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Neurorehabilitation is progressively shifting from purely in-clinic treatment to therapy that is
provided in both clinical and home-based settings. This transition generates a pressing
need for assessments that can be performed across the entire continuum of care, a need
that might be accommodated by application of wearable sensors. A first step toward
ubiquitous assessments is to augment validated and well-understood standard clinical
tests. This route has been pursued for the assessment of motor functioning, which in
clinical research and practice is observation-based and requires specially trained
personnel. In our study, 21 patients performed movement tasks of the Action
Research Arm Test (ARAT), one of the most widely used clinical tests of upper limb
motor functioning, while trained evaluators scored each task on pre-defined criteria. We
collected data with just two wrist-worn inertial sensors to guarantee applicability across the
continuum of care and usedmachine learning algorithms to estimate the ARAT task scores
from sensor-derived features. Tasks scores were classified with approximately 80%
accuracy. Linear regression between summed clinical task scores (across all tasks per
patient) and estimates of sum task scores yielded a good fit (R2 = 0.93; range reported in
previous studies: 0.61–0.97). Estimates of the sum scores showed a mean absolute error
of 2.9 points, 5.1% of the total score, which is smaller than theminimally detectable change
and minimally clinically important difference of the ARAT when rated by a trained evaluator.
We conclude that it is feasible to obtain accurate estimates of ARAT scores with just two
wrist worn sensors. The approach enables administration of the ARAT in an objective,
minimally supervised or remote fashion and provides the basis for a widespread use of
wearable sensors in neurorehabilitation.
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1 INTRODUCTION

Neurological health conditions, such as stroke (Lindsay et al.,
2019), traumatic brain injury (Dewan et al., 2019), multiple
sclerosis, spinal cord injury, and Parkinson’s disease (Feigin
et al., 2017) are major causes of disability, often leading to
limitations in motor functioning of the upper limbs (Katz
et al., 1998; Broeks et al., 1999; Hendricks et al., 2002;
Kwakkel et al., 2003; Kister et al., 2013). In accordance with
the International Classification of Functioning, Disability, and
Health (ICF), motor functioning is typically analyzed at different
levels of granularity, at the level of body joints and segments (ICF
function level) and at the level of the execution of movement tasks
(ICF activity level) (World Health Organization, 2001). The ICF
further distinguishes motor functioning observed in controlled
settings and in the person’s natural/home environment (ICF
capacity and performance). The measurement of motor
functioning is a vital part of both research and practice in
neurorehabilitation as it provides the basis for the evaluation
of new rehabilitation programs (Brunner et al., 2017), new
medications (Samuel et al., 2017), prediction of recovery (Wolf
et al., 2021) as well as the design of patient-specific interventions.

The current gold standards for the measurement of motor
functioning are mainly based on standardized clinical tests
(Kwakkel et al., 2017; Pohl et al., 2020; Prange-Lasonder et al.,
2021), in which patients perform a series of pre-defined
movements in standardized conditions and experts score each
movement on pre-defined criteria, such as task completion, task
duration and kinematic and kinetic characteristics (Demers and
Levin, 2017). The tests must satisfy specific requirements in terms
of both psychometric properties (validity, reliability,
responsiveness) (Murphy et al., 2015) and clinical applicability
(time and ease of training, administration, scoring, interpretation,
cost) (Prange-Lasonder et al., 2021).

An emerging requirement regarding clinical applicability is
that the tests should be suitable for the entire rehabilitation
process from in-clinic to ambulant and home settings (further
referred to as continuum of care). This is desirable since
neurorehabilitation is expected to shift to patients’ homes due
to capacity limitations in healthcare and advances in home-based
rehabilitation technologies (Lambercy et al., 2021). However, the
need for a trained evaluator to conduct a clinical test conflicts
with the goal of ubiquitous measurement protocols.

Another requirement is that assessments should take into
account movement quality (Kwakkel et al., 2017). Movement
quality refers to the degree to which patients’motor execution
of a task resembles that of normal individuals (Kwakkel et al.,
2019). High movement quality is associated to the restitution
of pre-morbid movement execution patterns, whereas low
movement quality is linked to alternative (compensatory)
movement patterns (Demers and Levin, 2017; Jones, 2017).
Specifically, task execution of patients with neurological
disorders is typically characterized by slow and jerky
movements of the arm end point, abnormal grasping,
reduced elbow extension, and increased shoulder abduction
compared to age-matched healthy individuals (Saes et al.,
2022).

