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Abstract. Prostate cancer (PCa) poses a high risk to older
men and it is the second most common type of male malignant
tumor in western developed countries. Additionally, there
is a lack of effective therapies for PCa at advanced stages.
Novel treatment strategies such as adenovirus-mediated gene
therapy and virotherapy involve the expression of a specific
therapeutic gene to induce death in cancer cells, however,
wild-type adenoviruses are also able to infect normal
human cells, which leads to undesirable toxicity. Various
PCa-targeting strategies in adenovirus-mediated therapy have
been developed to improve tumor-targeting effects and human
safety. The present review summarizes the relevant knowledge
regarding available adenoviruses and PCa-targeting strategies.
In addition, future directions in this area are also discussed. In
conclusion, although they remain in the early stages of basic
research, adenovirus-mediated gene therapy and virotherapy
are expected to become important therapies for tumors in the
future due to their potential targeting strategies.

Contents

1. Introduction

2. Development of a prostate-specific promoter/enhancer to
induce expression of therapeutic genes and viral replica-
tion that is limited to specific tissues or tumor cells

3. Modification of adenovirus capsid proteins to construct an
adenovirus combined with specific cell surface receptors

Correspondence to: Professor Fenghai Zhou, Department of
Urology, Lanzhou General Hospital of Lanzhou Military Command,
333 Nanbinhe Road, Qilihe, Lanzhou, Gansu 730050, P.R. China
E-mail: 3073142728@qq.com

“Contributed equally

Key words: prostate cancer, adenovirus, gene therapy, virotherapy,
targeting strategy

for infection of specific tissue or tumor cells efficiently
deletes partial genes that are essential to adenoviral repli-
cation in normal cells but are unnecessary for adenoviral
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1. Introduction

Adenoviruses. Adenoviruses are linear and non-enveloped
double-stranded DNA viruses. The length of genomic DNA
is ~36 Kb, and the gene is divided into coding and non-coding
regions. The coding region contains five early transcription
units (E1A, E1B, E2, E3 and E4), two delayed transcription
units (IX and Iva2) and one late transcription unit (L1-L5). A
close association exists between El1 (E1A and E1B) and viral
replication. E3 is associated with virus immune evasion and is
not important for viral replication. Adenoviruses are divided
into seven subgroups, A-G, and human adenoviruses encom-
pass 52 types, of which Ad2 and AdS5 are widely employed in
adenovirus studies (1,2).

Adenovirus-mediated gene therapy and virotherapy. Gene
therapy and virotherapy involve the introduction of therapeutic
genes into tumor cells in order to treat tumors. Adenoviruses
that mediate anti-tumor therapy include two types of recombi-
nantadenoviruses, which are replication-deficient adenoviruses
(RDAds) and conditional replication adenoviruses (CRAdSs).
The El region consists of the E1A gene, E1B-19 kDa (K)
gene and E1B-55K gene. These genes regulate viral replication
and the gene expression of other early genes. An adenovirus
with deletion of El is termed a RDAd due to its lack of
self-replication (3-9). In adenovirus-mediated gene therapy,
the adenovirus is used as a gene vector to induce the expres-
sion of therapeutic genes to inhibit tumor growth. However,
the lack of a tumor-targeting effect is problematic; RDAds
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may be transduced into normal cells and cause unpredictable
cytotoxicity (10). CRAdSs, also referred to as oncolytic adeno-
viruses, is one method used in virotherapy and these viruses
are capable of self-replication and the delivery of therapeutic
genes (11,12). CRAds contain the E1A region that has a key
role in viral self-replication. After CRAds infect tumor cells,
the virus is able to replicate itself to generate progeny viruses
and induce the expression of therapeutic genes. The tumor
cells subsequently die and release CRAds and their progeny
viruses, which further infect adjacent tumor cells. However,
CR Ad-infected normal cells survive as CRAd cannot replicate
itself inside these cells (13). The following three major strate-
gies are employed to construct these two types of recombinant
adenovirus to enhance tumor-targeting: Development of a
tumor/tissue-specific promoter/enhancer to induce expression
of therapeutic genes and viral replication that is limited to
specific tissue or tumor cells (14); modification of adenovirus
capsid proteins to construct an adenovirus combined with
specific cell surface receptors that efficiently infects specific
tissues or tumor cells, with the deletion of partial genes that are
essential to adenoviral replication in normal cells but unneces-
sary for replication in tumor cells (15); and deletion of partial
genes that are essential to adenoviral replication in normal
cells but unnecessary for replication in tumor cells (16).

2. Development of a prostate-specific promoter/enhancer
to induce expression of therapeutic genes and viral
replication that is limited to specific tissues or tumor cells

RDAds or CRAds with a prostate-specific promoter or
enhancer may exert anti-tumor effects in prostate cancer
(PCa) cells only via expression of the therapeutic gene or
by oncolysis. Evidence of recombinant adenoviruses with a
prostate-specific promoter or enhancer is presented in Table I.

