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Abstract

Evolutionary theory has produced two conflicting paradigms for the adaptation of a poly-

genic trait. While population genetics views adaptation as a sequence of selective sweeps

at single loci underlying the trait, quantitative genetics posits a collective response, where

phenotypic adaptation results from subtle allele frequency shifts at many loci. Yet, a synthe-

sis of these views is largely missing and the population genetic factors that favor each sce-

nario are not well understood. Here, we study the architecture of adaptation of a binary

polygenic trait (such as resistance) with negative epistasis among the loci of its basis. The

genetic structure of this trait allows for a full range of potential architectures of adaptation,

ranging from sweeps to small frequency shifts. By combining computer simulations and a

newly devised analytical framework based on Yule branching processes, we gain a detailed

understanding of the adaptation dynamics for this trait. Our key analytical result is an

expression for the joint distribution of mutant alleles at the end of the adaptive phase. This

distribution characterizes the polygenic pattern of adaptation at the underlying genotype

when phenotypic adaptation has been accomplished. We find that a single compound

parameter, the population-scaled background mutation rateΘbg, explains the main differ-

ences among these patterns. For a focal locus, Θbg measures the mutation rate at all redun-

dant loci in its genetic background that offer alternative ways for adaptation. For adaptation

starting from mutation-selection-drift balance, we observe different patterns in three param-

eter regions. Adaptation proceeds by sweeps for small Θbg ≲ 0.1, while small polygenic

allele frequency shifts require large Θbg ≳ 100. In the large intermediate regime, we observe

a heterogeneous pattern of partial sweeps at several interacting loci.

Author summary

It is still an open question how complex traits adapt to new selection pressures. While

population genetics champions the search for selective sweeps, quantitative genetics pro-

claims adaptation via small concerted frequency shifts. To date the empirical evidence of

clear sweep signals is more scarce than expected, while subtle shifts remain notoriously

hard to detect. In the current study we develop a theoretical framework to predict the
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expected adaptive architecture of a simple polygenic trait, depending on parameters such

as mutation rate, effective population size, size of the trait basis, and the available genetic

variability at the onset of selection. For a population in mutation-selection-drift balance

we find that adaptation proceeds via complete or partial sweeps for a large set of parame-

ter values. We predict adaptation by small frequency shifts for two main cases. First, for

traits with a large mutational target size and high levels of genetic redundancy among loci,

and second if the starting frequencies of mutant alleles are more homogeneous than

expected in mutation-selection-drift equilibrium, e.g. due to population structure or bal-

ancing selection.

Introduction

Rapid phenotypic adaptation of organisms to all kinds of novel environments is ubiquitous

and has been described and studied for decades [1, 2]. However, while the macroscopic

changes of phenotypic traits are frequently evident, their genetic and genomic underpinnings

are much more difficult to resolve. Two independent research traditions, molecular population

genetics and quantitative genetics, have coined two opposite views of the adaptive process on

the molecular level: adaptation either by selective sweeps or by subtle allele frequency shifts

(sweeps or shifts from here on).

On the one hand, population genetics works bottom-up from the dynamics at single loci,

without much focus on the phenotype. The implicit assumption of the sweep scenario is that

selection on the trait results in sustained directional selection also on the level of single under-

lying loci. Consequently, we can observe phenotypic adaptation at the genotypic level, where

selection drives allele frequencies at one or several loci from low values to high values. Large

allele frequency changes are the hallmark of the sweep scenario. If these frequency changes

occur in a short time interval, conspicuous diversity patterns in linked genomic regions

emerge: the footprints of hard or soft selective sweeps [3–6].

On the other hand, quantitative genetics envisions phenotypic adaptation top-down, from

the vantage point of the trait. At the genetic level, it is perceived as a collective phenomenon

that cannot easily be broken down to the contribution of single loci. Indeed, adaptation of a

highly polygenic trait can result in a myriad of ways through “infinitesimally” small, correlated

changes at the interacting loci of its basis (e.g. [1, 7, 8]. Conceptually, this view rests on the

infinitesimal model by Fisher (1918) [9] and its extensions (e.g. [10]). Until a decade ago, the

available moderate sample sizes for polymorphism data had strongly limited the statistical

detectability of small frequency shifts. Therefore, the detection of sweeps with clear footprints

was the major objective for many years. Since recently, however, huge sample sizes (primarily

of human data) enable powerful genome-wide association studies (GWAS) to resolve the

genomic basis of polygenic traits. Consequently, following conceptual work by Pritchard and

coworkers [7, 11], there has been a shift in focus to the detection of polygenic adaptation from

subtle genomic signals (e.g. [12–14], reviewed in [15]). Very recently, however, some of the

most prominent findings of polygenic adaptation in human height have been challenged [16,

17]. As it turned out, the methods are highly sensitive to confounding effects in GWAS data

due to population stratification.

While discussion of the empirical evidence is ongoing, the key objective for theoretical pop-

ulation genetics is to clarify the conditions (mutation rates, selection pressures, genetic archi-

tecture) under which each adaptive scenario, sweeps, shifts—or any intermediate type—

should be expected in the first place. Yet, the number of models in the literature that allow for
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a comparison of alternative adaptive scenarios at all is surprisingly limited (see also [18]).

Indeed, quantitative genetic studies based on the infinitesimal model or on summaries

(moments, cumulants) of the breeding values do not resolve allele frequency changes at indi-

vidual loci (e.g. [19–22]). In contrast, sweep models with a single locus under selection in the

tradition of Maynard Smith and Haigh [3], or models based on adaptive walks or the adaptive

dynamics framework (e.g. [23–25]) only allow for adaptive substitutions or sweeps. A notable

exception is the pioneering study by Chevin and Hospital [26]. Following Lande [27], these

authors model adaptation at a single major quantitative trait locus (QTL) that interacts with an

“infinitesimal background” of minor loci, which evolves with fixed genetic variance. Subse-

quent models [28, 29] trace the allele frequency change at a single QTL in models with 2-8 loci.

Still, these articles do not discuss polygenic adaptation patterns. Most recently, Jain and Ste-

phan [30, 31] studied the adaptive process for a quantitative trait under stabilizing selection

with explicit genetic basis. Their analytical approach allows for a detailed view of allele fre-

quency changes at all loci without constraining the genetic variance. However, the model is

deterministic and thus ignores the effects of genetic drift. Below, we study a polygenic trait

that can adapt via sweeps or shifts under the action of all evolutionary forces in a panmictic

population (mutation, selection, recombination and drift). Our model allows for comprehen-

sive analytical treatment, leading to a multi-locus, non-equilibrium extension of Wright’s for-

mula [32] for the joint distribution of allele frequencies at the end of the adaptive phase. This

way, we obtain predictions concerning the adaptive architecture of polygenic traits and the

population genetic variables that delimit the corresponding modes of adaptation.

The article is organized as follows. The Model section motivates our modeling decisions

and describes the simulation method. We also give a brief intuitive account of our analytical

approach. In the Results part, we describe our findings for a haploid trait with linkage equilib-

rium among loci. All our main conclusions in the Discussion part are based on the results dis-

played here. Further model extensions and complications (diploids, linkage, and alternative

starting conditions) are relegated to appendices. Finally, we describe our analytical approach

and derive all results in a comprehensive Mathematical Appendix (S2 Appendix). For the ease

of reading, we have tried to keep both the main text and the Mathematical Appendix indepen-

dent and largely self-contained.

Methods

In the current study, we aim for a “minimal model” of a trait that allows us to clarify which

evolutionary forces favor sweeps over shifts and vice versa (as well as any intermediate pat-

terns). For shifts, alleles need to be able to hamper the rise of alleles at other loci via negative

epistasis for fitness, e.g. diminishing returns epistasis. Indeed, otherwise one would only

observe parallel sweeps. Negative fitness epistasis is frequently found in empirical studies (e.g.

[33]) and implicit to the Gaussian selection scheme (e.g. [26, 30, 31]). More fundamentally,

diminishing returns are a consequence of partial or complete redundancy of genetic effects

across loci or gene pathways. Adaptive phenotypes (such as pathogen resistance or a beneficial

body coloration) can often be produced in many alternative ways, such that redundancy is a

common characteristic of beneficial mutations.