Ideally, movement quality should be quantified with kinematic
measures (Saes et al., 2022). However, the identification of
kinematic measures of arm movement quality is challenging
because many kinematic parameters exist (Schwarz et al.,
2019), their relevance depends on the specific movement task
(Schwarz et al., 2019), selected kinematic measures require
extensive psychometric validation (Murphy et al., 2011; Alt
Murphy et al., 2012; Thrane et al., 2020; Frykberg et al., 2021),
and the measurement systems are usually stationary, expensive,
and require expert users (Alt Murphy et al., 2018).

Due to the difficulties with establishing kinematic measures of
movement quality studies started to explore an intermediate goal.
Supervised machine learning algorithms and low-cost sensor data
were used to estimate clinical test scores (for reviews see Oña
Simbaña et al., 2019; Kim et al., 2021; Boukhennoufa et al., 2022).
This approach has the advantages that the clinical tests have
established psychometric properties (Kim et al., 2021), that
clinical scores are easy to interpret (Kim et al., 2021) and that
wearable movement sensors can be used which are low cost and
enable data collection across the entire continuum of care (Oña
Simbaña et al., 2019; Kim et al., 2021; Boukhennoufa et al., 2022).
Tests of ICF activity capacity assess limitations in the
accomplishment of tasks that are relevant for activities of daily
living (Prange-Lasonder et al., 2021). Importantly, clinical scores
of ICF activity capacity often contain information about
movement quality since evaluators visually examine movement
quality to determine the test scores (Yozbatiran et al., 2008;
Sapienza et al., 2017; Adans-Dester et al., 2020).

One of the most prominent clinical test of upper-limb ICF
activity capacity is the ARAT (Lyle, 1981; Yozbatiran et al., 2008),
which provides a combined score comprising the aspects of
movement speed, successful task completion, and hand and
arm movement quality (Yozbatiran et al., 2008). In the ARAT,
a patient performs several tasks that require combined reaching
and grasping. Performance in each task is rated on an ordinal
scale depending on task duration and observed movement quality
characteristics (e.g., smoothness of the arm endpoint, abnormal
grasp, compensatory movements) (Lyle, 1981; Yozbatiran et al.,
2008). Individual task scores are then summed up to a total score
(Lyle, 1981; Yozbatiran et al., 2008). The ARAT is the most
frequently used assessment of upper-limb functioning in clinical
studies (Murphy et al., 2015), as it is used in a broad range of
neurological health conditions such as stroke, traumatic brain
injury, multiple sclerosis (Prange-Lasonder et al., 2021) and
Parkinson’s Disease (Song, 2012), has excellent psychometric
properties (Pike et al., 2018), is widely accepted and
recommended by experts (Kwakkel et al., 2017; Pohl et al.,
2020; Prange-Lasonder et al., 2021), and is a significant
predictor of motor recovery in stroke (Wolf et al., 2021).
Despite the importance of the ARAT, however, wearable
sensor data were never utilized to estimate the test outcome,
to the best of our knowledge (Oña Simbaña et al., 2019; Kim et al.,
2021; Boukhennoufa et al., 2022).

In the current study, we collected data of stroke patients
performing the ARAT while two inertial sensors were attached
to their wrists. ARAT task and total scores were estimated using
supervised machine learning. We hypothesize that with this
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approach it is feasible to estimate ARAT scores with an error that
is similar or smaller than clinically relevant changes, namely, the
minimally detectable change (Simpson and Eng, 2013) and the
minimal clinically important difference of the ARAT task and
total scores (Van Der Lee et al., 2001). Such sensor-based
estimates of clinical scores may pave the way for automated,
expert-independent administration. In addition, the simple setup
of using just two wearable sensors enables location independent
measurements with the potential to be used across the whole
continuum of care.

2 METHODS

The current study was a secondary analysis of data collected
under a randomized-controlled trial (Steitz et al., 2022; Kantonale
Ethikkommission Zentralschweiz, approval number: BASEC:
2017-00199) and during an evaluation of sensor types in
clinical routine (Kantonale Ethikkommsion Zentralschweiz,
request number: Req-2020-00995). Both studies adhered to the
Declaration of Helsinki. Participants were recruited at the
University Hospital Zurich and the Center for Neurology and
Rehabilitation cereneo, and gave informed consent prior to both
studies.