Prostate-specific antigen (PSA). PSA is present in the cyto-
plasm of prostatic duct epithelial cells and prostate gland cells,
and PSA expression has been observed in normal prostate
tissues and PCa cells. PSA is the primary biomarker used to
monitor PCa. PSA is also employed to screen patients with
PCa and monitor the recurrence of PCa following treat-
ment (17-21). CV706 is the first oncolytic adenovirus with
the PSA promoter. The PSA promoter drives the expression
of E1A and causes the oncolytic adenovirus to replicate in
PSA-positive PCa cells and induce oncolysis. However, the
ability to self-replicate was low in PSA-negative PCa cells,
and its progeny virus production was also low (22,23). In
phase I clinical trials, treatment with CV706 was applied
to patients with local PCa following radiotherapy, and the
results demonstrated a marked decrease in PSA levels and a
satisfactory antitumor effect (24). Wang et al (25) developed a
recombinant adenovirus that expressed [3-glucuronidase (fG)
under the control of the PSA promoter (Ad/PSAP-GV16-BG).
The prodrug DOX-GA3, N-[4-doxorubicin-N-carbonyl
(oxymethyl) phenyl] O-fB-glucuronyl carbamate, is converted
into toxic DOX by G. The results of an MTT assay indicated
that the oncolytic virus induced significant oncolysis in LNCaP
PCa cells, however, the same effect was not observed in
PSA-negative DU145 PCa cells. In addition, intravenous injec-
tion of Ad/PSAP-GV16-BG and treatment with DOX-GA3
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efficiently inhibited the growth of LNCaP cell xenograft
tumors in nude mice. These results demonstrated the efficacy
of the PSA promoter in adenovirus-mediated gene therapy and
virotherapy against PSA-producing PCa.

Probasin (PB).PB is amember of the lipocalin superfamily and
is a type of ligand transporter. PB is isolated from the nucleus
of the dorsal lateral lobe of the rat prostate and is located in the
ducts and nucleus of prostate epithelial cells (26,27). As such,
PB exhibits tissue specificity, and experiments have demon-
strated that a PB promoter may be regulated by androgens
and drive the expression of foreign genes in PCa cells in vitro
and prostate tissue in vivo (28). Trujillo er al (29) developed
a CRAd with PB and Rous sarcoma virus (RSV) promoters
that drove the expression of the El gene, and NIScCDNA-bGH
polyA that replaced the E3 region (CRAd Ad5PB_RSV-NIS).
In vitro, infection of LNCaP PCa cells by the CRAd led to
virus replication and cytolysis, and the release of infective
viral particles. However, androgen receptor (AR)-negative
PC-3 cells (PCa cell line) and Panc-1 cells (pancreatic cancer
cell line) infected by the CR Ad demonstrated no virus replica-
tion or cytolysis. In vivo, intratumoral injection with the CRAd
and administration of therapeutic 'iodine in nude mice
carrying LNCaP cell xenograft tumors markedly inhibited
tumor growth and increased nude mice survival rates. As the
RSV promoter induces the expression of therapeutic genes, it
may be employed to target cancer cells and normal cells and
tissues, and the RSV promoter has a low targeting effect (10).
The above results demonstrate that the PB promoter is a
prostate-specific promoter. The RDAd (Ad-ARR2PB-Bax)
expressed the apoptotic Bcl2-associated X (Bax) gene
driven by a PB promoter containing two androgen response
elements (ARR). Following infection of LNCaP cells with
Ad-ARR2PB-Bax, androgen dihydrotestosterone induced
Bax-mediated apoptosis. This antitumor effect of RDAd was
also observed in LNCaP xenograft tumors (30). These results
indicate that adenoviruses with a PB promoter may employed
to target AR-positive PCa.

Prostate-specific membrane antigen (PSMA). PSMA is a
type 2 intrinsic membrane protein on prostatic epithelial cells
that is homologous with the serum transferrin receptor. PSMA
is primarily expressed in PCa cells and is highly expressed in
PCa and during metastasis (31-37). Gao et al (38) constructed
a recombinant adenovirus that expressed human sodium
iodide symporter (hNIS) driven by the PSMA promoter (Ad.
PSMApro-hNIS). Compared with the recombinant adeno-
virus containing a cytomegalovirus (CMV) promoter (Ad.
CMV-hNIS), expression of the hNIS gene induced by the
PSMA promoter was highly prostate-specific in different
LNCaP cell lines, particularly in the androgen-independent
C81 LNCaP cell line. The antitumor effect of radioiodine
therapy was improved in C81 cell xenografts in nude mice that
received PSMA promoter-driven hNIS transfection compared
with CMV promoter-driven hNIS transfection. A recombinant
adenovirus, combined with the prodrug 5-fluorocytosine, was
developed to express the cytosine deaminase (CD) gene driven
by a PSMA promoter and enhancer [Ad-PSMA (E-P)-CD].
This treatment caused PSMA-producing PCa cells (LNCaP
and CL-1) to regress and efficiently inhibited the growth of
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Table I. Continued.