As our basic model, we focus on a haploid population and study adaptation for a polygenic,

binary trait with full redundancy of effects at all loci. We assume a non-additive genotype-phe-

notype map where any single mutation switches the phenotype from its ancestral state (e.g.

“non-resistant”) to the adaptive state (“resistant”). Further mutations have no additional effect.

On the population level, adaptation can be produced by a single locus where the beneficial

allele sweeps to fixation, or by small frequency shifts of alleles at many different loci in different
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individuals—or any intermediate pattern. The symmetry among loci (no build-in advantage of

any particular locus) and complete redundancy of locus effects provides us with a trait archi-

tecture that is favorable for collective adaptation via small shifts—and with a modeling frame-

work that allows for analytical treatment. The same model has been used in a preliminary

simulation study [6]. In the context of parallel adaptation in a spatially structured population,

analogous model assumptions with redundant loci have been used [34–36]. In a second step,

we extend our basic model to relax the redundancy condition, as described below.

Basic model

Consider a panmictic population of Ne haploids, with a binary trait Z (with phenotypic states

Z0 “non-resistant” and Z1 “resistant”, see Fig 1). The trait is governed by a polygenic basis of L
bi-allelic loci with arbitrary linkage (we treat the case of linkage equilibrium in the main text

and analyze the effects of linkage in S1 Appendix, Section A). Only the genotype with the

ancestral alleles at all loci produces phenotype Z0, all other genotypes produce Z1, irrespective

of the number of mutations they carry. Loci mutate at rate μi, 1� i� L, per generation (popu-

lation mutation rate at the ith locus: 2Ne μi = Θi) from the ancestral to the derived allele. We

ignore back mutation. The mutant phenotype Z1 is deleterious before time t = 0, when the

population experiences a sudden change in the environment (e.g. arrival of a pathogen). Z1 is

beneficial for time t> 0. The Malthusian (logarithmic) fitness function of an individual with

phenotype Z reads

WðZÞ ¼
sdZ for t < 0

sbZ for t � 0:

(

ð1Þ

Without loss of generality, we can assume Z0 = 0 and Z1 = 1. We then haveW(Z0) = 0. Further-

more,W(Z1) = sd< 0, respectivelyW(Z1) = sb> 0, measure the strength of directional selec-

tion on Z (e.g. cost and benefit of resistance) before and after the environmental change. For

the basic model, we assume that the population is in mutation-selection-drift equilibrium at

time t = 0.

Model extensions

We extend the basic model in several directions. This includes linkage (S1 Appendix, Section

A), alternative starting conditions at time t = 0 (S1 Appendix, Section B), diploids (S1 Appen-

dix, Section C), and arbitrary time-dependent selection s(t) (S2 Appendix, Section M.1). Here,

we describe how we relax the assumption of complete redundancy of all loci. Diminishing

returns epistasis, e.g. due to Michaelis-Menten enzyme kinetics, will frequently not lead to

Fig 1. Fitness schemes. The fitness of individuals carrying 0, 1, 2, 3. . . mutations (y-axis) are given for the complete redundancy (a) and relaxed

redundancy (b) model, respectively. Grey balls show the fitness of ancestral wildtype individuals (without mutations). Colored balls represent

individuals carrying at least one mutation, for time points t< 0 before the environmental change in blue and for t� 0 in red.

https://doi.org/10.1371/journal.pgen.1008035.g001
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complete adaptation in a single step, but may require multiple steps before the trait optimum

is approached. In a model of incomplete redundancy, we thus assume that a first beneficial

mutation only leads to partial adaptation. We thus have three states of the trait, the ancestral

state for the genotype without mutations, Z0 = 0 (non-resistant), a phenotype Zδ = δ (partially

resistant) for genotypes with a single mutation, and the mutant state Z1 = 1 (fully resistant) for

all genotypes with at least two mutations, see Fig 1(b). For diminishing returns epistasis, we

require 1

2
� d < 1. The fitness function is as in Eq (1). A model with asymmetries in the single-

locus effects is discussed in S1 Appendix, Section D.

Simulation model

For the models described above, we use Wright-Fisher simulations for a haploid, panmictic

population of size Ne, assuming linkage equilibrium between all L loci in discrete time. Selec-

tion and drift are implemented by independent weighted sampling based on the marginal fit-

nesses of the ancestral and mutant alleles at each locus. Due to linkage equilibrium, the

marginal fitnesses only depend on the allele frequencies and not genotypes. Ancestral alleles

mutate with probability μi per generation at locus i. We start our simulations with a population

that is monomorphic for the ancestral allele at all loci. The population evolves for 8Ne genera-

tions under mutation and deleterious selection to reach (approximate) mutation-selection-

drift equilibrium. Following [6, 37], we condition on adaptation from the ancestral state and

discard all runs where the deleterious mutant allele (at any locus) reaches fixation during this

time. (We do not show results for cases with very high mutation rates and weak deleterious

selection when most runs are discarded). At the time of environmental change, selection

switches from negative to positive and simulation runs are continued until a prescribed stop-

ping condition is reached.

We are interested in the genetic architecture of adaptation—the joint distribution of mutant

frequencies across all loci—at the end of the rapid adaptive phase. Following [31], we define

this phase as “the time until the phenotypic mean reaches a value close to the new optimum”.

Specifically, we stop simulations when the mean fitness �W in the population has increased up

to a proportion fw of the maximal attainable increase from the ancestral to the derived state,

WðZ1Þ �
�W

WðZ1Þ � WðZ0Þ
¼ fw : ð2Þ

For the basic model with complete redundancy, this simply corresponds to a residual propor-

tion fw of individuals with ancestral phenotype in the population. Extensions of the simulation

scheme to include linkage or diploid individuals are described in S1 Appendix, Sections A

and C.

Parameter choices: Unless explicitly stated otherwise, we simulate Ne = 10 000 individuals,

with beneficial selection coefficients sb = 0.1 and 0.01, combined with deleterious selection

coefficients sd = −0.1 and sd = −0.001 for low and high levels of SGV, respectively. (The corre-

sponding Wrightian fitness values used as sampling weights in discrete time are 1 + sb and 1 +

sd.) We investigate L = 2 to 100 loci. We usually (except in S1 Appendix, Section D) assume

equal mutation rates at all loci, μi = μ and define Θl = 2Ne μ as the locus mutation parameter.

Mutation rates are chosen such that Θbg≔ 2Ne μ(L − 1) (the background mutation rate, for-

mally defined below in Eq (10)) takes values from 0.01 to 100. We typically simulate 10 000

replicates per mutation rate and stop simulations when the population has reached the new fit-

ness optimum up to fw = 0.05. In the model with complete redundancy, we thus stop simula-

tions when the frequency of individuals with mutant phenotype Z1 has increased to 95%.

Different stopping conditions are explored in S1 Appendix, Section G.
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Analytical analysis

We partition the adaptive process into two phases (see Fig 2 for illustration). An initial stochas-
tic phase, governed by selection, drift, and mutation describes the origin and establishment of

mutant alleles at all loci. We call mutants “established” if they are not lost again due to genetic

drift. The subsequent deterministic phase governs the further evolution of established alleles

until the stopping condition is reached as described above. While mutation and drift can be

ignored during the deterministic phase, interaction effects due to epistasis and linkage become

important (in our model, they enter, in particular, through the stopping condition). We give a

brief overview of our analytical approach below; parameters are summarized in Table 1. A

detailed account with the derivation of all results is provided in the Mathematical Appendix

S2 Appendix.