2.1 Participants
Participants were included if they were 1) 18 years of age or older,
2) in a sub-acute stage of stroke (3–90 days after symptom onset)
with lateral ischemia (or hemorrhage) as confirmed by brain
imaging and 3) showed subsequent impairment of arm function
with a Fugl-Meyer Assessment for the Upper Extremities (FMA-
UE) score between 15 and 59 points. Participants were excluded
in case of 1) other neurological disorders that might result in
dementia, cognitive dysfunction or central motor symptoms, 2)
severe sensory aphasia, 3) preexisting arm paresis, 4) intake of
sedatives or neuroleptics, or 5) relevant hearing.

Data of 21 participants who satisfied these criteria were
acquired. The age of the participants was 68 ± 10 years
(mean+/-standard deviation), out of which 5 were female and
20 right-handed. All patients were in a subacute stroke stage at the
time of the first assessment, with symptom onset 38 ± 17 days
before the assessment. All patients had lateralized ischemia or
hemorrhage as confirmed by brain imaging, and suffered
subsequent impairment of the arm function, i.e., the FMA-UE
score was 33 ± 15 points. The median of the total clinical ARAT
score of the 21 patients was 35.5 (interquartile-range: 19.5–47.3)
and 57 (interquartile-range: 45–57) for the more and less affected
sides, respectively. The study population thus covered a broad
range of patients with different upper extremity motor function.

2.2 Apparatus, Instruments, and
Procedures
The ARAT was administered twice per participant, at baseline
and 1–4 weeks later. The ARAT comprises of 19 movement tasks
that are grouped into four domains (grasp, grip, pinch and gross
movements). Each task is performed with the less impaired arm

first and the more impaired arm second, and assigned an ordinal
rating with a range from 0 to 3. The ARAT was conducted with
standardized materials (Figure 1A) and procedure (Yozbatiran
et al., 2008), with one exception: In the standard procedure,
subjects make an attempt on the first, most difficult task in each
domain, and, in case of normal functioning, skip the remaining,
easier tasks of the domain. In this study, however, all task were
administered to maximize the data obtained from each
participant. The performance of each movement of each
patient has been assessed by one of two experienced
evaluators, resulting in a maximum achievable total score of
57 per arm and per test. Since the ARAT is highly
standardized and has high inter-rater and test-retest
reliabilities (ICC < 0.98) (Van Der Lee et al., 2001), we
believe that the selection of the evaluators does not affect the
rating results.

During the assessment, wearable inertial sensors
(ZurichMOVE, Switzerland) were tightly attached to each
wrist with custom-made flexible straps as shown in Figure 1B.
The main components of the sensor modules are a tri-axis
accelerometer, gyroscope and magnetometer, measuring at a
sampling frequency of 50Hz, which is sufficient given that
there was no aim to reconstruct the actual movement
trajectories. The magnetometer data was excluded from the
analysis, because magnetic fields are often distorted indoors,
and thus the magnetometer data is considered to be
unreliable. Furthermore, the timestamp of the beginning and
end of each task was recorded.

2.3 Data Preprocessing and Analysis
Since accelerometers measure both the movement
acceleration and gravity, the gravitational component has
to be subtracted from the acceleration signal. For this, the
orientation of the sensors in space was obtained by using the
sensor fusion algorithm developed by Seel and Ruppin (2017).
This algorithm is based on an analytical solution to remove
the drift in the inclination angle with the information of the
direction of gravity from the accelerometer. Based on the
sensor orientation the acceleration data could be transformed
from the moving coordinate system into a coordinate system
fixed in space. In this fixed coordinate system, the
gravitational component is pointing in the vertical
direction and can thus be easily removed by subtracting g
from this axis. This procedure resulted in the pure movement
acceleration data.