Experiment

Therapeutic

Therapeutic

(Refs.)

Combination type Result

genes Adenovirus

Promoter Enhancer

type

Author, year

(127)

Specific inhibition of
androgen-independent

In vitro/vivo

Hormone

Ad5-SVPb-
PNP

PB SV40 Purine

Gene therapy

Martiniello-

Ablation therapy

nucleoside

Wilks et al,
2002

tumor/tumor cell growth
Specific inhibition of
tumor/tumor cell

growth

phosphorylase

Apoptin
protein

(128)

In vitro/vivo

hTERT NA Ad-hTERTp- NA
Ela-Apoptin

Virotherapy

Zhang et al,
2013

(129)

Specific inhibition of

PSA-positive tumor/
tumor cell growth

In vitro/vivo

ADV.hK2- Androgen

hK2 hK2 NA

Gene therapy

Xie et al, 2001
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Analog (R1881)

E3/P-EGFP

NA, not applicable; PSA, prostate-specific antigen; PG, B-glucuronidase; PB, probasin; RSV, Rous sarcoma virus; NIS, sodium iodide symporter; ARR, androgen response element; Bax, Bcl2-associated X;

PSMA, prostate-specific membrane antigen; CRPC, castration-resistant prostate cancer; CD, cytosine deaminase; 5-FC, 5-fluorocytosine; DD3, differential display code 3; IL, interleukin; SATB

homeobox 1; shRNA, short hairpin RNA; hTERT, human telomerase reverse transcriptase; PEG-3, progression elevated gene-3; MDA, melanoma differentiation-associated protein; BSP, bone sialopro-

tein; hK2, human kallikrein 2; OC, osteocalcin; HSV-TK, herpes simplex virus thymidine kinase; PTEN, phosphatase and tensin homolog; MMTYV, mouse mammary tumor virus; SV40, simian virus 40.

CL-1 xenograft tumors. These results indicate that the PSMA
promoter may be an important prostate-specific promoter
for adenovirus-mediated treatment of PSMA-positive PCa
cells (39).

Prostate cancer gene 3 (PCA3). PCA3 is a type of long
non-coding RNA that is one of the PCa-specific markers
discovered in recent years. Overexpression of PCA3 occurs
in >95% of primary PCa and metastatic cancer speci-
mens, and is not observed in other normal tissues (40-42).
Fan et al (43) developed two plasmids containing the
differential display code (DD)3 of PCA3 promoter and the
PSA promoter (pGL3-DD3 and pGL3-PSA, respectively).
Luciferase activity demonstrated that the DD3 promoter and
the PSA promoter exhibited similar activity in the LNCaP
PCa cells. However, the DD3 promoter exhibited ~2-fold
higher activity compared with the PSA promoter in DU145
PCa cells. In non-PCa cell lines, the DD3 promoter exhibited
a lower activity compared with the PSA promoter. Therefore,
the results indicated that the DD3 promoter is more
PCa-specific. Furthermore, two oncolytic adenoviruses were
developed to express interleukin (IL)-24 driven by the DD3
promoter and the PSA promoter (Ad.DD3-E1A-IL-24 and
Ad.PSA-E1A-IL-24, respectively). In vitro and in vivo, the
antitumor effect of Ad.DD3-E1A-IL-24 was higher compared
with Ad.PSA-E1A-IL-24. Further experiments demonstrated
that the PCa specificity of the DD3 promoter was higher.
Mao et al (44) reported that the expression of the E1A gene
driven by the DD3 promoter of Ad-DD3-E1A occurred in
LNCaP PCa cells and not in non-PCa cell lines (BT549 and
RWPE2). These results indicate that the DD3 promoter may
be useful as a PCa-specific promoter with applications for
PCa-targeting by adenovirus-mediated therapy.

