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The cell cycle is a rich field for research, especially, the DNA damage. DNA damage, which happened naturally or as a
result of environmental influences causes change in the chemical structure of DNA. The extent of DNA damage has a
significant impact on the fate of the cell in later stages.
In this paper, we introduced an Unsupervised Machine learning Model for DNA Damage Diagnosis and Analysis.
Mainly, we employed K-means clustering unsupervised machine learning algorithms. Unsupervised algorithms com-
monly draw conclusions from datasets by solely utilizing input vectors, disregarding any known or labeled outcomes.
Themodel provided deep insight about DNAdamage and exposes the protein levels for proteins whenwork together in
sub-networkmodel to deal with DNAdamage occurrence, the unsupervised artificial model explained the sub-network
biological model activities in regard to the changing in their concentrations in several clusters, they have been grouped
in such as (0 - no damage, 1 - low, 2 - medium, 3 - high, and 4 - excess) DNA damage clusters.
The results provided a rational and persuasive explanation for numerous important phenomena, including the
oscillation of the protein p53, in a clear and understandable manner. Which is encouraging since it demonstrates
that the K-means clustering approach can be easily applied to many similar biological systems, which aids in better un-
derstanding the key dynamics of these systems.
Introduction

The cell cycle is a vital process which produces 2 cells through the di-
vision of the mother cell, also this process called replication.4 A cell passes
through 3 stages during cell division: interphase, mitosis, and cytokinesis.2

The cell cycle has a very precise control system known as regulatory
system. This system consists of 3 checkpoints: 1 - G1/S, 2 - G2/M, and
3 - M to ensure that the cell cycle in each phase has been correctly
completed.31 The cell cycle consists of a group of proteins called cyclines
and cycline-dependent kinases that interact together under checkpoints su-
pervision, even though the major actors in cell cycle regulation are p53
and RB protein.4

DNA damage, which can happen for a variety of reasons and has a sig-
nificant impact on how the cell cycle progresses, is the main contributor.
If DNA damage occurs, there are several paths a cell can pass through (dam-
age recovery or cell death).8,12,26 To explain G1/S checkpoint, several
models have been proposed including, but not limited to
models.5,14,15,18,20,30,33–35

For this research, we used a model proposed by Khazaaleh et al21 for
DNA damage signaling pathway to know the cell fate based on p53
aaleh).
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oscillation. p53 protein plays a major role in triggering the control mecha-
nisms in the cell cycle. The model is used to determine the network's struc-
ture based on the DNA damage system's chemical reactions for G1/S
checkpoint as shown in Fig. 1.

Numerous protein kinases are drawn to the region of DNA damage as a
result of DNA damage, and they start a signaling cascade that stops the cell
cycle. Depending on the type of harm incurred, ATM/ATR is the initial ki-
nase at the point of damage, p53 is a gene-regulatory protein that produces
phosphate phosphorylation. In its natural state, Mdm2 promotes p53 ubiq-
uitination and degradation in proteasomes by binding to it. Because p53's
ability to bind to Mdm2 is inhibited by phosphorylation, p53 builds up to
high levels and promotes transcription of the gene encoding the CKI protein
p21. The G1/S-Cdk and S-Cdk complexes are bound and inactivated by the
p21, which causes the cell to be arrested in G1.1

In this research, we have a large and unconnected dataset that repre-
sents the concentration of proteins during the cell cycle, DNA damaged at
different levels. We used machine learning model by using K-means algo-
rithm to organize these data and find relationships between them, to get
deep understanding of the concentration of the main proteins at different
levels of DNA damage.
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Fig. 1. The DNA damage signalling pathway by Khazaaleh et al.21
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A better understanding of the DNA damage is useful for understanding
many of the diseases and find the treatments of these diseases, such as can-
cer disease.

Literature review

Several machine learning techniques are used in several models of bio-
chemical reaction network to get deep understanding for these networks. In
this section, many researches of applying K-means algorithm on the cell
cycle data are addressed.

Wu et al36 presented the GKMCA genetic clustering by using K-means
method for categorizing gene expression datasets. The GKMCA employs 3
operations on genetic (selection, crossover, andmutation) and an IOKMop-
erator stemming from IOKMA. Each individual is represented by a table, in-
dependently selecting a clustering. The GKMCA demonstrates superior
performance over IOKMA and other GA-clustering algorithms that do not
utilize the IOKM operator when applied to 2 authentic gene expression
datasets.

Duan and Zhang10 proposed a new approach to enhance the k-means
method’s performance. As biological benchmarks, protein complexes from
a public website were employed. By evaluating the “weighted k-means”
technique on a dataset of yeast cell cycle, they applied a progressively de-
creasing weight on the variable level of k-means approach, they used the
modified Rand index to gauge how well the k-means clusters agree with
the protein complex structures in order to compare them. The final results
proved that using a weight function exp[−(1/2)(t2/C2)] with C around
the length of 2 cell cycles causes to a large improvement in the effectiveness
of the k-means clustering.

