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Emerging evidence suggests that alterations in the development of the gastrointestinal
(GI) tract during the early postnatal period can influence brain development and vice-
versa. It is increasingly recognized that communication between the GI tract and brain
is mainly driven by neural, endocrine, immune, and metabolic mediators, collectively
called the gut-brain axis (GBA). Changes in the GBA mediators occur in response to the
developmental changes in the body during this period. This review provides an overview
of major developmental events in the GI tract and brain in the early postnatal period
and their parallel developmental trajectories under physiological conditions. Current
knowledge of GBA mediators in context to brain function and behavioral outcomes and
their synthesis and metabolism (site, timing, etc.) is discussed. This review also presents
hypotheses on the role of the GBA mediators in response to the parallel development of
the GI tract and brain in infants.

Keywords: gut-brain axis, brain, gastrointestinal tract, postnatal development, cognition, metabolites, microbiota

INTRODUCTION

The early years of childhood form the basis for physical, metabolic, emotional, cognitive, and social
development and have a lasting impact on adult life. Although development starts in utero, the
developmental events from birth up to 2–3 years of life are equally crucial. This period of life is
termed the early postnatal period, where infants undergo rapid developmental maturation in a
intrauterine-independent environment. Environmental factors (e.g., diet and early life experiences)
are crucial determinants of postnatal development, lifelong health, and wellness.

There is a rapid brain development (e.g., synaptogenesis and myelination) (Knickmeyer
et al., 2008) and establishment of cognitive behavioral outcomes in the first 2 years of life

Abbreviations: 5-HT, serotonin; AHR, aryl-hydrocarbon receptor; BBB, blood–brain barrier; EEC, enteroendocrine cells;
ENS, enteric nervous system; GABA, gamma-aminobutyric acid; GBA, gut-brain axis; GF, germ-free; GI, gastrointestinal;
GLP, glucagon-like peptide; IDO, indoleamine-2,3-dioxygenase; LPS, lipopolysaccharides; PYY, peptide YY; SCFA, short-
chain fatty acids; SPF, specific pathogen-free; TPH, tryptophan hydroxylase; TRP, tryptophan; VN, vagus nerve.
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(Nelson et al., 2007). The GI tract also undergoes profound
growth, morphological changes, and functional maturation,
including the establishment of a stable GI microbiota (Xu, 1996;
Koenig et al., 2011). Other systems, such as the immune, nervous,
skeletal, and circulatory systems, also continue to develop in the
early postnatal years of life (Sgarbieri and Pacheco, 2017).

The development phases of the GI tract and the brain
are interdependent and occur in a parallel timeline (Carlson
et al., 2018; Gao et al., 2019), but are not necessarily
synchronous. The developmental interdependency between the
GI tract and brain can be attributed to the GBA; a complex,
bidirectional communication, incorporating neural, endocrine,
immune, and metabolic mediators. The GBA is increasingly
recognized as having a role both in physiological and pathological
conditions. However, the development of the communication
between the GI tract and brain via the GBA remains poorly
understood, and more research is required to define better
strategies to improve cognitive outcomes, particularly in the early
postnatal period.

This review provides an overview of major developmental
events in the brain and GI tract in the early postnatal period
and their parallel developmental trajectories under physiological
conditions. Current knowledge of GBA mediators in context
to brain function and behavioral outcomes and their synthesis
and metabolism (site, timing, etc.) is discussed. Evidence and
hypothesis on GBA mediator’s development in the early postnatal
period are also provided.

EARLY LIFE BRAIN DEVELOPMENT

The development of the brain is an organized, predetermined,
and highly dynamic multistep process. It begins in utero
following fertilization and continues postnatally into adolescence
in humans (Gibb and Kovalchuk, 2018). During the early
postnatal period, brain architecture is shaped and the foundation
is set for perceptual, cognitive, and emotional abilities (Paterson
et al., 2006). It is increasingly recognized as crucial for the
establishment of cognitive and behavioral abilities that last a
lifetime (Nelson et al., 2007). Recently, an emphasis has been
given to the first 1,000 days, as an opportunity to influence
cognitive outcomes in the child (Cusick and Georgieff, 2016).
Studies elucidating brain development over this period are vital
for research, clinical, educational, and social outcomes. For
instance, data on brain development may be relevant for early
diagnosis of behavioral disorders like autism (Keehn et al., 2013;
Wolff et al., 2015).