The tri-axial acceleration and angular velocity data was then
segmented according to the recorded start and stop times of each
task. This resulted in 6D time series sequences of different
lengths, depending on how long the patient needed to perform
the given task. Short sequences lasted around 1–2s, while the
maximum sequence length was limited to 60s (as per ARAT
definition if the patient was unable to complete the task within
this time). In rare cases (< 6.7%), data were missing due to
technical problems or because the patient did not attempt to
perform the task. In such cases, the patient received a score of 0
for this task, and a sequence of non-moving data of 10s from this
patient was used in order to have complete data sets.
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2.4 Feature Extraction and Classification
The machine learning approach used in this study required
features for the classification. Hence, descriptive features were
extracted from each time series sequence. The selection of
features was based on the recommendations of Suto et al.
(2017) for human activity recognition. In order to
characterize the sequences of each task in the time domain,
the following features were computed for each axis of the
acceleration and angular velocity time series data: mean,
standard deviation, minimum (defined as the 5th
percentile), maximum (95th percentile), range (minimum
to maximum), mean absolute deviation, interquartile range
(25th to 75th percentile), upper quartile (75th percentile),
zero-crossing rate, and kurtosis. To characterize the frequency
spectrum of the data, a fast Fourier transform was applied to
the vector-wise norm of acceleration and angular velocity
time series data of each task. The following features were
extracted: maximum frequency component, spectral energy of
different frequency ranges (0–5 Hz, 5–10 Hz, 10–15 Hz,
15–20 Hz, and 20–25 Hz), and spectral centroid. This
resulted in altogether 74 features for each task: 60 features
characterizing the movement in the time domain and 14
features characterizing the movement in the frequency
domain.

The model received these sensor-derived features as an
input to estimate the 4-point scale ARAT task scores. All
features were standardized by centering them around the
mean and scaling them to have unit variance in order to
provide features of similar magnitude to the classifier. An
ordinal classifier as described by Frank et al. (Frank and Hall,
2001) was chosen as a model to consider the ordinal ranking
of the four ARAT task scores. A logistic regression was then
selected as classifier, and regularization was used to prevent
overfitting on the training data. This ordinal logistic
regression classifier was trained individually for each of the
four ARAT domains, because the movements within these
domains differed significantly. The grasp and pinch domains
consist of pick-and-place tasks that differ in terms of grasping
type. Tasks of the grip domain on the other hand resembles

daily life activities, e.g., pouring water from a bottle to a glass,
while the gross domain includes shoulder and armmovements
across a wide workspace. The separation into the four
domains fostered each classifier to differentiate between
different executions of the same movement task as opposed
to training a single classifier on all tasks, which would have
needed to handle the high variability introduced by the
different nature of the movement tasks.

The less affected arm achieved the maximal score in many
of the subtasks, which resulted in a highly unbalanced data set.
To counteract this, the training data set has been balanced by
upsampling the number of rare observations using the
synthetic minority over-sampling technique (SMOTE)
(Chawla et al., 2002). Due to the small sample size leave-
one-subject-out cross-validation procedure was used to test
the classifiers on unknown data. More specifically, the
upsampled data of all subjects and all sessions except for
the data of one subject and both sessions (if available) was
used to train the model, which was then tested on the original
(non upsampled) data of the remaining subject. This process
was repeated until the model was tested on the data of all
subjects. A flowchart of the data processing and classification
workflow is displayed in Figure 2.

2.5 Evaluation of the Model
The performance of the classifiers for each domain has been
estimated based on accuracy, precision, and recall computed
from the clinically assessed (further referred to as clinical)
ARAT task scores and the estimated ARAT task scores. These
metrics were weighted by the distribution of the samples
within the classes to account for class imbalances. For each
arm, the estimated task-level ARAT scores were summed up
to yield an estimate of the total ARAT score. Linear regression
was used to study the relationship between the clinical and the
estimated total ARAT scores. Furthermore, the mean error
and the root mean squared error (RMSE) were computed as
the average and the root mean squared of the differences
between the estimated and the clinical ARAT scores,
respectively.

FIGURE 1 | (A) A participant performing ARAT task 1, which is part of the grasp domain. The task is to grasp a wooden block (10 cm in size) at the start position
(blue patch on the table) and to put it on the shelf in front of the subject. (B) Close-up of the inertial sensor attached to the wrist.
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3 RESULTS

3.1 Estimation of the Action Research Arm
Test Task Scores
The measurement of the 21 patients resulted in 1,366
observations altogether (2 observations had to be exuded) that
were divided into the four domains to train the ordinal classifiers.
No patient received a score 0 in any of the tasks of the gross
domain. Hence, the gross classifier was only trained on three
classes. For all domains, the classifiers identified the task scores of

three well. However, the classifiers had difficulties discriminating
score 1 from 0 to 2, which were also the cases with fewer number
of observations in comparison to the other cases. The normalized
confusion metrics and number of observations per class are
shown in Figure 3.