In 2006, Chan and his teamproposed a research to solve global gene tra-
jectory clustering. This research employs a brand-new global clustering
technique dubbed the Greedy Elimination Method (GEM). GEM is easy to
use and works wonders to increase the solutions' overall optimality. Studies
comparing the GEM to the traditional K-means and the greedy incremental
technique are applied on 2 set data contains gene expressions revealing that
the GEM scores much reduced grouping errors.6 This method is simple to
implement and apply, but it needs to be tested on a larger number of
datasets to prove its effectiveness.

According to Sivozhelezov et al32 study, after identifying the major
genes involved in the T cells in human cell cycle, a variety of clustering
methods were applied to the genes according to the stated scores. The iden-
tical 6 “leader” genes elaborate in regulation of human T lymphocytes cell
cycle were consistently chosen by all clustering techniques used, including
K-means and hierarchical. The 6 genes' relationships to experimental find-
ings defining the transition of human T cells between cell cycle phases
are reviewed.

Jaeger and his collages offered a method for automatically identifying
cell cycle phases using 3D spinning disk confocal imaging data of
embryonic fibroblast mouse cells. They segment each volume using a 3D
k-means technique, and then they extract a collection of shape and
curvature characteristics to describe the subcellular foci patterns
2

connected to each channel's cell cycle phases. For 5 phases on the cell
cycle, they achieve accuracy of about 92%, and their scalability is
encouraging.19

The eXploratory K-means (XK-means) approach for grouping gene ex-
pression is introduced in Lam and Tsang24 study. The approach was built
by using incorporation of an exploratory mechanism and the K-means to
avoid the clustering process convergent too early. According to experimen-
tal findings, XK-means outperforms existing evolutionary algorithm-based
techniques in terms of speed, inaccuracy, and stability when grouping
gene expressions. The suggested solution is less sophisticated and is simple
to apply in real-world situations.

In order to identify stained nuclei and separate them for analysis of DNA
content at various cell cycle phases, Ferro et al presented a novel fluores-
cence image-based framework. The methodology involves using discrimi-
nating characteristics, such as area and total intensity, acquired using
fluorescence microscopy from in-situ labeled nuclei. This enables the eval-
uation of the cell cycle phase of individual cells and subpopulations. The
Gaussian mixture model classification system is used to improve analytical
frameworks, and it allows for very precise classification clusters according
to phases: 1 - G1, 2 - S, and 3 - G2. The results show that the imaging frame-
work is strong at recognizing specific DAPI-colored nuclei and determining
their proper cell cycle phases.11

Recently, in 2023 many of research has been published in biological
applications based on machine learning.3,7,9,13,16,17,22,27,29

Methodology

Dataset and model

As mentioned in the Introduction section, to identify the network's
structure based on the chemical processes of the DNA damage system and
get dataset, we utilized a base model for DNA damage signaling pathway
by Khazaaleh et al21 model. The dataset representing the concentration
values for 5 proteins during G1/S checkpoint period, resulting from apply-
ing the model at 5 levels of DNA damage.

K-means clustering involves partitioning a set of data points into
groups (clusters) based on their similarity. Each group is represented by
its centroid or its mean vector. This method is often used in signal process-
ing, image compression, and data mining, involves dividing n observa-
tions into k clusters based on proximity to the mean (also known as the
cluster centroid or cluster center), with each observation acting as a pro-
totype for the cluster. James MacQueen was the first researcher to use
k-means in 1967. K-means clustering is an algorithm for unsupervised
learning.28

The K-means algorithm is employed to cluster data by partitioning sam-
ples into k groups. This technique minimizes a criterion called inertia, also
known as the within-cluster variance sum-of-squares as Eq. (1).

arg min ∑
K

i¼1
∑x∈Si x � Mij jj j 2 (1)

Where:
S: sets of observations
K: number of sets of predicators
x: observation data point
Mi: mean of points in Si
In order to process learning data, the K-means algorithm starts with

the first randomly selected cluster that is used as a starting point for
each cluster, and then performs repetition calculations to optimize the
position of the cluster, and stops the creation and optimization of the
cluster when either: the center is stabilized and its value is unchanged
because the cluster is successful. The defined number of iterations has
been achieved. As shown in Fig. 2, the dataset used as input for this
model contains 3198 instances for 5 proteins, after processing in the
K-means clustering model the instances are categorized into 5 clusters
as output.



Fig. 2. The proposed K-means clustering model framework.

Fig. 3. 3198 instances for 5 protiens in 5 DNA damage clusters: no damage, low,
medium, high, and excess DNA damage.
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Simulation

• 3198 instances.
• Five levels of DNA damage: 0 - No-damage, 1 - Low, 2 - Medium, 3 - High,
and 4 - Excess damage.