The critical brain developmental events include neurulation,
neurogenesis, gliogenesis, neural migration, synaptogenesis,
myelination, and regressive events like apoptosis and synapse
pruning [see reviews by Andersen (2003); Tau and Peterson
(2009); Davis (2018)]. In the prenatal period, the development
of the brain is mostly influenced by genetic determinants,
but in the early postnatal period environmental factors take
precedence. Hence, brain developmental events in the early
postnatal period are of particular importance, as less favorable
environmental conditions can compromise the foundation of

brain development, and can have adverse impacts on later stages
of life (McCrory et al., 2010).

In the following section, cellular, structural, and
functional development of the brain in the early postnatal
period are discussed.

Postnatal Development
In the postnatal period, neurogenesis (formation of neurons)
continues to a limited degree in the olfactory bulb (Bergmann
et al., 2012) and hippocampal dentate gyrus throughout
life (Boldrini et al., 2018). Unlike neurogenesis, gliogenesis
(formation of glia) peaks during the first year of life and
continues until adolescence (Semple et al., 2013; Reemst et al.,
2016; Allswede and Cannon, 2018). Glia has three significant
cell subtypes within the brain, namely microglia, astrocytes, and
oligodendrocytes, each with different developmental timelines.
The microglia regulates neurogenesis, and synaptic refinement
(c.f., section “Immune Mediators”) astrocytes support formation
and plasticity of the synapse while the oligodendrocytes form
myelin (Eroglu and Barres, 2010). The proliferation of microglia
peaks in the first 2 weeks after birth and continues until the
first month after birth (Budday et al., 2015). The proliferation of
astrocytes and oligodendrocytes peak before birth and continue
until 15 months of age and adulthood, respectively (Allswede and
Cannon, 2018; Davis, 2018). Apoptosis of neuronal cells is largely
completed in utero, however, apoptosis of the glial cell population
continues to occur in the first few months of after birth (Tau
and Peterson, 2009; Stiles and Jernigan, 2010). Oligodendrocytes
undergo apoptosis to control myelin production during the initial
stage of myelination (Caprariello et al., 2015).

Synaptogenesis (formation of the synapse) begins in utero
but peaks across most of the regions of the brain in the early
years of postnatal life (Huttenlocher and Dabholkar, 1997).
Synaptogenesis peaks at different times in different regions
of the brain, such as in the areas of the cerebral cortex
where heterogeneity in synaptogenesis is well documented
(Huttenlocher and Dabholkar, 1997). The infant’s brain has
almost double the number of synapses compared to the adult
brain, and their abundance is reduced by the process of synaptic
pruning, which is pronounced during the period of childhood to
adolescence (Huttenlocher, 1979; Huttenlocher and Dabholkar,
1997). Together the formation and retraction of synapses shape
the neural connections in the brain.

The cerebral cortex is divided into three functionally distinct
areas, namely, sensory areas (e.g., visual cortex and auditory
cortex), motor areas (e.g., motor cortex), and association areas
(e.g., prefrontal cortex). Synaptogenesis in the visual cortex
(present in the occipital lobe) peaks at around 6 months
of age (Huttenlocher, 1999), whereas in the auditory cortex
(temporal lobe) it peaks around 3 months of age, and in
the prefrontal cortex (present in the frontal lobe) around
3 years of age (Huttenlocher and Dabholkar, 1997). Hence,
this developmental pattern indicates that synaptogenesis peaks
first in the sensory and later in the association areas,
from a posterior to an anterior direction (Huttenlocher and
Dabholkar, 1997; Giedd et al., 1999). The communication
across synapses is facilitated by neurotransmitters (c.f., section
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“Neurotransmitters”) whose abundance increases concomitantly
with synaptogenesis (Herlenius and Lagercrantz, 2004).

Myelination is a critical cellular event for the development
of the brain, particularly for enhanced neuronal activity and
communication. This process consists of the wrapping of axons of
neurons with a myelin sheath. Myelination begins in the prenatal
period, peaks during the first 3 years of life and continues until
the second and third decade years of life (Giedd et al., 1999).
Like synaptogenesis, myelination occurs first in the sensory areas
followed by association areas of the brain from a posterior to
an anterior direction (Volpe, 2000; Barkovich, 2005). Hence,
the developmental pattern of synaptogenesis and myelination
is indicative of areas with functions that are critical in early
life, thus necessitating an earlier requirement for maturation
(Huttenlocher and Dabholkar, 1997; Barkovich, 2005).