The four ordinal classifiers estimated the ARAT task scores
from the sensor-based features with a weighted accuracy ranging
from 76% (grasp) to 81% (pinch) as evaluated by the leave-one-
subject-out cross-validation and summarized in Table 1. For the
pinch and gross domains, weighted accuracy, precision, and recall

FIGURE 2 | Flow chart of the framework to estimate task-wise ARAT scores from inertial sensors attached to the wrist.

FIGURE 3 | Normalized confusion matrices and number of observations per class (support) for the four domains: grasp (A), grip (B), pinch (C), and gross (D).
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values of above 0.8 were obtained. The classifiers performed
slightly worse for the grasp and grip domains, where values
below 0.8 were obtained for accuracy, precision, and recall.
Note that the unbalanced nature of the data affects the
weighted accuracies. More specifically, score 3, which was
classified with high accuracy, has a strong influence on the
overall accuracy as it was the most frequent observation, while
the other, more infrequent scores, which were classified with low
accuracy, have less impact.

3.2 Estimation of the Total Action Research
Arm Test Score
The total ARAT score, obtained by a summation of the estimated
ARAT tasks scores, showed a mean error of 0.5, a mean absolute
error of 2.9 points with a maximal error of 12 points. A RMSE of
4.7 was obtained. Relative to the maximum achievable total score
of 57, this is a relative error of 8.2%. Higher estimation errors
were obtained for the more affected side in comparison to the less
affected side as depicted in Figure 4A. A linear regression
between the clinical and estimated total ARAT scores resulted
in a good fit (R2 = 0.93) as plotted in Figure 4B, close to the ideal
curve (y = x).

4 DISCUSSION

The objective of this work was to determine whether a simple and
fast setup of wearable sensors is sufficient to estimate clinical
ARAT scores given by a trained evaluator. Successful estimation

of ARAT is a first step toward evaluator-free measurement of ICF
activity capacity and upper limb movement quality. For this
purpose, data of 21 patients performing the standardized
ARAT assessment while wearing two wrist-worn inertial
sensors was recorded. By applying machine learning
techniques to the time series sensor data, ARAT scores could
be estimated at the task level. More specifically, ordinal classifiers
were trained on the balanced observations of each domain, and
the performance of the classifiers was evaluated by cross-
validation using typical machine learning metrics. In addition,
the estimated total score, which was obtained by the summation
of all the task scores, was compared to the clinical total score.

Overall, the weighted averages of the classification accuracies
of the task scores were around 80% for all ARAT domains,
ranging from 32 to 91% for the individual classes within a
domain. Differences in performance of the classifiers might
have several reasons. First, the domains differ in the
homogeneity of the movements within the respective sets of
tasks. In particular, the tasks in the grip domain require
relatively dissimilar movements and, hence, the classifier had
more difficulties to distinguish between different movement
qualities. For example, one task is to pour water from one
glass to another, whereas another task is to grasp a washer, to
transfer it forward and to put it over a bolt. In contrast, the tasks
in the pinch domain afford relatively similar movements, as all
tasks consist of pick-and-place actions, where the main difference
only lies in the tested fingers. Consequently, better classification
performance was observed for the pinch domain. Second, the
distributions of observations across the classes (i.e., the test
scores) showed different degrees of imbalance between the
domains. For example, the distribution of observations in the
pinch domain was relatively well balanced and, accordingly,
relatively high classification performance was observed.
Conversely, in the remaining domains the distribution of
observations was skewed even more toward higher test scores.
This issue was addressed with the SMOTE oversampling
technique. But certainly synthetically generated observations
cannot substitute actual observations and, consequently, we
observed lower classification performance in these domains.
Third, in the gross movement domain we did not obtain any

FIGURE 4 | (A) Box plots showing the estimation error of the total ARAT scores for the more and less affected sides. (B) Linear regression (blue line) between the
clinical and estimated total ARAT scores. The dashed line depicts the ideal case of y = x.

TABLE 1 |Overview of performance of the model predicting the ARAT task scores
in the four domains: weighted accuracy, precision, and recall.