Human telomerase reverse transcriptase (hTERT). Telomeres
maintain cell chromosome stability and cell activity. Telomere
activity is inhibited in normal cells, however, telomerase is
reactivated in the majority of human tumor tissues (45-48).
High activity of TERT occurs in PCa. However, the activity of
TERT is low or absent in normal or benign prostatic hyperplasia
tissue (49-52). OBP-301 is an oncolytic virus that contains the
hTERT promoter (53-55). OBP-401 is an oncolytic virus that
expresses green fluorescent protein (GFP) under control of
the hTERT promoter (55-58). When OBP-401 was employed
to infect different PCa cell lines (PrEC, PrSC, LNCaP, PC3
and DU145), the expression of GFP occurred in LNCaP, PC3
and DU145 PCa cell lines, but not in PrEC and PrSC normal
prostate cell lines. Intratumoral injection with OBP-301 signif-
icantly inhibited LNCaP cell xenograft tumors in nude mice.
In addition, histological and immunohistochemical analyses
demonstrated diffuse oncolysis of tumor cells and the expres-
sion of the E1A protein in the tumors (59). Zhang et al (60)
developed a recombinant adenovirus that expressed the herpes
simplex virus-thymidine kinase (HSV-TK) gene driven by the
HTERT promoter (Ad-hTERT-HSV-TK). Ad-hTERT-HSV-TK,
combined with ganciclovir (GCV), effectively suppressed the
growth of LNCaP cell xenograft tumors in nude mice. These
results demonstrate that the hTERT promoter is a PCa-specific
promoter that may be useful in improving the PCa-targeting
effect.
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Progression elevated gene-3 (PEG-3). PEG-3 was identi-
fied through subtraction hybridization of E11 or E11I-NMT
cell xenograft tumors during the search for genes involved
in malignant transformation and tumor progression.
Various trans-acting factors activate PEG-3 in a number
of human cancers, including PCa, breast and skin cancer,
with limited activity observed in normal tissues. Therefore,
PEG-3 exhibits tumor specificity (61-65). Sarkar er al (66)
constructed an oncolytic adenovirus expressing the melanoma
differentiation-associated protein 7 (MDA-7)/IL-24 driven
by the PEG-3 promoter (Ad.PEG-E1A-mda-7). Prostatic
epithelial cells infected by Ad.PEG-E1A-mda-7 exhibited
no expression of E1A and MDA-7, however, expression was
observed in LNCaP, DU145 and PC-3 PCa cell lines infected
by Ad.PEG-E1A-MDA-7. Ad.PEG-E1A-MDA-7 also mark-
edly inhibited the growth of DU145 cell xenograft tumors
in vitro and in vivo (66). Greco et al (62) combined
Ad.PEG-E1A-MDA-7 with ultrasound contrast agents (micro-
bubbles) to improve the PCa-targeting effect of the oncolytic
adenovirus via ultrasonic guidance. The results demonstrated
that microbubble/Ad.MDA-7 complexes markedly reduced the
tumor burden in DUI145 cell xenograft tumors in nude mice.
These results indicate that use of the PEG-3 promoter in the
recombinant adenovirus selectively induces the expression of
therapeutic genes in PCa.

Bone sialoprotein (BSP). BSP, an acid glycoprotein that is a
member of the small integrin-binding, N-linked glycoproteins
family, is abundant in the extracellular matrix and is secreted
by osteoblasts and osteoclasts (67,68). BSP is associated with
the occurrence and development of tumors, and high expres-
sion of BSP has been reported in breast cancer, PCa, lung
cancer, melanoma and other types of bone metastases (69-71).
Canales et al (72) developed an oncolytic virus containing
the BSP promoter (Ad-BSP-Ela). The oncolytic adenovirus,
combined with small molecule antisense oligonucleotide-based
inhibitors (GRN163) and Taxotere® (Sanofi S.A., Paris, France),
markedly inhibited the growth of the C42B PCa cell line. In
addition, Li et al (73) reported that the oncolytic adenovirus
(Ad-BSP-Ela) inhibited C42B growth and also decreased PSA
levels in vitro. In vivo, the oncolytic adenovirus suppressed the
growth of subcutaneous and intraosseous xenograft tumors of
the C42B PCa cell line in nude mice (73). These results indi-
cate that the recombinant adenovirus with the BSP promoter
has PCa specificity and that CRAds with the BSP promoter
have potential for the oncolysis of advanced PCa.

Human kallikrein 2 (hK2). hK2 is a serine protease that is
member of the hK family that consists of a highly conserved
sequence. hK2 is primarily produced by prostate epithelial
cells (74,75) and is also expressed in breast, ovary, testis and
other tissues, however, its expression is higher in prostate
tissue (75-77). A previous study demonstrated that the hK?2
protein was expressed in PSA-negative prostate tumors and in
each tumor cell (78). As a result, in addition to PSA, hK2 is
considered to be an important marker of PCa. An oncolytic
adenovirus mutant that expressed E1A under control of the
hK2 promoter/enhancer was referred to as CV763. A study
demonstrated that replication of CV763 was notably high
in PSA-positive prostate tumor cells, but was attenuated in
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PSA-negative and non-prostate tumor cells. CV763 containing
the PSA enhancer was referred to as CV764, and exhibited
a higher therapeutic index for PSA-positive LNCaP PCa
cells (79). The above results indicate that the adenovirus with
the hK2 promoter may improve PCa specificity.