During the stochastic phase, we model the origin and spread of mutant copies as a so-called

Yule pure birth process following [38] and [39]. The idea of this approach is that we only need

to keep track of mutations that found “immortal lineages”, i.e. derived alleles that still have sur-

viving offspring at the time of observation (see Fig 2 for the case of L = 2 loci). Forward in

time, new immortal lineages can be created by two types of events: new mutations at all loci

start new lineages, while birth events lead to splits of existing lineages into two immortal line-

ages. For t> 0 (after the environmental change), in particular, new mutations at the ith locus

arise at rate Neμi per generation and are destined to become established in the population with

probability� 2sb. Similarly, birth of new immortal lineages due to split events in the Yule pro-

cess occur at rate sb (because the selection coefficient measures the excess of births over deaths

in the underlying population). For the origin of new immortal lineages in the Yule process and

Fig 2. Phases of polygenic adaptation. The adaptive process is partitioned into two phases. The initial, stochastic phase describes the establishment of

mutant alleles. Ignoring epistasis during this phase, it can be described by a Yule process (panel a), with two types of events (yellow box). Either a new

mutation occurs and establishes with rate Θl � sb or an existing mutant line splits into two daughter lines at rate sb. Mutations and splits can occur in

parallel at all loci of the polygenic basis, (here 2 loci, shown in green and blue). Yellow and red stars at the blue locus indicate establishment of two

redundant mutations at this locus. When mutants have grown to higher frequencies, the adaptive process enters its second, deterministic phase, where

drift can be ignored (panel b). During the deterministic phase, the trajectories of mutations at different loci constrain each other due to epistasis. We

refer to the locus ending up at the highest frequency as themajor locus (here in blue) and to all others asminor loci (here one in green).

https://doi.org/10.1371/journal.pgen.1008035.g002
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their subsequent splitting we thus obtain the rates

pmut;i � Nemi � 2sb ¼ Yisb ; psplit � sb: ð3Þ

Extended results including standing genetic variation and time-dependent fitness are given in

the Appendix. Assume now that there are currently {k1, . . .kL}, 0� kj� Ne mutant lineages at

the L loci. The probability that the next event (which can be a split or a mutation) occurs at

locus i is

ki � psplit þ pmut;i
PL

j¼1
ðkj � psplit þ pmut;jÞ

¼
ki þYi

PL
j¼1
ðkj þYjÞ

: ð4Þ

Importantly, all these transition probabilities among states of the Yule process are constant in

time and independent of the mutant fitness sb, which cancels in the ratio of the rates. As the

number of lineages at all loci increases, their joint distribution (across replicate realizations of

the Yule process) approaches a limit. In particular, as shown in the Appendix, the joint distri-

bution of frequency ratios xi≔ ki/k1 in the limit k1!1 is given by an inverted Dirichlet distri-
bution

PinDir½xjΘ� ¼
1

B½Θ�

YL

j¼2

xYj � 1

j

�

1þ
XL

i¼2

xi

��
PL

i¼1
Yi

ð5Þ

where x = (x2, . . ., xL) and Θ = (Θ1, . . ., ΘL) are vectors of frequency ratios and locus mutation

rates, respectively, and where B½Θ� ¼
QL

j¼1
GðYjÞ

PL

j¼1
GðYjÞ

is the generalized Beta function and Γ(z) is the

Gamma function. Note that Eq (5) depends only on the locus mutation rates, but not on selec-

tion strength.

After the initial stochastic phase, the dynamics of established mutant lineages that have

evaded stochastic loss can be adequately described by deterministic selection equations. For

allele frequencies pi at locus i, assuming linkage equilibrium, we obtain (consult S2 Appendix,

Section M.1, Eq (M.2a), for a detailed derivation)

_pi ¼ piðWðZ1Þ �
�WÞ ¼ sbpiðZ1 �

�ZÞ; ð6Þ

where �W and �Z are population mean fitness and mean trait value. For the mutant frequency

Table 1. Glossary.

L . . . size of polygenic basis (no. of loci)

sd, sb . . . selection coefficient before/after the environment changes

pi≔
ki
N

. . . mutant allele frequency at locus i

xi≔
ki
k1
¼

pi
p1

. . . mutant allele frequency ratio: locus i / locus 1

fw . . . frequency of ancestral phenotype

μi . . . allelic mutation rate at locus i
Θi = 2Ne μi . . . haploid population mutation rate at locus i
Θ = {Θ1, . . ., ΘL} . . . vector of all locus population mutation rates

Θl . . . locus pop. mut. rate, for model with equal mutation rates

Θbg . . . background mutation rate, Eq (10)

B½Θ� ¼
Q

i�1
GðYiÞP

i�1
GðYiÞ

. . .
Beta function, where Γ(Θi) is the Gamma function

https://doi.org/10.1371/journal.pgen.1008035.t001
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ratios xi = pi/p1, we obtain

_xi ¼
d
dt

pi
p1

� �

¼
_pip1 � pi _p1

p2
1

¼ 0 : ð7Þ

We thus conclude that the frequency ratios xi do not change during the deterministic phase. In

particular, this means that Eq (5) still holds at our time of observation at the end of the rapid

adaptive phase. This is even true with linked loci. Finally, derivation of the joint distribution of

mutant frequencies pi (instead of frequency ratios xi) at the time of observation requires a

transformation of the density. In general, this transformation depends on the stopping condi-

tion fw and on other factors such as linkage. Assuming linkage equilibrium among all selected

loci, we obtain (see S2 Appendix, Theorem 2, Eq (M.20))

Pfw ½pjΘ� ¼
dQL

j¼1
ð1� pjÞ� fw

B½Θ�

YL

j¼1

pYj � 1

j

�
XL

i¼1

pi

��
PL

i¼1
Yi
�
XL

j¼1

fwpj
1 � pj

�

ð8Þ

for p = (p1, . . ., pL) in the L-dimensional hypercube of allele frequencies. The delta function δX
restricts the distribution to the L − 1 dimensional manifold defined via the stopping condition

fw ¼
QL

j¼1
ð1 � pjÞ. Further expressions, also including linkage, are given in S2 Appendix and

in S1 Appendix, Section A. In general, the joint distribution corresponds to a family of general-

ized Dirichlet distributions.

We assess the adaptive architecture not as a function of time, but as a function of progress

in phenotypic adaptation, measured by fw, Eq (2). Hence, fw rather than time t plays the role of

a dynamical variable in the joint distribution, see Eq (8). In the special case fw! 0 (i.e. com-

plete adaptation, enforcing fixation at at least one locus), this distribution is restricted to a

boundary face of the allele frequency hypercube and Eq (8) reduces to the inverted Dirichlet

distribution given above in Eq (5). In the Results section below, we assess our analytical

approximations for the joint distributions of adaptive alleles, Eqs (5) and (8), and discuss their

implications in the context of scenarios of polygenic adaptation, ranging from sweeps to small

frequency shifts.

Results

While the joint distribution of allele frequencies, Eq (8), provides comprehensive information

of the adaptive architecture, low-dimensional summary statistics of this distribution are

needed to describe and classify distinct types of polygenic adaptation. To this end, we order

loci according to their contribution to the adaptive response. In particular, we call the locus

with the highest allele frequency at the stopping condition themajor locus and all other loci

minor loci. Minor loci are further ordered according to their frequency (first minor, second

minor, etc.). The marginal distributions of the major locus or kth minor locus are 1-dimen-

sional summaries of the joint distribution. Importantly, these summaries are still collective
because the role of any specific locus (its order) is defined through the allele frequencies at all
loci. This is different for the marginal distribution at a fixed focal locus, which is chosen irre-

spective of its role in the adaptive process, e.g. [26, 28, 29].

Concerning our nomenclature, note that themajor andminor loci do not differ in their

effect size, as they are completely redundant. Still, the major locus is the one with the largest

contribution to the adaptive response and would yield the strongest association in a GWAS

case-control study.

In the following, we analyze adaptive trait architectures in three steps. In the Section

Expected allele frequency ratio, we use the expected allele frequency ratio of minor and major

Polygenic adaptation: From sweeps to subtle frequency shifts
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loci as a one-dimensional summary statistic. Subsequently, in Section Genomic architecture
of polygenic adaptation, we analyze the marginal distributions of major and minor loci for a

trait with 2 to 100 loci. Finally, in Section Relaxing complete redundancy, we investigate the

robustness of our results under conditions of relaxed redundancy. Further results devoted to

diploids, linkage, asymmetric loci, and alternative starting conditions are provided in S1

Appendix.

Expected allele frequency ratio

For our biological question concerning the type of polygenic adaptation, the ratio of allele fre-

quency changes of minor over major loci is particularly useful. With “sweeps at few loci”, we

expect large differences among loci, resulting in ratios that deviate strongly from 1. In contrast,

with “subtle shifts at many loci”, multiple loci contribute similarly to the adaptive response

and ratios should range close to 1. Our theory (explained above) predicts that these ratios are

the outcome of the stochastic phase, and their distribution is preserved during the determin-

istic phase. They are thus independent of the precise time of observation. For our results in

this section, we assume that the mutation rate at all L loci is equal, Θi� Θl, for all 1� i� L.