The brain undergoes significant structural development in the
first 2 years of life (Casey et al., 2000). At birth, the total brain
volume is 36% of an adult brain, and it reaches around 70% by the
first year of age, and 80% by the second year (Knickmeyer et al.,
2008). The cortical volume also increases by 88% in the first year
and 15% in the second year (Knickmeyer et al., 2008). Cortical
volume is determined by the cortical thickness and surface area,
and these determinants also change in the first 2 years of life. The
increase in cortical thickness and surface area is 31 and 76.4%
in the first year of life, and 4.3 and 22.5% in the second year
(Lyall et al., 2015). Regional differences in cortical thickness and
surface areas are also observed (Shaw et al., 2008; Lyall et al.,
2015; Remer et al., 2017). The volume of thalamus and amygdala
increases by 130 and 14% in the first and second year, respectively
(Knickmeyer et al., 2008). The hippocampus grows slowly in the
first year but increases rapidly in the second year, likely linked to
the increasing complexity of spatial working memory and path
integration when a 2 years child becomes more mobile (Wolbers
et al., 2007; Gilmore et al., 2012).

Concurrent with a rapid cellular and structural brain growth
is an equally rapid development of the brain functions in the first
years of postnatal life (Gilmore et al., 2012). The brain’s functional
networks are present in utero, but continue to develop in the
early postnatal period (Gao et al., 2015): primary sensory-motor
and auditory networks are the first to develop, followed by visual,
attention, and default mode networks, and finally, the executive
control networks begin to emerge (Gao et al., 2015). Different
functional networks are activated during different cognitive tasks
performed by infants, such as distinguishing different voices,
recognizing faces, object permanence, etc. (Paterson et al., 2006).

Changes in both the structural and functional networks of
the brain contribute to the development of cognitive abilities
(e.g., perception, memory) in the first years after the birth of
infants (Gilmore et al., 2018). These developmental events are
mainly affected by external factors (diet and early life experiences)
(Nelson et al., 2007; Deoni et al., 2018). Any positive and
negative alterations of these external factors can either enhance
or compromise the development of the brain.

Within the body, the early life development of the brain is co-
dependent on the development and appropriate functioning of
many organs. It is recognized that the GI tract plays one of the
most significant roles in shaping the development of the brain.

EARLY LIFE GASTROINTESTINAL
TRACT DEVELOPMENT

In utero, the fetus gets nutrients from the maternal blood via
the placenta (Salafia et al., 2007) but after birth, the infant
begins enteral nutrition with the uptake of breast-milk (Sangild
et al., 2000). This shift from parenteral to enteral nutrition
requires a developed GI tract before birth (Sangild et al., 2000).
At birth, the tube is fully formed with the required motility
functionality to ensure the survival of infant on mother’s breast-
milk, independent of placental nutrition (Grand et al., 1976).
Details of the GI tract developmental events in the prenatal
period have been reviewed elsewhere (Grand et al., 1976;
Montgomery et al., 1999; Dimmitt et al., 2018). The GI tract
continues to mature in structure and function postnatally, and
early life foods are one of its crucial determinants. For instance,
mother’s milk and increasingly complex foods after weaning
influence the maturation of GI tract (Kelly et al., 1991; Zhang
et al., 1998; Jensen et al., 2001) to digests food, absorbs nutrients,
and deliver nutrients to the body’s cells for growth development,
and maintenance.

Postnatal Development
The GI tract cellular features are primarily established prenatally
followed by structural and functional maturation postnatally in
response to early life food (breast-milk and/or formula) (Zhang
et al., 1998; Jensen et al., 2001). The structural maturation of
the GI tract includes changes in terms of size and anatomical
features. Postnatally, the esophagus, stomach, and small and
large intestines continue to grow in size (Weaver et al., 1991;
Xu, 1996). The postnatal period is also marked by a decline
in epithelial permeability (Jakoi et al., 1985; Jakobsson et al.,
1986; Drozdowski et al., 2010). After birth, the small intestine is
permeable to macromolecules (e.g., immunoglobulin G) present
in breast-milk (Jakoi et al., 1985). Within the first few days, the
small intestine’s permeability to macromolecule is reduced, which
results in cessation of macromolecule transport paracellularly
(Jakoi et al., 1985). The exact timing of permeability reduction
in humans remains unknown, but studies in piglets and rats
suggest that barrier closure happens in the first 2 days after
birth (Weström et al., 1984), and by postnatal week 3 (Arévalo
Sureda et al., 2016), respectively. Villi development is largely
completed at birth, whereas a rapid increase in crypt depth and
crypt cell proliferation in the small intestine also occurs in the first
years of life, increasing the surface area for nutrient absorption
(Thompson et al., 1998; Cummins and Thompson, 2002).