Osteocalcin (OC). OC, which is secreted by osteoblasts, is a
marker of bone metabolism, and bone is the most common
metastatic tissue of advanced PCa. The activity of osteo-
blasts is closely associated with bone metastasis of tumors.
Therefore, OC produced by osteoblasts is also associated with
the progression of PCa bone metastasis. Compared with PSA,
OC has a high sensitivity and specificity for diagnosing PCa
bone metastasis (80-84). Koeneman et al (85) constructed an
RDAd that expressed HSV-TK driven by the OC promoter
(Ad-OC-TK). Ad-OC-TK combined with GCV effectively
destroyed PCa cell lines in vitro and PCa xenografts in vivo, in
subcutaneous and bone sites. In phase I clinical trials, patients
with local metastasis of PCa were treated with Ad-OC-TK.
The results demonstrated that all patients reported an absence
of severe side effects, and PCa cell death was observed during
treatment (86). Matsubara et al (87) reported that an onco-
lytic adenovirus with the OC promoter effectively inhibited
the growth of PCa cell lines (LNCaP, C4-2 and ARCaP). In
addition, in vivo, this oncolytic adenovirus also markedly
suppressed intraosseous xenograft tumors, and PSA levels
decreased without a subsequent rebound. Furthermore, combi-
nation with vitamin D3 significantly enhanced the antitumor
effect of Ad-OC-E1A (88). These results indicate that the
recombinant adenovirus containing the OC promoter may be a
promising treatment strategy for advanced PCa.

CCNI/CYR61 gene. Elevated expression of the CCN1/CYR61
gene occurs in various cancers, such as advanced PCa, due
to oncogenic transformation, and this expression increases
with the aggressiveness of the transformed cells (89-91).
Sarkar et al (92) developed a recombinant adenovirus that
expressed MDA-7/IL-24 driven by a truncated (t)CCNI1
promoter (Ad. CCN1-CTV-m7). The MDA-7/IL-24 gene under
the control of the tCCNI1 promoter of Ad.tCCN1-CTV-m7
exhibited high expression in PCa cells. In vitro, the
Ad.tCCNI1-CTV-m7 exerted a dose-dependent killing effect
on PCa cells without injury to normal prostatic epithelial
cells. In vivo, Ad.tCCN1-CTV-m7 significantly suppressed
PCa cell xenograft tumors in transgenic Hi-Myc mice when
combined with ultrasound-targeted microbubble-destruction.
Furthermore, Ad.tCCN1-CTV-m7 combined with small
molecule inhibitors of Mcl-1, and BI-97D6, improved apop-
tosis and tumor growth suppression in Hi-myc mice. These
results indicate that the adenovirus with the tCCN1 promoter
improved the PCa-targeting effect of the adenovirus and the
ability of other treatments to destroy PCa cells.

Combination of promoter and/or enhancer. The combina-
tion of a promoter and/or enhancer is a common targeting
strategy used to improve PCa specificity of recombinant
adenoviruses (Table II). Lee ef al (93) developed an RDAd
with a prostate-specific enhancing sequence (PSES) promoter
that consisted of a PSA enhancer and PSMA enhancer
(Ad-PSES-luc). Luciferase analysis demonstrated that high
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expression of the luciferase gene occurred in PSA- and
PSMA-expressing PCa cell lines in vitro following infection
with Ad-PSES-luc. In vivo, when Ad-PSES-luc was injected
into the prostate, high luciferase activity occurred in the pros-
tate, but not in other tissues. The expression of T-cell receptor
v-chain alternate reading frame protein (TARP) is specific
to prostate epithelial cells and PCa cells. The PPT promoter
containing the PSA enhancer, the PSMA enhancer and the
TARP promoter demonstrates a high specificity for the prostate.
The H19 insulator is introduced upstream of the PPT sequence
to protect the PPT promoter from transcriptional interference
from adenoviral backbone sequences (94-97). Cheng et al (98)
constructed an adenovirus vector that expressed the luciferase
gene under control of the PPT promoter with the H19 insulator
[Ad(I/PPT-Luc)]. The I/PPT promoter generated high activi-
ties in testosterone-deprived PCa cells and PC-346C PCa cell
orthotopic xenograft tumors in nude mice. Cheng et al (95)
also reported that an oncolytic adenovirus [Ad(I/PPT-E1A)]
that infected hormone-dependent and hormone-independent
PCa cell lines induced expression of the E1A protein, virus
replication and cytolysis in vitro, and the growth of LNCaP
cell xenograft tumors in nude mice was markedly inhibited
in vivo. Furthermore, the recombinant adenovirus with
the PPT promoter, a two-step transcriptional amplification
(TSTA) system, amplified [Ad(PPT/TSTA-Luc)]-enhanced
prostate-specific transcriptional activity (97), and the Ad
(I/PPT-E1A) with a reintroduced full-length E3 region [Ad
(i/PPT-E1A, E3)] improved the cytopathic effect and suppres-
sionof PCa growth (96).Kraaijetal (99) reported thatreplication
of an adenovirus with the PSA enhancer and the PB promoter
(Ad5-PSA74-Pb4-EC) was observed in PCa cells. In addition,
an oncolytic adenovirus with the PSA enhancer and the PB
promoter (Ad5 PSE/PBN El1-AR), combined with low/high
dose-rate radiation, exerted marked adenovirus-mediated
PCa cell death (100). Furthermore, Yu et al (79) developed
an oncolytic adenovirus with the PSA enhancer and the hK2
promoter (CV764). Compared with CV763, CV764 enhanced
the inhibitory effects on PCa in vitro and in vivo. These results
demonstrate that a recombinant adenovirus combined with an
enhancer and/or promoter produces a higher targeting effect
and enhancement of the antitumor effects, which may indi-
cate that adenoviruses combined with other treatments may
improve PCa specificity and the suppression of growth.