This corresponds to the symmetric case that is most favorable for a “small shift” scenario.

Results for asymmtric mutation rates are reported in Appendix S1 Appendix, Section D.

Consider first the case of L = 2 loci. There is then a single allele frequency ratio “minor over

major locus”, which we denote by x. For two loci, the joint distribution of frequency ratios

from Eq (5) reduces to a beta-prime distribution. Conditioning on the case that the first locus

is the major locus (probability 1/2 for the symmetric model), we obtain for 0� x� 1,

Pb0 ½xjYl� ¼
2Gð2YlÞ

ðGðYlÞÞ
2
xYl � 1ð1þ xÞ� 2Yl ; ð9Þ

Fig 3 compares the expectation of this analytical prediction with simulation results for a

range of parameters for the strength of beneficial selection sb and for the level of standing

genetic variation (SGV implicitly given by the strength of deleterious selection sd before the

environmental change). There are two main observations. First, the simulation results demon-

strate the importance of the scaled mutation rate Θbg� Θl (for two loci). Low Θbg leads to

sweep-like adaptation (heterogeneous adaptation response among loci, E[x]� 1), whereas

high Θbg leads to shift-like adaptation (homogeneous response, E[x] near 1). Second, the pan-

els show that the selection intensity given by sd and sb has virtually no effect. Both results are

predicted by the analytical theory (Eq (9)). In S1 Appendix, Section A, we further show that

these results hold for arbitrary degrees of linkage (including complete linkage).

For more than two loci, L> 2, one-dimensional marginal distributions of the joint distribu-

tion, Eq (5), generally require (L − 1)-fold integration, which can be complicated. However, it

turns out that the key phenomena to characterize the adaptive architecture can still be cap-

tured by the 2-locus formalism, with appropriate rescaling of the mutation rate. For the general

L-locus model, we broaden our definition of the summary statistic x above to describe the

allele frequency ratio of the first minor locus and the major locus. To relate the distribution of

x in the L-locus model to the one in the 2-locus model, we reason as follows: For small locus

mutation rates Θl, the order of the loci is largely determined by the order at which mutations

that are destined for establishment originate at these loci. I.e., the locus where the first muta-

tion originates ends up as the major locus and the first minor locus is usually the second locus

where a mutation destined for establishment originates. The distribution of the allele fre-

quency ratio x is primarily determined by the distribution of the waiting time for this second

mutation after origin of the first mutation at the major locus. In the 2-locus model, this time

Polygenic adaptation: From sweeps to subtle frequency shifts
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will be exponentially distributed, with parameter 1/Θl. In the L-locus model, however, where

L − 1 loci with total mutation rate Θl(L − 1) compete for being the “first minor”, the parameter

for the waiting-time distribution reduces to 1/(Θl(L − 1)). We thus see from this argument that

the decisive parameter is the cumulative background mutation rate

Ybg ¼ ðL � 1ÞYl ð10Þ

at all minor loci in the background of the major locus. In Fig 3 (orange dots) we show simula-

tions of a L = 10 locus model with an appropriately rescaled locus mutation rate Θl!Θl/9,

such that the background rate Θbg is the same as for the 2-locus model. We see that the analyti-

cal prediction based on the 2-locus model provides a good fit for the 10-locus model. A more

detailed discussion of this type of approximation is given in S1 Appendix, Section F.

Genomic architecture of polygenic adaptation

While the distribution of allele frequency ratios, Eqs (5) and (9), offers a coarse (but robust)

descriptor of the adaptive scenario, the joint distribution of allele frequencies at the end of the

adaptive phase, Eq (8), allows for a more refined view. In contrast to the distribution of ratios,

the results now depend explicitly on the stopping condition (the time of observation) and on

linkage among loci. We assume linkage equilibrium in this section and assess the mutant allele

frequencies when the frequency of the remaining wildtype individuals in the population has

Fig 3. Effect of selection strength and SGV on the frequency ratio E[x]. We contrast the expected allele frequency

ratios of the first minor locus (with the second highest frequency) over the major locus (with the highest frequency) for

2 loci (blue dots) and for 10 loci (orange dots) with analytical predictions (Appendix, Eq M.16, black curve). E[x] is

shown as a function of Θbg (= Θl for the 2-locus case). Panels correspond to different strengths of positive selection (sb,
rows) and levels of SGV (no SGV, strongly deleterious sd = −0.1, weakly deleterious sd = −0.001, columns). We find

that neither factor alters the expected ratio. We do not obtain results for Θbg� 10 and sd = −0.001, where strong

recurrent mutation overwhelmes weak selection, such that mutant alleles fix even before the environmental change.

Results for 10 000 replicates, standard errors< 0.005 (smaller than symbols).

https://doi.org/10.1371/journal.pgen.1008035.g003
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dropped to a fixed value of fw = 0.05. In S1 Appendix, Section G, we complement these results

and study the changes in the adaptive architecture when fw is varied.

Fig 4 displays the main result of this section. It shows the marginal distributions of all loci,

ordered according to their allele frequency at the time of observation (major locus, 1st, 2nd,

3rd minor locus, etc.) for traits with L = 2, 10, 50, and 100 loci. Panels in the same row corre-

spond to equal background mutation rates Θbg = (L − 1)Θl, but note that the locus mutation

rates Θl are not equal. The figure reveals a striking level of uniformity of adaptive architectures

with the same Θbg, but vastly different number of loci. For Θbg� 1 (the first three rows), the

marginal distributions for loci of the same order (same color in the Figure) across traits with

different L is almost invariant. For large Θbg, they converge for sufficiently large L (e.g. for

Fig 4. Genomic architecture of polygenic adaptation. We distinguish three patterns of architectures with increasing

genomic background mutation rate Θbg: complete sweeps, for Θbg≲ 0.1, heterogeneous partial sweeps at several loci

for 0.1< Θbg< 100, and polygenic frequency shifts for Θbg≳ 100. The plots show the marginal distributions of all loci,

ordered according to their allele frequency, i.e. the major locus in red and all following (first, second, third, etc.

minors) in blue to green to yellow. Lines in respective colors show analytical predictions, see S1 Appendix, Section E.

Simulations were stopped once the populations have adapted to 95% of the maximum mean fitness in each of 10 000

replicates, resulting in an the upper bound for the major locus distribution at, p1 = 0.95. Simulations for sb = −sd = 0.1.

Note the different scaling of the y-axis (density, normalized to 1 per locus) for different mutation rates.

https://doi.org/10.1371/journal.pgen.1008035.g004
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Θbg = 10, going from L = 10 to L = 50 and to L = 100). In particular, the background mutation

rate Θbg determines the shape of the major-locus distribution (red in the Figure) for high p!
1 − fw = 0.95 (the maximum possible frequency, given the stopping condition). For Θbg< 1,

this distribution is sharply peaked with a singularity at p = 1 − fw, whereas it drops to zero for

high p if Θbg> 1 (see also the analytical results below).

As predicted by the theory, Eq (8) and below, simulations confirm that the overall selection

strength does not affect the adaptive architecture (see S1 Fig for comparison of simulation

results for sb = 0.1 and sb = 0.01). As discussed in S1 Appendix, Section A, sufficiently tight

linkage does change the shape of the distributions. Importantly, however, it does not affect the

role of Θbg in determining the singularity of the major-locus distribution. This confirms the

key role of the background mutation rate as a single parameter to determine the adaptive sce-

nario in our model. While Θbg = 1 separates architectures that are dominated by a single major

locus (Θbg< 1) from collective scenarios (with Θbg> 1), the classical sweep or shift scenarios

are only obtained if Θbg deviates strongly from 1. We therefore distinguish three adaptive

scenarios.

• Θbg≲ 0.1, single completed sweeps. For Θbg� 1 (first two rows of Fig 4), the distribution of

the major locus is concentrated at the maximum of its range, while all other distributions are

concentrated around 0. Adaptation thus occurs at a single locus, via a selective sweep from

low to high mutant frequency. Contributions by further loci are rare. If they occur at all they

are usually due to a single runner-up locus (the highest minor locus).