Domain Accuracy Precision Recall

Grasp 0.75 0.76 0.75
Grip 0.76 0.79 0.76
Pinch 0.81 0.82 0.81
Gross 0.80 0.81 0.80
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observation of score 0. Hence, for this domain the classifier only
needed to be trained on three classes, which explains the rather
good performance of this classifier compared to the classifiers of
the other domains. Furthermore, classification accuracies differed
between the task score levels. Specifically, for the grasp, grip, and
pinch domain, the classifiers had difficulties to discriminate
failure to complete the task even partially (score 0) from a
partial completion (score 1), and a partial completion (score
1) from a completion of the task with great difficulty (score 2). An
explanation might be that the extracted features captured this
information only partially. The results suggest that the differences
in wrist movements for these scores are minimal, and additional
sensors, e.g., attached to the hand, could be beneficial to better
identify the completeness of the task. In addition, high inter-
subject variability in execution of the tasks (probably due to the
different sensorimotor impairments of this patient population)
and few observations of score 1 might have prevented more
accurate identification of this score.

Estimates of the total ARAT score showed a mean absolute
error of 2.9 points of the estimated total ARAT score as compared
to the clinical total score. This error is below the minimally
detectable change (MDC: 3.5 points) (Simpson and Eng, 2013)
achieved by trained observers and our maximal error of 12 points
is also below the minimal clinically important difference of ARAT
found in the literature (MCID: 12-17 points) (Van Der Lee et al.,
2001). The good fit of the linear regression between the estimated
and clinical ARAT total scores (R2 = 0.93) suggests that our
approach is suitable to generate accurate estimates of the ARAT
total scores. Consequently, our method has an accuracy of clinical
relevance and is precise enough to detect clinically important
changes in the ARAT. These good results at the sum score level
suggest that errors on the tasks level might have averaged out.

Using only wrist worn sensors, one might expect inferior results,
as wrist worn sensors neither directly measure movements of the
elbow joint or trunk which are highly correlated with the ARAT
scores (Alt Murphy et al., 2012), nor do they capture finger and
hand movements which are visually examined by experts when
rating the ARAT performance. However, wrist worn sensors
directly capture wrist motion which is linked to movement
quality aspects such as the speed and smoothness of arm
movements (Kwakkel et al., 2019). These kinematic variables are
known to be correlated with the ARAT scores (Carpinella et al.,
2014; Repnik et al., 2018), which explains the fact that we
nevertheless achieved good classification results. Additionally, it
is possible that wrist-worn sensors indirectly capture motion of
other joints and segments as well and that this information is
represented in the selected features we used to estimate the ARAT
scores. However, this statement remains speculative and further
research would be required to systematically investigate how the
number and placement of the sensor units, as well as the direct and
indirect measurement of movements, contribute to the accuracy of
clinical scores estimations. This question has never been addressed
so far, neither in studies that estimated different clinical scores with
larger numbers of sensors (Patel et al., 2010; Adans-Dester et al.,
2020), nor in reviews of clinical assessments with wearable sensors
(Oña Simbaña et al., 2019; Kim et al., 2021; Boukhennoufa et al.,
2022).

Since no previous study estimated ARAT scores fromwearable
sensors we compare our results to studies that either used
different motion sensing techniques to estimate ARAT scores,
or studies that used wearable sensors and estimated scores of
different clinical tests of ICF activity capacity. For these studies,
we inspected coefficients of determination for the relationship
between clinical and estimated total scores and (when reported)
the estimation error for the difference between clinical and
estimated total scores. The results of our study fall in the
range of previously achieved results. Alt Murphy et al. (2012)
predicted total ARAT scores using kinematic data from marker-
based motion capture and observed moderately strong
association between clinical and estimated total scores (R2 =
0.67). Patients performed a single 3D reaching task and a pre-
selected set of movement features were calculated. Kinematic
features included: smoothness of the arm endpoint, total
movement time, trunk displacement and peak angular velocity
of the elbow. The ARAT scores of the patients were obtained in a
separate session, then a regression model predicted the total
ARAT scores from the kinematic metrics. Olesh et al. (Olesh
et al., 2014) estimated scores of the FMA-UE using kinematic data
from a low-cost depth sensing camera. Clinical and estimated
total FMA-UE scores showed strong association and small
estimation errors (R2 = 0.86, RMSE = 7.7%). The FMA-UE is
a clinical test of ICF function capacity and is intended to assesses
more fine-grained movements than the ARAT, but the scale was
applied to a subset of movement tasks of the FMA-UE and the
ARAT gross movement domain, which makes these results
comparable to ours.