3. Modification of adenovirus capsid proteins to construct
an adenovirus combined with specific cell surface
receptors for infection of specific tissue or tumor cells
efficiently deletes partial genes that are essential to
adenoviral replication in normal cells but are unnecessary
for adenoviral replication in tumor cells

Recombinant adenoviruses with modification of adenovirus
capsid proteins may enhance the ability to infect PCa cells
by binding to the novel receptors on the surface of the cells.
Evidence of recombinant adenoviruses with modification of
the adenovirus capsid proteins is presented in Table III.
Species C adenoviruses, such as Ad2 and AdS, infect
cells via Coxsackie-adenovirus receptors (CARs) on the cell
surface (101). Different levels of CAR expression have been
observed in various tumor types and CAR expression is

CAl et al: TARGETING STRATEGIES OF ADENOVIRUS AND VIROTHERAPY FOR PROSTATE CANCER

downregulated in a number of tumors, such as CAR-negative
PCa, which results in inefficient Ad-mediated therapeu-
tics (101). Incorporation of an arginine-glycine-aspartic acid
(RGD) peptide into the HI loop of the adenovirus fiber knob
allows adenoviruses to infect CAR-negative PCa cells via
cell-surface integrin avp3/5, which is expressed by all PCa cell
lines (101). Suzuki et al (101) developed an adenovirus mutant
with an RGD-fiber modification (Ad5-A24RGD). Compared
with an adenovirus mutant without the RGD-fiber modification
(Ad5-A24), Ad5-A24RGD exhibited a higher infection ability
and an anti-PCa effect. A number of studies involving recom-
binant adenoviruses with RGD-fiber modification further
confirmed that the RGD-modified adenovirus may enhance
the PCa-targeting effects in vitro and in vivo (102-105).

The generation of chimeric adenoviruses, in which one
adenovirus fiber knob is replaced with a different adenovirus
fiber knob, may alter the orientation of the adenovirus and
enhance transduction targeting to improve the tumor cell
infection efficiency. Azab et al (106) constructed a recom-
binant adenovirus in which the fiber knob was replaced
with an Ad.3 fiber knob, and this construct expressed
the MDA-7/IL-24 gene (Ad.5/3-CTV). Compared with
Ad.5-CTV, Ad.5/3-CTV exhibited a higher efficiency in
inhibiting the viability of low-CAR human PCa cells in vitro,
and also potently suppressed low-CAR PCa cell xenograft
tumors in vivo. It has been reported that the Ad.3 receptor
is highly expressed in tumor cells (107). Ad.5/3 infected
the tumor cells via the Ad.3 receptor instead of CAR, and,
therefore, it was able to infect tumor cells with low or no
expression of CAR (107-109). Systemic treatment with
Ad.5 is associated with serious hepatotoxicity and systemic
toxicity (110). Xu et al (110) developed a chimeric oncolytic
adenovirus that expressed soluble transforming growth
factor (3 receptor II-Fc fusion protein (STBRFc), the chimeric
oncolytic adenovirus in which seven hypervariable regions
of Ad.5 were substituted with the corresponding sequence of
Ad48 (mHAd.sTRRFc). In vivo, nHAd.STBRFc retained an
inhibitory effect on PC-3 PCa bone metastases in nude mice,
and also reduced the hepatotoxicity and systemic toxicity to
indirectly improve the tumor-targeting effect. Serotype 35
adenoviruses infect cells through cell surface CD46 recep-
tors, which are widely expressed on normal and cancer
cells (111). Kim et al (111) constructed a novel chimeric
recombinant adenovirus expressing monomeric red fluores-
cence protein (mRFP)/modified HSV-TK (ttk) (Ad5/35PSES.
mRFP/ttk), which was driven by PSES and featured the
serotype 35 fiber knob on the serotype 5 backbone. This
chimera improved the cell infection efficiency, and the PSES
enhanced the PCa-targeting effect. In vitro, replication assays
demonstrated that Ad5/35PSES.mRFP/ttk replicated in
PSES-positive PCa cells (LNCaP and CWR22rv) but not in
PSES-negative PCa cells (DU145 and PC3). Evaluation of the
cytotoxic activity demonstrated that Ad5/35PSES.mRFP/ttk
killed LNCaP and CWR22rv cells more effectively. In addi-
tion, the chimeric oncolytic adenovirus Ad5/35E1aPSESE4
also effectively killed PSA/PSMA-positive PCa cells in the
peripheral circulation (112).