• 0.1< Θbg< 100, heterogeneous partial sweeps. With intermediate background mutation

rates (third and forth row of Fig 4), we still observe a strong asymmetry in the frequency

spectrum. Even for Θbg = 10, there is a clear major locus discernible, with most of its distri-

bution for p> 0.5 However, there is also a significant contribution of several minor loci that

rise to intermediate frequencies. We thus obtain a heterogeneous pattern of partial sweeps at

a limited number of loci.

• Θbg≳ 100, homogeneous frequency shifts. Only for high background mutations rates Θbg� 1

(last row of Fig 4 with Θbg = 100), the heterogeneity in the locus contributions to the adaptive

response vanishes. There is then no dominating major locus. For only 2 loci, these shifts are

necessarily still quite large, but for traits with a large genetic basis (large L; the only realistic

case for high values of Θbg), adaptation occurs via subtle frequency shifts at many loci.

Analytical predictions. To gain deeper understanding of the polygenic architecture—and

for quantitative predictions—we dissect our analytical result for the joint frequency spectrum

in Eq (8). We start with the case of L = 2 loci, allowing for different locus mutation rates Θ1

and Θ2. The marginal distribution at the first locus reads (from Eq (8), after integration over

p2),

Pfw ½p1jY1;Y2� ¼
pY1 � 1

1 ð1 � p1 � fwÞ
Y2 � 1
ð1 � p1Þ

Y1þ1

B½Y1;Y2� ð1 � p2
1
� fwÞ

Y1þY2
1 �

fwð1 � 2p1Þ

ð1 � p1Þ
2

 !

; ð11Þ

for 0� p1� 1 − fw (see also S1 Appendix, Section F). The distribution has a singularity at p1 =

0 if the corresponding locusmutation rate is smaller than one, Θ1 < 1. It has a singularity at

p1 = 1 − fw if the corresponding backgroundmutation rate (which is just the mutation rate at

the other locus for L = 2) is smaller than one, Θ2 < 1. The marginal distributions at the major
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locus, Pþfw ½pjY1;Y2�, and the minor locus, P�fw ½pjY1;Y2�, follow from Eq (11) as

P�fw ½pjY1;Y2� ¼ Pfw ½pjY1;Y2� þ Pfw ½pjY2;Y1�; ð12Þ

where Pþfw ½pjY1;Y2� is defined for 1 �
ffiffiffiffi
fw

p
� p � 1 � fw and P�fw ½pjY1;Y2� is defined for

0 � p � 1 �
ffiffiffiffi
fw

p
. The sum in Eq (12) accounts for the alternative events that either the first

or the second locus may end up as the major (or minor) locus. Consequently, P�fw ½pjY1;Y2� has

a singularity at p = 0 if theminimal locus mutation rateΘl = min[Θ1, Θ2]< 1. Analogously,

Pþfw ½pjY1;Y2� has a singularity at p = 1 − fw if theminimal background mutation rateΘbg = min

[Θ1, Θ2]< 1. The left column of Fig 4 shows the distributions at the major and minor locus for

L = 2 in the symmetric case Θ1 = Θ2 = Θl = Θbg and fw = 0.05. Simulations for a population of

size Ne = 10 000 and analytical predictions match well.

How do these results generalize for L> 2? We again allow for unequal locus mutation rates

Θi. It is easy to see from Eq (8) that the marginal distribution at the ith locus has a singularity

at pi = 0 for Θi< 1. In S2 Appendix, Section M.3, we further show that it has a second singular-

ity at pi = 1 − fw if the corresponding background mutation rate
Pd

j6¼iYj is smaller than 1. As a

first step, we split the joint distribution, Eq (8), into the marginal distribution at the major

locus Pþfw ½pjΘ� (defined for 1 �
ffiffiffiffi
fwL

p
� p � 1 � fw) and a cumulative distribution at all other

(minor) loci, P�fw ½pjΘ� (defined for 0 � p � 1 �
ffiffiffiffi
fw

p
). Since any locus can end up as the major

locus (with probability > 0), Pþfw ½pjΘ� has a singularity at p = 1 − fw for

Ybg≔min
1�i�L

�
XL

j¼1

Yj � Yi

�

< 1 : ð13Þ

This equation generalizes the definition of the background mutation rate, Eq (10), to the case

of unequal locus mutation rates. Similarly, P�fw ½pjΘ� has a singularity at p = 0 if

Yl≔min
1�i�L
½Yi� < 1 : ð14Þ

As long as Θbg� 1, we can approximate both the major-locus distribution Pþfw ½pjΘ� and the

cumulative minor locus distribution P�fw ½pjΘ� for arbitrary L by formulas for a 2-locus model

with locus mutation rates matching Θl and Θbg of the multi-locus model, Eq (12). Similarly, we

can use results from a k-locus model to match the marginal distributions of the largest k loci

(i.e., up to the (k − 1)th minor) in models with L> k loci, upon rescaling of the mutation rates.

As explained for the ratio of the first minor and major locus in the previous section, rescaling

rules match the expected waiting time for a mutation (destined for establishment) at the kth

locus after the origin of a first mutation. Details are given in the S1 Appendix, Section E. In Fig

4, we use formulas derived from a k-locus model (k� 4) to approximate the (k − 1)st minor

locus distribution of models with L = 10; 50; 100 loci and Θbg� 1. These approximations work

well as long as these leading loci dominate the adaptive architecture of the trait, which is the

case for Θbg� 1.

Relaxing complete redundancy

To complete our picture of adaptive architectures, we investigate the robustness of our model

assumption against relaxation of redundancy. As explained above (Model extensions and Fig

1), we implement diminishing returns epistasis, such that an individual with a single mutation

has fitness δsb/d, while individuals carrying more than one mutation have fitness sb/d. With

small deviations from complete redundancy (e.g. δ = 0.9, stopping at 5% ancestral phenotypes,
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see Fig S2 Fig) we obtain basically no differences in the genomic patterns of adaptation. With

larger deviations (e.g. δ = 0.5) quantitative differences appear. However, the qualitative picture

concerning the scenario of polygenic adaptation remains the same.

Fig 5 shows the marginal frequency distributions of major and minor loci for a trait with

relaxed redundancy with δ = 0.5 that is sampled when the population has accomplished

95% of the fitness increase on its way to the new optimum, Eq (2). Given the fitness function,

this is not possible with adaptation at only a single locus. At least two loci are needed. The

Fig 5. Relaxed redundancy. Relaxing redundancy such that a single mutant has fitness 1 + 0.5sb/d and only two

mutations or more confer the full fitness effect (1 + sb/d) demonstrates the robustness of our model. As in Fig 4, allele

frequency distributions of derived alleles are displayed once the population has reached 95% of maximum attainable

mean population fitness. Genomic patterns of adaptation show similar characteristics as with complete redundancy.

Due to relaxed redundancy, an additional “major locus” is required to reach the adaptive optimum. As explained in the

main text, the distribution of the kth largest locus with complete redundancy therefore corresponds to the distribution

of the k + 1st largest locus with relaxed redundancy. Insets in the second column show the same data with the

distributions of the two major loci for relaxed redundancy combined (in green).

https://doi.org/10.1371/journal.pgen.1008035.g005
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Figure compares the simulation data for the relaxed redundancy model (colored dots) and the

full redundancy model (dots in back and gray). As in Fig 4, traits in the same row have the

same background mutation rate Θbg. However, the background rate for the model with relaxed

redundancy is redefined as

Y
relax
bg ¼ ðL � 2ÞYl; ð15Þ

where Θl is the locus mutation rate (equal at all loci). We thus define the background rate,

more precisely, as the combined population-scaled mutation rate of all loci that are not essen-
tial to accomplish adaptation of the phenotype and, thus, are truly redundant. With this

choice, the adaptive architecture of the relaxed redundancy model reproduces the one of the

model with full redundancy—up to a shift in the number of the loci due to an extra locus that

is needed for adaptation with relaxed redundancy. The Figure captures this by comparing

traits with relaxed redundancy with L = 3, 4, 11, and 101 loci to fully redundant traits with one

fewer locus. The inset figures in the column for L = 4 loci show the same scenario, but with an

averagedmarginal distribution for the two largest loci with relaxed redundancy (in green).