Other studies used wearable sensors but estimated different
clinical test scales at the ICF activity capacity level. Previous
studies estimated the Functional Ability Scale (FAS, which is a
subscale of the Wolf Motor Function Test) based on data
collected during the execution of a subset of the FAS tasks
(Patel et al., 2010; Sapienza et al., 2017; Adans-Dester et al.,
2020), using two (on wrist and sternum) or six sensors
(distributed over fingers, forearm, upper arm and sternum).
R2 ranged from 0.79 to 0.97 and RMSE from 2.9% to 7.6%.
Other studies estimated the Chedoke Arm and Hand Activity
Inventory (CAHAI) based on data collected in free-living
settings with two wrist worn sensors (Chen et al., 2020;
Tang et al., 2020), with R2 ranging from 0.61 to 0.92, and
RMSE from 3.1% to 12.0%. Compared to these results, our
approach falls in the same range with the advantage of using
just two wrist worn sensors.

One strength of this study is the minimalistic sensor setup,
which minimizes costs, setup time and device obtrusion, all of
which are barriers to the wide spread use of kinematic
assessments of motor functioning (Saes et al., 2022). The
hardware costs of commercially available inertial sensors,
approximately $50 per sensor unit, are relatively low as
compared to those of optoelectrical camera systems,
approximately $10’000 per system, which are the current gold-
standard for clinical motion analysis. Additionally, the same set
up is frequently used to measure other aspects of motor
functioning (Oña Simbaña et al., 2019; Kim et al., 2021;
Boukhennoufa et al., 2022). For example, many studies
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collected data during activities of daily living or free-living
settings and aimed to develop new measures of ICF activity
performance, such as quantifications of impaired arm use (e.g.,
(Bailey et al., 2015; Lee et al., 2019)). Hence, this setup and our
analysis have great potential to be applied across the entire
continuum of care. It is also worth pointing out that we only
used statistical features of acceleration and angular velocity data,
in time and frequency domain. These features are easy to obtain
from most wearable inertial movement sensors. Hence, the
approach is easier to apply and is less biased than solutions
that require pre-selection and computation of kinematic features,
such as the smoothness of arm endpoint movements or specific
joint angles (e.g., Olesh et al., 2014; Kim et al., 2016).

The current study has several limitations. A first limitation is
the small sample size. A larger and more diverse sample might
increase the prediction accuracy and robustness of the model. In
addition, we only included persons with stroke, and it could be
interesting to include patients with other neurological disorders
as well to further explore the applicability of the sensor-based
ARAT estimations. Second, since only one evaluator per
participant conducted the ratings we can only assume that the
variability between evaluators had only a minor effect on the
rating results. Third, other drawbacks are inherent to the use of
clinical scores as reference information for training a machine
learning model, and the fact that such a model only reproduces
the information represented in the clinical scores. Hence, the
information contained in the estimated scores depends on that
contained in the clinical scores. We assume that the ARAT
contains information about movement quality, similar to
clinical studies about the ARAT (Yozbatiran et al., 2008), and
similar to previous studies which used the FAS to capture
information about movement quality (Sapienza et al., 2017;
Adans-Dester et al., 2020). These scales, however, assign a task
score based on a combination of criteria, some of which might be
associated with movement quality only indirectly (Demers and
Levin, 2017).

Finally, even though estimated ARAT scores provide an
objective and easily interpretable quantification of movement
quality, they share the same discrete scale as the underlying,
subjective clinical score. Clinical scores are embedded in the field
so much that every new method that can estimate previously
established clinical scores starts with a clear advantage. Still,
scientific research should not stop here. It is worth to reiterate
that the estimation of clinical scores is just one way to quantify
movement quality using wearable sensors, and that this effort
should be complemented with kinematic measures, since these
provide quantification of movement quality on a continuous scale
(e.g., Schwarz et al., 2019; Formstone et al., 2021). However, while
wearable inertial sensor data were already used to explore
kinematic measures of movement quality (Repnik et al., 2018),
the selection and clinical validation of useful measures is still
outstanding.

5 CONCLUSION

The present study demonstrates that it is possible to estimate
ARAT task and sum scores with sufficient accuracy for clinical
applications using wearable inertial sensors. More specifically,
estimation errors smaller than the detectable and important
changes of the observation-based ARAT were obtained. The
proposed method uses a minimal sensor setup of only one
sensor per evaluated arm, which offers a simple, objective, fast
and inexpensive way to assess the quality of upper extremity
motor functioning across clinical and remote settings. Hence, the
current study is opening the doors to more objective and
potentially unsupervised assessments of arm and hand motor
functioning, in particular at the ICF activity capacity level.
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