Unlike other peripheral organs, the GI tract has a dedicated
nervous system called the enteric nervous system (ENS). The
regulation and coordination of muscular and secretory activity
by the ENS are required for digestion and absorption (Rao
and Gershon, 2016). The ENS is embedded along the wall of
the GI tract and consists of a network of neurons that mainly
resides within two major ganglionated plexuses (Furness, 2012).
The myenteric plexus lies in the muscular propria layer, and
the submucosal plexus is in the submucosa layer. In mice,
the maturation of ENS in terms of neuronal morphology
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(e.g., dendritic and axonal structure), types of neurons (e.g.,
cholinergic and nitrergic), neurally mediated motility patterns in
different regions of GI tract occurs during the postnatal period,
as reviewed by Foong (2016). For detailed information on ENS
development, readers are redirected to the extensive compilation
by Rao and Gershon (2018).

In utero, the GI tract of the fetus is exposed to amniotic
fluid, which contains 98% water and 2% protein, sodium,
chloride, and CO2 (i.e., low nutrient content) (Bonsnes, 1966).
Immediately after birth, the infant is introduced to colostrum,
which is rich in proteins (e.g., lactoferrin and lactoperoxidase),
immunoglobulins, and growth factors (e.g., epidermal growth
factor and vascular endothelial growth factor) (Ballard and
Morrow, 2013; Godhia and Patel, 2013). The infant GI tract
undergoes further functional development to adapt to complex
and more diverse nutrient profiles postnatally (Hampson,
1986; Thompson et al., 1998). The activity of the enzymes
enterokinase (protein hydrolysis), gastric lipase (lipid hydrolysis),
and lactase (carbohydrate hydrolysis) increases gradually after
birth (Antonowicz and Lebenthal, 1977; Moreau et al., 1988;
Shulman et al., 1998) to facilitate the digestion of complex food
structures. Functional maturation of the GI tract in the postnatal
period also includes the establishment of the microbiota.

Microbial Colonization
The colonization of microbes in the GI tract begins at birth
and continues until about 3 years of age when the composition
becomes adult-like (Koenig et al., 2011; Yatsunenko et al., 2012).
However, the literature suggests the presence of microbes in
utero. This view arises from the fact that microbes have been
detected in the meconium (i.e., the first stool of infant after birth),
amniotic fluid, and placenta (Aagaard et al., 2014; Ardissone
et al., 2014; Urushiyama et al., 2017; Shi et al., 2018). A study
by Ardissone et al. (2014) showed that approximately 61% of
the microbial population in meconium was found to be similar
to that of the amniotic fluid, suggesting that microbes in the
meconium originate by swallowing of amniotic fluid by the
fetus (Ardissone et al., 2014). The viability of microbes in utero
remains debated in the scientific community, and the problem of
contamination artifacts is an issue discussed among researchers.
However, recent mouse studies showed viable bacteria in the
fetal gut, uterus, and placenta, suggesting the possibility of the
presence of viable bacteria in a human fetus (Younge et al., 2019).
Therefore, more studies on in utero colonization are warranted to
challenge the accepted sterile womb paradigm.

In the postnatal period, the microbial colonization of the
infant GI tract follows a succession of steps. Studies of the
GI microbiota in the infant are limited to fecal samples. Stool
samples are a proxy for the microbial population of the large
intestine but may not represent it accurately. During the first
few weeks after birth, the GI microbiota of infants is dominated
by facultative anaerobes like members of the Enterobacteriaceae
family (Palmer et al., 2007; Matsuki et al., 2016; Nagpal et al.,
2017), which are likely coming from the mother’s vagina and skin
(Palmer et al., 2007; Lozupone et al., 2013). At around 6 months,
strict anaerobes, including bacteria of the Bifidobacterium,
Clostridium, and Bacteroides genera, dominate the composition

(Nagpal et al., 2017). At around 3 years of age, the microbiota
profile shows a high degree of resemblance to that of adults
(Palmer et al., 2007; Koenig et al., 2011; Yatsunenko et al., 2012)
and is represented almost entirely by strict anaerobes like the
Clostridium coccoides group, Clostridium leptum subgroup, and
Prevotella (Nagpal et al., 2017).