• For mutation rates, Θbg� 1, we still find adaptation by sweeps. Relative to the full redun-

dancy model, we now observe two “major” sweep loci instead of only a single sweep. The

inset (for L = 4) shows that their averaged distributions matches the major locus distribution

of the full redundancy model. The distribution at the third largest locus (the “first minor”

locus with relaxed redundancy) resembles the corresponding distribution of the first minor

locus of the trait with full redundancy.

• For intermediate mutation rates, 0.1< Θbg< 100, the pattern is dominated by partial

sweeps. We clearly see the similarity in the marginal distributions of the kth largest locus

with full redundancy and the k + 1st largest locus of the relaxed redundancy trait. For the

two major loci with relaxed redundancy, we again see (inset) that the averaged distribution

matches the major-locus distribution of the full redundancy model.

• Finally, for strong mutation, Θbg≳ 100, adaptation again occurs by small frequency shifts at

many loci.

In summary, our results show that relaxing redundancy leads to qualitatively similar results,

but with a reduced “effective” background mutation rate that only accounts for “truly redun-

dant” loci.

Discussion

Traits with a polygenic basis can adapt in different ways. Few or many loci can contribute to

the adaptive response. The changes in the allele frequencies at these loci can be large or small.

They can be homogeneous or heterogeneous. While molecular population genetics posits large

frequency changes—selective sweeps—at few loci, quantitative genetics views polygenic adap-

tation as a collective response, with small, homogeneous allele frequency shifts at many loci.

Here, we have explored the conditions under which each adaptive scenario should be expected,

analyzing a polygenic trait with redundancy among loci that allows for a full range of adaptive

architectures: from sweeps to subtle frequency shifts.

Polygenic architectures of adaptation

For any polygenic trait, the multitude of possible adaptive architectures is fully captured by the

joint distribution of mutant alleles across the loci in its basis. Different adaptive scenarios
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(such as sweeps or shifts) correspond to characteristic differences in the shape of this distribu-

tion, at the end of the adaptive phase. For a single locus, the stationary distribution under

mutation, selection, and drift can be derived from diffusion theory and has been known since

the early days of population genetics (S. Wright (1931), [32]). For multiple interacting loci,

however, this is usually not possible. To address this problem for our model, we dissect the

adaptive process into two phases. The early stochastic phase describes the establishment of all

mutants that contribute to the adaptive response under the influence of mutation and drift.

We use that loci can be treated as independent during this phase to derive a joint distribution

for ratios of allele frequencies at different loci, Eq (5). During the second, deterministic phase,

epistasis and linkage become noticeable, but mutation and drift can be ignored. Allele fre-

quency changes during this phase can be described as a density transformation of the joint dis-

tribution. For the simple model with fully redundant loci, and assuming either LE or complete

linkage, this transformation can be worked out explicitly. Our main result Eq (8) can be under-

stood as a multi-locus extension of Wright’s formula. For a neutral locus with multiple alleles,

Wright’s distribution is a Dirichlet distribution, which is reproduced in our model for the case

of complete linkage, see S1 Appendix, Section A. For the opposite case of linkage equilibrium,

we obtain a family of inverted Dirichlet distributions, depending on the stopping condition—

our time of observation.

Note that (unlike Wright’s distribution) the distribution of adaptive architectures is not a
stationary distribution, but necessarily transient. It describes the pattern of mutant alleles at the

end of the “rapid adaptive phase” [30, 31], because this is the time scale that the opposite narra-

tives of population genetics and quantitative genetics refer to. In particular, the quantitative

genetic “small shifts” view of adaptation does not talk about a stationary distribution: it does

not imply that alleles will never fix over much longer time scales, due to drift and weak selec-

tion. On a technical level, the transient nature of our result means that it reflects the effects of

genetic drift only during the early phase of adaptation. These early effects are crucial because

they are magnified by the action of positive selection. In contrast, our result ignores drift after

phenotypic adaptation has been accomplished—which is also a reason why it can be derived

at all.

To capture the key characteristics of the adaptive architecture, we dissect the joint distribu-

tion in Eq (8) into marginal distributions of single loci. As explained at the start of the results

section, these loci do not refer to a fixed genome position, but are defined a posteriori via their

role in the adaptive process. For example, themajor locus is defined as the locus with the high-

est mutant allele frequency at the end of the adaptive phase. (Since all loci have equal effects in

our model, this is also the locus with the largest contribution to the adaptive response, but see

S1 Appendix, Section D.) This is a different way to summarize the joint distribution than used

in some of the previous literature [26, 28, 29], which rely on a gene-centered view to study the

pattern at a focal locus, irrespective of its role in trait adaptation. In contrast, we use a trait-

centered view, which is better suited to describe and distinguish adaptive scenarios. For exam-

ple, “adaptation by sweeps” refers to a scenario where sweeps happen at some loci, rather than

at a specific locus. This point is further discussed in S1 Appendix, Section F, where we also dis-

play marginal distributions of Eq (8) for fixed loci.

The role of the background mutation rate. Our results show that the qualitative pattern

of polygenic adaptation is predicted by a single compound parameter: the background muta-

tion rate Θbg (see Eqs (10), (13) and (15)), i.e., the population mutation rate for the background

of a focal locus within the trait basis. For a large basis, Θbg is closely related to the trait muta-

tion rate. We can understand the key role of this parameter as follows. As detailed in the Sec-

tion Analytical analysis, the early stochastic phase of adaptation is governed by two processes:

New successful mutations (destined for establishment) enter the population at rate Θlsb per
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locus (where Θl is the locus mutation rate and sb the selection coefficient), while existing

mutants spread with an exponential rate sb. Consider the locus that carries the first successful

mutant. For Θbg< 1, the expected spread from this first mutant exceeds the creation of new

mutant lineages at all other loci. Therefore, the locus will likely maintain its lead, with an expo-

nentially growing gap to the second largest locus. Vice versa, for Θbg> 1, most likely one of

the competing loci will catch up. We can thus think of Θbg as a measure of competition experi-

enced by the major locus due to adaptation at redundant loci in its genetic background. The

argument does not depend on the strength of selection, which affects both rates in the same

way. The same can be shown for adaptation from standing genetic variation at mutation-selec-

tion-drift balance, see S2 Appendix, Section M.1. As a consequence of low mutant frequencies

during the stochastic phase, the result is also independent of interaction effects due to epistasis

or linkage.

Since the order of loci is not affected by the deterministic phase of the adaptive process, Θbg
maintains its key role for the adaptive architecture. In the joint frequency distribution, Eqs (5)

and (8), it governs the singular behavior of the marginal distribution at the major locus. For

Θbg< 1, this distribution has a singularity at the maximum of its range. Adaptation is therefore

dominated by the major locus, leading to heterogeneous architectures. For Θbg≲ 0.1, adapta-

tion occurs almost always due to a completed sweep at this locus. For Θbg> 1, in contrast, no

single dominating locus exists: adaptation is collective and supported by multiple loci. For a

polygenic trait with Θbg≳ 100, we obtain homogeneous small shifts at many loci, as predicted

by quantitative genetics.

The result also shows that the adaptive scenario does not depend directly on the number of

loci in the genetic basis of the trait, but rather on their combined mutation rate (the mutational

target size, sensu [11]). For redundant loci and fixed Θbg, the predicted architecture at the loci

with the largest contribution to the adaptive response is almost independent of the number of

loci, see Fig 4. Qualitatively, the same still holds true when the assumption of complete redun-

dancy is dropped (Fig 5). In this case, only loci in the genetic background that are not required

to reach the new trait optimum, but offer redundant routes for adaptation, are included in Θbg.
Note that the same reasoning holds for a quantitative trait that is composed of several modules

of mutually redundant genes, but where interactions among genes in different modules only

affect a focal module as a unit. I.e., due to changes in the genetic background, all loci in this

module experience a uniform change in the selection coefficient sb = sb(t)> 0. In this case,

assuming LE, our model still applies (cf. S2 Appendix). The adaptive architecture for each

module depends only on the module-specific Θbg, but not on the mutation rates at genes in the

basis of the trait outside of the module. Finally, we note that related measures of genetic redun-

dancy have previously been shown to determine the genetic architecture of local adaptation in

the face of gene flow [40].