4. Deletion of partial genes that are essential to adenoviral
replication in normal cells but are unnecessary for
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adenoviral replication in tumor cells

Binding of EIB-55K protein to the p53 gene inhibits
pS3-mediated normal cell apoptosis, therefore, oncolytic
adenoviruses with the E1B-55K gene are able to survive in
normal cells (113-115). Oncolytic adenoviruses with deletion
of the E1B-55K gene have the ability to survive in tumor cells
in which no apoptosis occurs due to p53 gene mutations or defi-
ciency. However, oncolytic adenoviruses with deletion of the
E1B-55K gene cannot survive in normal cells due to p53-medi-
ated apoptosis (113). Mao et al (114) developed an oncolytic
adenovirus with deletion of the E1B-55K gene, the oncolytic
adenovirus that expresses short hairpin RNA targeting SATB
homeobox 1 (SATBI1; ZD55-SATBI). ZD55-SATB1 markedly
inhibited the viability and invasion of PCa cell lines DU145
and LNCaP, and suppressed PCa growth and metastasis in
xenograft nude mice. Ding et al (115) reported that an onco-
lytic adenovirus mutant with the DD3 promoter and deletion
of the E1B-55K gene, termed Ad.DD3.A55-PTEN, expressed
phosphatase and tensin homolog (PTEN) to induce PCa cell
apoptosis and inhibit the growth of xenograft tumors, however,
Ad.DD3.A55-PTEN had no death-inducing effects in non-PCa
cell lines.

The E1A conserved region 2 (E1A-CR2) normally binds
to host cell retinoblastoma (Rb) protein and releases tran-
scription factor E2F, enabling S-phase entry and viral DNA
replication. Oncolytic adenovirus E1A-CR2 (Rb-family
binding site) mutants do not bind to Rb protein to induce
normal cells to enter S phase and, therefore, are unable to
efficiently replicate in quiescent normal tissues. However,
oncolytic adenovirus E1A-CR?2 mutants are able to replicate in
tumor cells with Rb gene mutations as tumor cell growth is not
solely dependent on Rb protein (14). In addition, adenovirus
E1A-CR2 mutants combined with cytotoxic drugs (116) or
radiotherapy (108) significantly enhance the inhibitory effect
on castration-resistant PCa. A novel oncolytic adenovirus
mutant with deletion of EIA-CR2 and E1B-19K, referred to as
AdACR2A19K, demonstrated high cytotoxic effects in PCa,
pancreatic cancer and lung cancer, and the replication ability
of AAACR2A19K in tumor cells was similar to that of the
wild-type virus (117). Radhakrishnan ef al (116) constructed
an oncolytic adenovirus mutant with deletion of E1A-CR2 and
E3B (d1922-947). Compared with d1312 (AE1A and AE3B),
dl1520 (AE1B-55K and AE3B) and Ad5 (wild-type), d1922-947
exhibited the highest antitumor effect in hormone-independent
PCa in vitro and in vivo. The combination of d1922-947 with
low doses of mitoxantrone or docetaxel enhanced the efficacy.
Furthermore, Satoh et al (118) developed a double-mutated
adenovirus with a mutation in E1A-CR2 and deletion of
E1B-55K (AxdAdB-3). Invitro, Axd AdB-3 exhibited a potential
cytopathic effect in different PCa cell lines and demonstrated
no cytotoxicity in PrEC and PrSC normal prostate cell lines.
In vivo, AxdAdB-3 markedly inhibited the growth of PCa cell
xenograft tumors in nude mice and improved survival.

Adenovirus mutants have substantial effects on the inhibi-
tion of the growth of PCa and a number of mutations in the E1
region of the adenovirus are associated with these effects. A
list of adenovirus mutants is presented in Table I'V.