However, the GI microbial community consists not only
of bacteria but also include phage, archaea, and fungi. Most
studies have focused on bacterial colonization of the GI tract
in infants, and much less is known about other kingdoms of
life. According to the available knowledge, bacteriophage, mainly
of the Caudovirales order and Microviridae family, archaea
Methanobrevibacter smithii, and fungi Candida albicans are the
most predominant non-bacterial organism in the infant GI tract
during the first years of life (Palmer et al., 2007; Smith et al.,
2013; Heisel et al., 2015; Lim et al., 2015, 2016; Schei et al., 2017;
Ward et al., 2017).

The transition from milk to solid food is one of the influential
factors of the colonization process in infants (Fallani et al., 2011;
Koenig et al., 2011; Turroni et al., 2012). More studies where the
analysis of the bacteria, phage, archaea, and fungi composition
and function are needed to fully understand the colonization
patterns and their temporal changes during the transition from
milk to solid foods.

PARALLEL DEVELOPMENT BETWEEN
THE GI TRACT AND BRAIN

The majority of the development of the GI tract and brain
occur in parallel, but their development is asynchronous in
terms of attaining peak and maturity. For instance, microbial
colonization, tissue structural maturation, and ENS maturation
coincide with the refinement and remodeling of brain neural
circuits and cognitive development in the first years of life
(Figure 1). There is increasing evidence that the colonization
of the GI tract by the microbiota appears to have a parallel
developmental trajectory to the brain for up to 3 years of age.
A study by Carlson et al. (2018) showed that infants with
a high relative abundance of Bacteroides in their stools had
better cognitive performance in terms of receptive language and
expressive language. In contrast, infants with a high level of
Faecalibacterium in their stools had lower cognitive performance
(Carlson et al., 2018). Another study in infants showed a positive
association of the alpha diversity of the fecal microbiota and the
functional connectivity between the supplementary motor area
and the inferior parietal lobule (areas associated with cognitive
outcomes) of the brain (Gao et al., 2019).

Evidence from rodent studies has also provided insights into
the correlation between changes in the GI microbiota and brain
function in early postnatal life. Germ-free (GF) mice displayed
altered anxiety responses, abnormal motor activities, enhanced
stress responses, and memory dysfunction (Sudo et al., 2004;
Gareau et al., 2011; Heijtz et al., 2011). Interestingly, when
GF mice are conventionalized with microbiota obtained from
specific pathogen-free (SPF) mice in adulthood rather than early
life, anxiety-like behavior associated with altered synaptic related
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FIGURE 1 | Parallel development of the GI tract and the brain in first 3 years
of life. In the GI tract, increase in microbial abundance and diversity,
enterocyte maturation (change in crypt and villi structure) and ENS maturation
(change in nerve density, type of neurons) occurs rapidly in the first 3 years of
life. Meanwhile, brain also develops rapidly, with the change in its volume
(peak in the first year), synaptogenesis, myelination, synaptic refinement, and
establishment of cognitive abilities like auditory and visual processing,
perception, and memory. The darkness of the color represents the
intensity/peak of the developmental event. GI, gastrointestinal; ENS, enteric
nervous system. Note: The developmental timing of the cellular events may
vary across different regions of the brain.

proteins and neurotransmitter turnover persist (Sudo et al., 2004;
Heijtz et al., 2011). These findings suggest that specific changes in
brain structure and function cannot be reversed beyond a critical
window in the early postnatal period (Sudo et al., 2004; Heijtz
et al., 2011).

Additionally, adult GF mice exhibit a decreased production
of the neurotransmitter serotonin (5-HT) in the GI tract, as
compared to conventionally raised and SPF adult mice (Reigstad
et al., 2015; Yano et al., 2015). 5-HT is produced both in the
brain and the GI tract (c.f., section “Tryptophan Metabolites”).
It is well known that brain-derived 5-HT is associated with
mood regulation, learning, and memory (Cowen and Sherwood,
2013; Carhart-Harris and Nutt, 2017), but whether changes
in GI-derived 5-HT regulate these brain functions, remains
to be confirmed.