Polygenic adaptation and soft sweeps. In our analysis of polygenic adaptation, we have

not studied the probability that adaptation at single loci could involve more than a single

mutational origin and thus produces a so-called soft selective sweep from recurrent mutation.

As explained in [6, 41], however, the answer is simple and only depends on the locus mutation

rate—independently of adaptation at other loci. Soft sweeps become relevant for Θl≳ 0.1. For

much larger values Θl� 1, they become “super-soft” in the sense that single sweep haplotypes

do not reach high frequencies because there are so many independent origins of the mutant

allele. The role of Θbg for polygenic adaptation is essentially parallel to the one of Θl for soft

sweeps. In both cases, the population mutation rate is the only relevant parameter, with a

lower threshold of Θ* 0.1 for a signal involving multiple alleles and much higher values for a

“super-soft” scenario with only subtle frequency shifts. Nevertheless, the mathematical
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methods to analyze both cases are different, essentially because the polygenic scenario does not

lend itself to a coalescent approach.

Alternative approaches to polygenic adaptation

The theme of “competition of a single locus with its background” relates to previous findings

by Chevin and Hospital (2008) [26] in one of the first studies to address polygenic footprints.

These authors rely on a deterministic model of an additive quantitative trait to describe the

adaptive trajectory at a single target QTL in the presence of background variation. The back-

ground is modeled as a normal distribution with a mean that can respond to selection, but

with constant variance. Obviously, a drift-related parameter, such as Θbg, has no place in such

a framework. Still, there are several correspondences to our result on a qualitative level. Specifi-

cally, a sweep at the focal locus is prohibited under two conditions. First, the background vari-

ation (generated by recurrent mutation in our model, constant in [26]) must be large. Second,

the fitness function must exhibit strong negative epistasis that allows for alternative ways to

reach the trait optimum—and thus produces redundancy (due to Gaussian stabilizing selec-

tion in [26]). Finally, while the adaptive trajectory depends on the shape of the fitness function,

Chevin and Hospital note that it does not depend on the strength of selection on the trait, as

also found for our model.

A major difference of the approach used in [26] is the gene-centered view that is applied

there. Consider a scenario where the genetic background “wins” against the focal QTL and

precludes it from sweeping. For a generic polygenic trait (and for our model) this still leaves

the possibility of a sweep at one of the background loci. However, this is not possible in [26],

where all background loci are summarized as a sea of small-effect loci with constant genetic

variance.

This constraint is avoided in the approach by deVladar and Barton [42] and Jain and Ste-

phan [31], who study an additive quantitative trait under stabilizing selection with binary loci

(see also [43] for an extension to adaptation to a moving optimum). These models allow for

different locus effects, but ignore genetic drift. Before the environmental change, all allele fre-

quencies are assumed to be in mutation-selection balance, with equilibrium values derived in

[42]. At the environmental change, the trait optimum jumps to a new value and alleles at all

loci respond by large or small changes in the allele frequencies. Overall, [42] and [31] predict

adaptation by small frequency shifts in larger parts of the biological parameter space relative to

our model. In particular, sweeps are prevented in [31] if most loci have a small effect and are

therefore under weak selection prior to the environmental change. This contrasts to our

model, where the predicted architecture of adaptation is independent of the selection strength.

Thus, in our model, weak selection does not imply shifts. This difference can at least partially

be explained by the neglect of drift effects on the starting allele frequencies in the deterministic

models. In the absence of drift, loci under weak selection start out from frequency x0 = 0.5

[42]. In finite populations, however, almost all of these alleles start from very low (or very

high) frequencies—unless the population mutation parameter is large (many alleles at interme-

diate frequencies at competing background loci are expected only if Θbg� 1, in accordance

with our criterion for shifts). To test this further, we have analyzed our model for the case of

starting allele frequencies set to the deterministic values of mutation-selection balance, μ/sd.
Indeed, we observe adaptation due to small frequency shifts in a much larger parameter range

(S1 Appendix, Section B).

Generally, adaptation by sweeps in a polygenic model requires a mechanism to create het-

erogeneity among loci. This mechanism is entirely different in both modeling frameworks.

While heterogeneity is (only) produced by unequal locus effects for the deterministic
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quantitative trait, it is (solely) due to genetic drift for the redundant trait model. Since both

approaches ignore one of these factors, both results should rather underestimate the preva-

lence of sweeps. Indeed, heterogeneity increases for our model with unequal locus effects (see

S1 Appendix, Section D).

Both drift and unequal locus effects are included in the simulation studies by Pavlidis et al

(2012) [28] and Wollstein and Stephan (2014) [29]. These authors assess patterns of adaptation

for a quantitative trait under stabilizing selection with up to eight diploid loci. However, due to

differences in concepts and definitions there are few comparable results. In contrast to [31]

and to our approach, they study long-term adaptation (they simulate Ne generations). In [28,

29], sweeps are defined as fixation of the mutant allele at a focal locus, whereas frequency shifts
correspond to long-term stable polymorphic equilibria [29]. With this definition, a shift sce-

nario is no longer a transient pattern, but depends entirely on the existence (and range of

attraction) of polymorphic equilibria. A polymorphic outcome is likely for a two-locus model

with full symmetry, where the double heterozygote has the highest fitness. For more than two

loci, the probability of shifts decreases (because polymorphic equilibria become less likely, see

[44]). However, also the probability of a sweep decreases. This is largely due to the gene-cen-

tered view in [28], where potential sweeps at background loci are not recorded (see also S1

Appendix, Section F).

Scope of the model and the analytical approach

We have described scenarios of adaptation for a simple model of a polygenic trait. This model

allows for an arbitrary number of loci with variable mutation rates, haploids and diploids,

linkage, time-dependent selection, new mutations and standing genetic variation, and alterna-

tive starting conditions for the mutant alleles. Its genetic architecture, however, is strongly

restricted by our assumption of (full or relaxed) redundancy among loci. In the haploid, fully

redundant version, the phenotype is binary and only allows for two states, ancestral wildtype
andmutant. Biologically, this may be thought of as a simple model for traits like pathogen or

antibiotic resistance, body color, or the ability to use a certain substrate [45, 46].

Our main motivation, however, has been to construct a minimal model with a polygenic

architecture that allows for both sweep and shifts scenarios—and for comprehensive analytical

treatment. One may wonder how our methods and results generalize if we move beyond our

model assumptions.

Key to our analytical method is the dissection of the adaptive process into a stochastic

phase that explains the origin and establishment of beneficial variants and a deterministic

phase that describes the allele frequency changes of the established mutant copies. This frame-

work can be applied to a much broader class of models. Indeed, in many cases, the fate of bene-

ficial alleles, establishment or loss, is decided while these alleles are rare. Excluding complex

scenarios such as passage through a fitness valley, the initial stochastic phase is relatively insen-

sitive to interactions via epistasis or linkage. We can therefore describe the dynamics of traits

with a different architecture (e.g. an additive quantitative trait with equal-effect loci under sta-

bilizing selection) within the same framework by coupling the same stochastic dynamics to a

different set of differential equations describing the dynamics during the deterministic phase.

This is important because, as described above, the key qualitative results to distinguish

broad categories of adaptive scenarios are due to the initial stochastic phase. This holds true, in

particular, for the role of the background mutation rate Θbg. We therefore expect that these

results generalize beyond our basic model. Indeed, we have already seen this for our model

extensions to include diploids, linkage, and relaxed redundancy. Vice-versa, we have seen that

other factors, such as alternative starting conditions for the mutant alleles, directly affect the
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early stochastic phase and lead to larger changes in the results. As shown in S1 Appendix, Sec-

tion B, however, they can be captured by an appropriate extension of the stochastic Yule pro-

cess framework.

Several factors of biological importance are not covered by our current approach. Most

importantly, this includes loci with different effect sizes and spatial population structure. Both

require a further extension of our framework for the early stochastic phase of adaptation.

Unequal locus effects (both directly on the trait or on fitness due to pleiotropy) are expected to

enhance the heterogeneity in the adaptive response among loci, as confirmed by simulations

of a 2-locus model in S1 Appendix, Section D. The opposite is true for spatial structure, as fur-

ther discussed below.

