during the mother’s pregnancy.

Descriptive statistics for all independent variables are displayed

in electronic supplementary material, tables S1 and S2.

The total number of cases for which age at menarche, sibling

relatedness and father absence data were available was 2921,

which reduced to 2297 once other confounders were included.

Please note that the study website contains details of all the data

that are available through a fully searchable data dictionary

(http://www.bristol.ac.uk/alspac/researchers/access/). Statisti-

cal analyses were conducted using multivariate linear regression

models using the function regress in Stata v.14 (StataCorp., USA).
3. Results
The average age at menarche in this sample was 12.62 (s.d. ¼

1.17), with notable differences between sibling categories

(figure 1; electronic supplementary material, table S3). The

average age at menarche for individuals with only half/step-

siblings was 12.28 (s.d.¼ 1.33), while for those with only

full siblings it was 12.7 (s.d. ¼ 1.14). In a univariate model

with ‘only full siblings’ as the reference group, there is

strong evidence that age at menarche was lower in those

with only half/step-siblings (b ¼ 20.42, 95% CI:[20.18; 20.67],

p¼ 0.001, d¼ 0.37, r2¼ 0.033; table 1, model 1). Consistent

with previous research [4], in a univariate model containing

just father absence, individuals with an absent father reached

menarche at an earlier age (b ¼ 20.23, 95% CI:[20.12; 20.33],

p , 0.001, d ¼ 0.2, r2 ¼ 0.01; table 1, model 2). In a model con-

taining both ‘sibling relatedness’ and ‘father absence’, age at

menarche was younger in those with only half/step-siblings

(b ¼ 20.37, 95% CI:[20.11; 20.63], p ¼ 0.005, d ¼ 0.31, r2 ¼

0.023; table 1, model 3), with no independent effect of father

absence (b ¼ 20.11, 95% CI:[0.06; 20.27], p ¼ 0.206).

These patterns remain if potentially confounding variables

are included (table 1, model 4), as well as in an optimized

model with non-predictive variables ( p . 0.1) removed
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(table 1, model 5). In this optimized model, there was also

evidence that individuals with no siblings likewise had an

earlier age of menarche relative to those with only full sibl-

ings (b ¼ 20.23, 95% CI:[20.05; 20.4], p ¼ 0.012, d ¼ 0.21,

r2 ¼ 0.011), although the effect size is weaker compared to

those with only half/step-siblings (b ¼ 20.4, 95% CI:[20.15;

20.65], p ¼ 0.002; d ¼ 0.36, r2 ¼ 0.032). Collinearity between

sibling relatedness and each of the independent variables is

explored in electronic supplementary material, tables S5–S9;

although some collinearity is present, variance inflation factors

[16] from the regression models indicate that this is unlikely to

bias parameter estimates (electronic supplementary material,

table S10).

4. Discussion
These findings indicate that the inclusive fitness benefits to

investing in siblings, rather than father absence, predict

variation in age at menarche. Individuals with only half- or

step-siblings were found to reach reproductive age on average

five months earlier than those with only full siblings (figure 1).

This is consistent with individuals investing more in their sib-

lings if they are full siblings for indirect fitness benefits, while

individuals with half- or step-siblings are more likely to

invest in their own reproduction as the inclusive fitness gains

are lower [6,12]. One plausible mechanism driving these find-

ings is ‘intergenerational reproductive conflict’ [17]. If there is

reproductive competition between mothers and children

(such that competing for reproductive resources damages the

other’s inclusive fitness), children are more likely to invest in

their mother’s reproduction (i.e. delay reproduction and

invest in siblings) in the presence of full, rather than half- or

step-, siblings [6].

Controlling for the relationship between siblings, no

independent effect of father absence was observed. Father

absence may therefore play no causal role in accelerating the

onset of reproductive potential. Although these results provide

evidence against ‘father absence’ hypotheses, other forms of

early-life adversity or high levels of extrinsic mortality may

still influence reproductive decision-making, consistent with

life-history theory [2,18]. Here, I only demonstrate that father

absence may not accurately represent these adaptive challenges.

These results also have wider implications for understand-

ing the evolution of human life history. They suggest that the

evolution of extended childhood and cooperative breeding in

humans [19,20] may in part be owing to long-term pair-

bonding resulting in inclusive fitness gains to investing in full

siblings. Ethnographic studies have indicated that a significant

proportion of allomaternal care is from siblings [21] and that the

presence of older siblings often increases offspring survival

[22], suggesting that cooperation occurs between siblings and

has important fitness consequences. These patterns are also

found in industrial societies, where young siblings engage in

repeated cooperative interactions [23], while among adults

full siblings invest more in one another than half-siblings [24].

These findings are consistent with comparative phylogenetic

analyses demonstrating that monogamous mating systems,

resulting in increased relatedness between siblings, preceded

the evolution of cooperative breeding in birds [25], mammals

[26] and eusocial insects [27]. Although requiring additional

research, these findings suggest that the evolution of extended

childhood in humans may, in part, be owing to kin selected

benefits of cooperating with full siblings.
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