A study by Collins et al. (2014) showed that, at 3 days of age,
the development of myenteric plexus of the ENS was structurally
abnormal in GF mice compared to that of SPF mice. The
myenteric plexus showed decreased nerve density and ganglionic
size but increased nitrergic neurons in the GF mice (Collins et al.,
2014). Whether these functional changes in the GI tract translate
into cognitive outcomes, remain unknown, but it is plausible
that there is an interdependency between the establishment of
the GI microbiota, the ENS and the development of the brain.

It is important to note that studies in rodent models may not
be reproducible in humans, as there is a marked difference
between rodents and humans in terms of the developmental
patterns of the GI tract and brain. Rodents are born with a
relatively underdeveloped GI tract, and most of the functional
development occurs in the postnatal period (Searle, 1995;
Drozdowski et al., 2010; Guilloteau et al., 2010). The timing of
brain developmental events is also different between humans and
rodents (Pressler and Auvin, 2013). The anatomy and physiology
of the GI tract, brain growth, and developmental patterns of
both organs in piglets share a greater similarity to humans than
other non-primate models like rodents (Guilloteau et al., 2010;
Mudd and Dilger, 2017).

Most studies of GI and brain development have been
mainly focused on the role of the GI microbiota. The GI
tract undergoes developmental changes not only in terms of
microbiota but also enzyme activity, gastric secretions, small
intestinal permeability, and increased surface area for absorption
of nutrients (i.e., crypt-villi structural modification) (c.f., section
“Postnatal Development”). How these changes in the GI mucosa
affect brain outcomes remains mostly unknown. For instance, an
increase in the surface area of absorption of nutrients over this
period could result in increased availability of nutrients for the
host and less for the microbiota. The result could be a profile
of different neuroactive metabolites in the GI tract contributing
to specific cognitive outcomes. However, no studies have been
conducted to relate structural and functional modifications in
the GI tract to brain developmental events in the early years
of postnatal life.

GUT-BRAIN AXIS

The GI tract and the brain are connected through a complex
network of signaling pathways collectively termed as the GBA
(Carabotti et al., 2015). In the last decade, the role of GI
microbiota in the GBA has been extensively assessed, and the
term has been extended to microbiota-GBA. Here, the term
GBA includes the microbiota. The communication between the
GI tract and brain is bidirectional and is mediated by neural,
endocrine, immune, and metabolic mediators.

The GBA has been studied using top-down and bottom-
up approaches. The modulation of the GI functions by the
brain (top-down approach) is well established by preclinical and
clinical evidence. For instance, modulation of motility, secretion
(HCl acid in the stomach, bicarbonates in pancreatic juice, and
mucus by goblet cells), and mucosal immune responses in the GI
tract are controlled by the brain as reviewed by Rhee et al. (2009).
The modulation of brain functions by GI-derived molecules
(bottom-up approach) involves different signaling pathways
(Figure 2). The importance of the GBA is increasingly recognized
both in physiological (e.g., GI homeostasis) and pathological
conditions (e.g., mood disorders, obesity, and autism) and
have been extensively reviewed in Mayer (2011); Agustí et al.
(2018); Liu and Zhu (2018); Martin et al. (2018). However, the
understanding of GBA during the co-development of the GI tract
and the brain in the early postnatal period is limited.
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FIGURE 2 | Mechanism of communication between the GI tract and the brain. A myriad of mediators is involved in the complex communication between the GI tract
and the brain. These include neural (vagus nerve), endocrine (hormones; PYY, GLP-1, CCK, and ghrelin), immune [cytokines (IL-1β and TNF-α), microglia, microbial
antigenic component (LPS, peptidoglycan), and metabolic (TRP metabolites (kynurenines, 5-HT, and indole), SCFA, neurotransmitters (GABA, dopamine, NE, and
histamine)] mediators. The mode of action of these mediators is by: activating the vagus nerve or crossing the BBB to communicate with the brain directly. SCFA
regulates other mediators (EEC to produce hormones, microglia maturation, AHR activation; an essential receptor for TRP metabolites (produced both by the host
and microbiota). GI, gastrointestinal; GLP-1, glucagon-like peptide-1; PYY, peptide YY; CCK, cholecystokinin; TNF-α, tumor necrosis factor-α; IL-β, interleukin-β;
GABA, gamma-aminobutyric acid; NE, norepinephrine; SCFA, short-chain fatty acids; EEC, enteroendocrine cells; TRP, tryptophan; LPS, lipopolysaccharides; BBB,
blood–brain barrier; AHR, aryl hydrocarbon receptor; EC, enterochromaffin cell; 5-HT, serotonin. Note: Kynurenines include kynurenine and downstream metabolites
of the kynurenine pathway and not necessarily all the kynurenines can cross the blood–brain barrier.