When to expect sweeps or shifts

Although our assumptions on the genetic architecture of the trait (complete redundancy and

equal loci) are favorable for a collective, shift-type adaptation scenario, we observe large

changes in mutant allele frequencies (completed or partial sweeps) for major parts of the

parameter range. A homogeneous pattern of subtle frequency shifts at many loci is only

observed for high mutation rates. This contrasts with experience gained from breeding and

modern findings from genome-wide association studies, which are strongly suggestive of an

important role for small shifts with contributions from very many loci (reviewed in [1, 15, 47–

49], see [12, 50, 51] for recent empirical examples). For traits such as human height, there has

even been a case made for omnigenic adaptation [8], setting up a “mechanistic narrative” for

Fisher’s (conceptual) infinitesimal model. Clearly, body height may be an extreme case and the

adaptive scenario will strongly depend on the type of trait under consideration. Still, the ques-

tion arises whether and how wide-spread shift-type adaptation can be reconciled with our pre-

dictions. We will first discuss this question within the scope of our model and then turn to

factors beyond our model assumptions.

The size of the background mutation rate. The decisive parameter to predict the adap-

tive scenario in our model, the background mutation rate, is not easily amenable to measure-

ment. Θbg = (L − 1)Θl compounds two factors, the locus mutation parameter Θl and the

number of loci L, which are both complex themselves and require interpretation. To assess the

plausibility of values of the order of Θbg≳ 100, required for homogeneous polygenic shifts in

our model, we consider both factors separately.

Large locus mutation rates Θl = 4Neμ (for diploids, 2Neμ for haploids) are possible if either

the allelic mutation rate μ or the effective population size Ne is large. Both cases are discussed

in detail (for the case of soft sweeps) in [6]. Basically, μ can be large if the mutational target at
the locus is large. Examples are loss-of-function mutations or cis-regulatory mutations. Ne is

the short-term effective population size [41, 52, 53] during the stochastic phase of adaptation.

This short-term size is unaffected by demographic events, such as bottlenecks, prior to adapta-

tion. It is therefore often larger than the long-term effective size that is estimated from nucleo-

tide diversity. (Strong changes in population size during the adaptive period can have more

subtle effects [54].) For recent adaptations due to gain-of-function mutations, plausible values

are Θl≲ 0.1 for Drosophila and Θl≲ 0.01 for humans [6].

If 10 000 loci or more contribute to the basis of a polygenic trait [8], large values of Θbg
could, in principle, easily be obtained. However, the parameter L in our model counts only loci

that actually can respond to the selection pressure: mutant alleles must change the trait in the

right direction and should not be constrained by pleiotropic effects. Omnigenic genetics, in

particular, also implies ubiquitous pleiotropy and so the size of the basis that is potentially
available for adaptation is probably strongly restricted. For a given trait, the number of
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available loci Lmay well differ, depending on the selection pressure and pleiotropic con-

straints. Furthermore, our results for the model with relaxed redundancy show that Θbg only

accounts for loci that are truly redundant and offer alternative routes to the optimal pheno-

type. With this in mind, values of L in the hundreds or thousands (required for Θbg� 100)

seem to be quite large. While some highly polygenic traits such as body size could still fulfill

this condition, this appears questionable for the generic case.

Balancing selection and spatial structure. In our model, characteristic patterns in the

adaptive architecture result from heterogeneities among loci that are created by mutation and

drift during the initial stochastic phase of adaptation. As initial condition, we have mostly

assumed that mutant alleles segregate in the population in the balance of mutation, purifying

selection and genetic drift. Since this typically results in a broad allele frequency distribution

(unless mutation is very strong), it favors heterogeneity among loci and thus adaptation by

(partial) sweeps. However, even after decades of research, the mechanisms to maintain genetic

variation in natural populations remain elusive [1]. As discussed in S1 Appendix, Section B,

more homogeneous starting conditions for the mutant alleles can be strongly favorable of a

shift scenario. Such conditions can be created either by balancing selection or by spatial popu-

lation structure.

Balancing selection (due to overdominance or negative frequency dependence) typically

maintains genetic variation at intermediate frequencies. If a major part of the genetic variance

for the trait is due to balancing selection, adaptation could naturally occur by small shifts.

However, the flexibility of alleles at single loci, and thus the potential for smaller or larger

shifts, will depend on the strength of the fitness trade-off (e.g. due to pleiotropy) at each locus.

If these trade-offs are heterogeneous, the adaptive architecture will reflect this. Also, adaptation

against a trade-off necessarily involves a fitness cost. Therefore, if the trait can also adapt at

loci that are free of a trade-off, these will be preferred, possibly leading to sweeps.

As discussed in a series of papers by Ralph and Coop [34, 35], spatial population structure

is a potent force to increase the number of alternative alleles that contribute to the adaptive

response. If adaptation proceeds independently, but in parallel, in spatially separated subpopu-

lations, different alleles may be picked up in different regions. Depending on details of the

migration pattern [36], we then expect architectures that are globally polygenic with small

shifts, but locally still show sweeps or dominating variants.

Furthermore, population structure and gene flow before the start of the selective phase can

have a strong effect on the starting frequencies. In particular, if the base population is admixed,

mutant alleles could often start from intermediate frequencies and naturally produce small

shifts. This applies, in particular, to adaptation in modern human populations, which have

experienced major admixture events in their history [55, 56] and only show few clear signals of

selective sweeps [11].

Finally, gene flow and drift will continue to change the architecture of adaptation after the

rapid adaptive phase that has been our focus here. This can work in both directions. On the

one hand, subsequent gene flow can erase any local sweep signals by mixing variants that have

been picked up in different regions [34, 35]. On the other hand, local adaptation, in particular,

may favor adaptation by large-effect alleles at few loci, favoring sweeps over longer time-scales.

Indeed, as argued by Yeaman [40], initial rapid adaptation due to small shifts at many alleles of

mostly small effect may be followed by a phase of allelic turnover, during which alleles with

small effect are swamped and few large-effect alleles eventually take over. This type of allele

sorting over longer time-scales is also observed in simulations studies for a quantitative trait

under stabilizing selection that adapts to a new optimum after an environmental change

[31, 57].
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Between sweeps and shifts: Adaptation by partial sweeps. Previous research has almost

entirely focused on either of the two extreme scenarios for adaptation: sweeps in a single-locus

setting or (infinitesimal) shifts in the tradition of Fisher’s infinitesimal model. This leaves con-

siderable room for intermediate patterns. Our results for the redundant trait model show that

such transitional patterns should be expected in a large and biologically relevant parameter

range (values of Θbg between 0.1 and 100). Patterns between sweeps and shifts are polygenic in

the sense that they result from the concerted change in the allele frequency at multiple loci.

They can only be understood in the context of interactions among these loci. However, they

usually do not show subtle shifts, but much larger changes (partial sweeps) at several loci. If

adaptation occurs from mutation-selection-drift balance, the polygenic patterns are typically

strongly heterogeneous, even across loci with identical effects on the trait. Such patterns may

be difficult to detect with classical sweep scans, in particular if partial sweeps are “soft” because

they originate from standing genetic variation or involve multiple mutational origins. How-

ever, they should be visible in time-series data and may also leave detectable signals in local

haplotype blocks.

Indeed there is empirical evidence for partial sweeps from time series data in experimental

evolve and resequence experiments on recombining species such as fruit flies. For example,

Burke et al. [58] observe predominantly partial sweeps (from SGV) in their long-term selection

experiments with Drosophila melanogaster for accelerated development—a rather unspecific

trait with a presumably large genomic basis. A similar pattern of “plateauing”, where allele fre-

quencies at several loci increase quickly over several generations, but then stop at intermediate

levels, was recently observed by Barghi and collaborators [59] for adaptation of 10 Drosophila
simulans replicates to a hot temperature environment. Complementing the genotypic time-

series data with measurements of several phenotypes, these authors found convergent evolu-

tion for several high-level traits (such as fecundity and metabolic rate), indicating that rapid

phenotypic adaptation had reached a new optimum. This high-level convergence contrasts a

strong heterogeneity in the adaptation response among loci and also between replicates [59].

Based on their data, the authors reject both a selective sweep model and adaptation by subtle

shifts. Instead, the observed patterns are most consistent with the intermediate adaptive sce-

nario in our framework, featuring heterogeneous partial sweeps at interacting loci with a high

level of genetic redundancy.
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