5. Clinical research on adenovirus-mediated gene therapy

CAl et al: TARGETING STRATEGIES OF ADENOVIRUS AND VIROTHERAPY FOR PROSTATE CANCER

and virotherapy for prostate cancer

Currently, viral gene therapy is an area of increasing interest in
the field of tumor therapy. Adenovirus-mediated gene therapy
and virotherapy are among the most common research areas
in viral gene therapy. As these therapies have demonstrated
satisfactory anti-PCa effects in basic experiments, clinical
trials have been performed. DeWeese et al (119) performed
a phase I clinical trial in which 20 patients with PCa who
had relapsed following radiotherapy were treated with CRAd
CV706. The clinical results demonstrated a satisfactory treat-
ment effect on PCa without the presence of severe side effects.
In addition, Freytag et al (120) constructed an oncolytic virus
(ZD55-CD/TKrep) with deletion of E1B-55K and expression
of the suicide gene CD/TKrep, which was employed to salvage
therapy for 16 patients with PCa who had relapsed following
radiotherapy. The clinical results indicated good safety and
efficacy. A total of 16 patients were followed for 5 years
and the survival rate was 88% (14/16 patients). Furthermore,
Freytag et al (121) used an oncolytic virus (ZD55-CD/TKrep)
combined with external radiotherapy to treat 15 patients with
high-risk PCa. The results demonstrated that the effect of
combined therapy was higher compared with radiotherapy
alone, however, contradictory clinical effects have also been
reported regarding PCa in clinical trials. Small ez al (122)
conducted a phase I trial of intravenous CG7870 to treat
hormone-refractory metastatic PCa. The results indicated a
poor treatment effect, and patients with decreased serum PSA
levels accounted for only 5/23 patients with PCa. However, no
obvious side effects were observed in the 23 patients. Although
the majority of clinical trials concerning adenovirus-mediated
gene therapy and virotherapy have demonstrated good
antitumor effects, biosafety issues arise with adenovirus treat-
ments, particularly tumor-targeting treatments, which limits
clinical applications. Consequently, clinical trials involving
adenovirus treatments have been stalled in phase I clinical
trials. Currently, only one type of oncolytic adenovirus, H101
with deletion of E1B-55K, has been approved for use in patients
with advanced tumors, and this approval is only in China.

6. Future directions

Although adenoviruses constructed by different targeting
strategies have demonstrated satisfactory targeting effects
in the treatment of PCa, each targeting strategy is associ-
ated with certain limitations. The combined use of multiple
targeting strategies to enhance the adenovirus targeting
effect is one promising direction. Currently, several
experiments with adenoviruses constructed using multiple
targeting strategies have demonstrated that the adenoviruses
markedly improve targeting and antitumor effects, including
AxdAdB3-F/RGD (105) with RGD-fiber modification and
the E1A/E1B double mutation, Ad5/3-A24-hNIS (108) with
the hybrid Ad5/3 fiber and 24-bp deletion in the E1A-CR2,
and DD3-ZD55-SATBI (114) with the DD3 promoter and
E1D-55 K deletion, among others. Therefore, the joint use
of targeting strategies is an important direction towards
enhanced tumor targeting. A list of the adenoviruses
constructed using multiple targeting strategies is presented
in Table V.
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Another promising direction for tumor-targeting strategies
takes advantage of the host immune system. The immune system
isapotentdefensive capability that protects the body fromdisease,
including tumor development and progression. However, certain
tumors exhibit host immune tolerance. Adenoviruses armed
with cytokines or inhibitors are able to weaken tumor-associated
immune checkpoint inhibition, and the host immune tolerance
of the tumor may also be reduced (123-125). Following lysis of
tumor cells infected by the adenovirus, tumor antigen exposure
activates host tumor immunity to induce lysis of metastatic
lesions (123). Several adenoviruses have been developed to
trigger these oncolytic immunotherapeutic effects, and the
results have been satisfactory in certain tumors. Adenovirus
mutant Ad5A24/3-RGD-GM-CSF, with expression of granulo-
cyte macrophage-colony-stimulating factor (GM-CSF), exhibits
potent antitumor effects in PCa. This construct induced tumor
cell death and activated T-cells in response to antigen presenta-
tion by exposure of the tumor antigen. The mounted immune
response of the injected tumor improved immune recognition
to attenuate the growth of distant metastases in PCa (123).
Pexa-Vec, which is an oncolytic poxvirus expressing GM-CSF,
markedly inhibited tumor progression by inducing host tumor
immunity (124). A HSV-1 mutant, termed T-VEC, also expressed
GM-CSF to activate antitumor immunity and induced regres-
sion of non-injected distal lesions in advanced melanoma (125).
Although Pexa-Vec and T-VEC have not yet been used to treat
PCa, we hypothesize that treatment of PCa with adenoviruses
constructed using an identical strategy may achieve beneficial
responses. Adenoviruses armed with cytokines or inhibitors are
the most promising strategy for the targeted treatment of early-
and late-stage PCa.

7. Conclusion

In conclusion, the tumor-targeting effect is the key point
regarding adenovirus-mediated gene therapy and virotherapy.
Targeting strategies have been increasingly developed in basic
research, however, various limitations remain. Therefore,
further research concerning targeting strategies is required to
improve the safety of these therapies in the human body and to
maximize the net benefit of adenovirus-mediated gene therapy
and virotherapy.
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