Neural Mediators
The vagus nerve (VN) is the longest nerve in vertebrates and
innervates many visceral organs like the heart, lungs, and GI tract
(Bonaz et al., 2018). It has a vital role in many functions such as
digestion, immune responses, heart rate, and controlling mood
(Breit et al., 2018). The VN also plays a crucial role in facilitating
neural signals between the GI tract and the brain (Bravo et al.,
2011). It is the principal component of the parasympathetic
nervous system and is composed of 80% afferent and 20% efferent
fibers (Bonaz et al., 2018). The afferent fiber carries information
from the GI tract to the brain, and the efferent nerve fiber
carries information from the brain to the GI tract. The efferent
fiber mainly regulates motility and glandular secretion in the GI
tract, possibly by interacting with the ENS, mainly by cholinergic
activation via nicotinic receptors (Garza et al., 2009; de Jonge,

2013). Over the last decade, the vagal afferent pathways have been
increasingly recognized as sensors of hormones, cytokines, and
metabolites produced in the GI tract with potential consequences
for brain function and behavior. The afferent pathway is also
involved in the activation and regulation of the hypothalamic-
pituitary adrenal axis, a principal component of the physiological
stress system, and a key mediator of the GBA during stress as
reviewed by De Weerth (2017).

Vagal afferent fibers are located in all layers of the GI tract but
do not cross the mucosal layer outwardly (Wang and Powley,
2007). Thus, they cannot sense the luminal contents directly,
but indirectly through the diffusion of microbial metabolites
such as short-chain fatty acids (SCFA) (Lal et al., 2001) or via
enteroendocrine cells (EEC) (Li et al., 2000). The EEC represent
about 1% of epithelial cells and form the largest endocrine organ
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of the body (Mayer, 2011). These cells are capable of sensing
luminal contents, and in response they produce and release
molecules (e.g., a variety of hormones and 5-HT) that bind to
receptors expressed on afferent endings (Egerod et al., 2012,
2018). A study showed that the administration of Lactobacillus
rhamnosus improved depression and anxiety-like behavior in
mice (Bravo et al., 2011). These effects were not observed in
vagotomized mice, suggesting the importance of the VN in
delivering improving brain functions in response to a specific
bacterium (Bravo et al., 2011).

In the early postnatal life, the VN is not fully functional.
Infants are born with the VN only partially myelinated
(Porges and Furman, 2011). As discussed before (c.f., Section
“Postnatal Development”), nerve myelination continues in the
postnatal period, and that also holds for the VN. Development
from partially myelinated to fully myelinated VN starts at
approximately 24 weeks of gestation and continues until
adolescence (Sachis et al., 1982; Porges and Furman, 2011).
However, a faster VN myelination rate was observed from
32 weeks of gestation until 6 months after birth (Sachis et al.,
1982), suggesting accelerated transmission of signals between
the GI tract and brain during this period, likely due to the
consumption of breast-milk by infants. Milk is an essential source
of long-chain polyunsaturated fatty acids (e.g., docosahexaenoic
acid and arachidonic acid), sphingolipids (e.g., sphingomyelin),
phospholipids (e.g., phosphatidylcholine), and cholesterol, which
are all essential for myelin sheath synthesis and development
(Deoni et al., 2018). However, the effects of breast-milk or
substitutes on the myelination of the VN is poorly understood.

Endocrine Mediators
The hormones produced by EEC are essential mediators of the
GBA. Ghrelin, glucagon-like peptide (GLP)-1, cholecystokinin
and, peptide YY (PYY) are produced and released by EEC
in response to the food intake and composition (Egerod
et al., 2012; Latorre et al., 2016). These hormones regulate
food intake, satiety, gastric emptying, and energy balance by
transmitting signals between the GI tract and the brain, reviewed
in Raybould (2007); Cong et al. (2010); Holzer and Farzi
(2014). Ghrelin is mainly released by the stomach, and it
stimulates gastric emptying, regulates appetite, and increases
the release of growth hormone (Kojima et al., 1999; Sun
et al., 2004). Cholecystokinin and GLP-1 are produced in the
small intestine and inhibit gastric emptying and reduces food
intake (Liddle, 1997; Holst, 2007). The site of production of
PYY is the ileum and the colon, and it decreases gastric
motility, improves glucose homeostasis, and induces satiety
(De Silva and Bloom, 2012).