• 25 attributes as following:
- p21 with 5 DNA damage levels.
- p53 with 5 DNA damage levels.
- Mdm2 with 5 DNA damage levels.
- ATM/ATR with 5 DNA damage levels.
- Im with 5 DNA damage levels.

• Number of iterations: 20.

Results and discussion

Table 1 shows the final cluster centroids and instances percent for each
cluster.

As shown in Table 1 and Fig. 3, we find that only 4% of instances are in
cluster 0 (No damage) and this is caused by most of the proteins are stay in
stead and low level when no DNA damage has occurred. We also note that
the instances rate begins to rise to become 23%, 7%, and 17% for cluster 1
(low damage), cluster 2 (mediumdamage), and cluster 3 (high damage), re-
spectively. DNA damage results in p53 activation, which triggers p21. The
role of p21 is to prevent CDK from acting in order to cause cell cycle arrest
by preventing the phosphorylation of Rb and keeping E2F inactive.37,38

This gives an explanation of the increase in the number of instances in clus-
ter 1 (lowdamage). Inmediumdamage,more activation occurs for p53 that
Table 1
Final cluster centroids.

Full data Cluster#

0 1 2 3 4

Attribute (3198.0) (129.0) (738.0) (219.0) (542.0) (1570.0)
Instances percent 100% 4% 23% 7% 17% 49%

3

cause large induces p21. Once DNA damage is repaired, the negative feed-
back loops involvingMdm2 and p53 can be reestablished completely, caus-
ing p53 levels to revert to a low state. Consequently, the reduction in p53
results in decreased p21 levels, accounting for the fewer occurrences ob-
served in cluster 2 (medium damage) and cluster 3 (high damage) com-
pared to cluster 1 (low damage).

In the process of regulating excessive DNA damage, the sequential acti-
vation of p53 and Mdm2 occurs, leading to elevated protein concentration
levels, which explains the high number of instances in cluster 4 (excess
damage) 49%. Because of the inability to DNA recovery process, the cell
goes on a path of terminating itself. All of what we mentioned earlier
which matched the results of the experiments conducted by Lahav et al,
Lev Bar-Or et al, and Yu et al.23,25,37

Fig. 4 shows the instances for 5 protiens (1 - p21, 2 - p53, 3 - Mdm2, 4 -
ATM/ATR, and 5 - Im) in 5 DNA damage clusters: A. No damage, B. Low, C.
Medium, D. High, and E. Excess DNA damage.

As shown in Fig. 5A, which represents p21 concentration with no DNA
damage,wefind thatmost of the instances are distributed over the different
clusters with a low concentration ranging between 0.000077 and 0.0079,
and this is due to the fact that protein 21 does not play any role in the
case of no DNA damage. Also, as shown in Fig. 5B, which represents a
p21 concentration with excess DNA damage, we find that most of the in-
stances are distributed over the different clusters with a high concentration
ranging between 0.053 and 0.11, and this is due to the fact that protein 21
plays a main role in the case of excess DNA damage.

As shown in Fig. 6, which represents p53 concentration with the excess
DNA damage, we note that all 5 clusters contain highly concentrated in-
stances and at the same time contain low concentration instances, and
this explains the phenomenon of oscillation in the concentration of p53 pro-
tein when the excess DNA damage occurs.

Through the final results of the proposed model and comparing them
with the results of Iwamoto et al, Lahav et al, Lev Bar-Or et al, and Yu
et al,18,23,25,37 we found a significant match which confirms the effective-
ness of the proposed model for dealing with big data.

Conclusion

The importance of using machine learning, especially K-means cluster-
ing method with biological systems provides a deep understanding for
these systems, especially whendealingwith a large dataset. In this research,
we used K-means clustering technique to handle a large set of complex and
unorganized data that represents the concentration of the most important
proteins that are essential in the different levels of the DNA damage. The
importance of the proposed model is demonstrated by achieving deeper



Fig. 4. Instances for 5 protiens in 5 DNA damage clusters: A. No damage, B. Low, C. Medium, D. High, and E. Excess DNA damage.
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Fig. 4 (continued).
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Fig. 4 (continued).

Fig. 5. Instances for p21 protien in 5 DNA damage clusters: A. No damage, B. Excess damage.
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Fig. 6. Instances for p53 protien in 5 DNA damage clusters with excess damage.
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understanding of the DNA damage, which means deeper understanding of
numerous diseases and find cures for them, including cancer.

The results showed, in a simple and logical way, a convincing and logi-
cal explanation for many of the vital observations, such as the oscillation of
protein p53. Which proves promising that the K-means clustering method
can be easily applied tomany similar biological systems, which helps to un-
derstand the vital dynamics of these systems in a deeper way.

In future work, we intend to improve the proposedmethod and to apply
the proposed method on the DNA damage signaling pathway and whole
cell cycle regulation and explored the effect of p53 on cell fate selection.
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