Studies have shown that GI hormones also play a crucial
role in regulating emotion and mood. For instance, ghrelin
reduces anxiety-like and depressive-like symptoms of chronic
stress (Lutter et al., 2008), whereas high PYY, mimicking its
postprandial plasma concentration, promotes hedonic behavior
(Batterham et al., 2007). It remains to be proven that these effects
occur in physiological conditions. A variety of GI hormones are
produced in normal physiological conditions, and the effect of
one hormone is possibly counterbalanced by others. For instance,

GLP-1 enhance anxiety-like behavior (Möller et al., 2002; Gulec
et al., 2010), whereas GLP-2 could attenuate depression-like
behavior (Iwai et al., 2009). These hormones regulate the
signaling between the GI tract and the brain, most likely by
activating the receptors present in the vagal afferent fiber (Egerod
et al., 2018; Okada et al., 2018).

The type of feeding is known to influence the production
of GI hormones. Infant fed infant formula during the first
6 months of age had higher ghrelin and lower PYY blood
concentrations compared with infants fed breast- milk over the
same period (Breij et al., 2017). However, there are no studies
that report associations between changes in GI hormones and
behavior over the developmental phase of both tissues and in
response to feeding types in infants. Additionally, the signals
from endocrine hormones may be altered during VN myelination
in early postnatal life (c.f., section “Neural Mediators”).

Immune Mediators
The constituents of the immune system, immune cells and
signaling molecules, act as an important intermediary in the
GBA. Microglia, the tissue-resident immune cells in the brain,
has increasingly been recognized as a significant neuroimmune
player of the GBA and in early life brain development (Erny
et al., 2015). For instance, the microglia regulates neurogenesis
and synaptic refinement (c.f., section “Postnatal Development”)
by phagocytosing excess neurons and synapses (Schafer et al.,
2012; Cunningham et al., 2013). Regulation of neurogenesis is
crucial for ensuring that this process does not exceed neuron’s
demand of the developing brain, and ultimately aides in brain
organization (Cunningham et al., 2013). Synaptic refinement
is essential for shaping the neural circuitry by eliminating the
redundant synapses during postnatal brain development (Wu
et al., 2015). A study by Erny et al. (2015) showed that the
microglia in adult GF mice have abnormal morphology and
density, altered cell proportions (e.g., dendrite length), and
immature phenotype when compared with SPF mice. These
adverse effects were partially rectified when adult GF mice were
colonized with complex microbiota, suggesting a role for the
microbiota in microglia maturation and function (Erny et al.,
2015). It is important to note that the oral administration of a
mixture of SCFA (acetate, propionate, and butyrate) (c.f., section
“Short-Chain Fatty Acids”) was sufficient to drive the maturation
of the microglia in GF mice (Erny et al., 2015). However, the
mechanism underlying the maturation of effects of SCFA remains
to be determined. Evidence from these studies points out to a
relationship between the microbiota and the microglia that could
be important in the immune-mediated aspects of the GBA and
brain development in the early postnatal life.

The signaling molecules of the immune system (e.g.,
cytokines) also participate in the GBA, possibly by two
mechanisms: binding to VN receptors or transport across
the BBB. Evidence shows that the afferent VN fiber has
receptors for the cytokine interleukin-1β (Ek et al., 1998).
This cytokine is capable of triggering its production and
other proinflammatory cytokines that induce neuroinflammation
(Shaftel et al., 2007). Tumor necrosis factor-α can cross the
BBB (Gutierrez et al., 1993) and results in neuroinflammation
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and dysfunction in the brain (Seleme et al., 2017). Bacterial
peptidoglycan (outermost covering of Gram-positive bacteria)
derived from resident commensals could also cross the BBB
under physiological conditions, thereby influencing the brain
development and the social behavior in 3-day-old mice
(Arentsen et al., 2016).

Another study in rats has shown that lipopolysaccharides
(LPS), from the surface of Gram-negative bacteria, can also cross
the BBB (Vargas-Caraveo et al., 2017). Studies in mice have
shown that intraperitoneal injection of LPS resulted in a decrease
in novel object exploratory behavior by impairing continuous
attention and curiosity toward objects (Haba et al., 2012). LPS
can bind to the toll-like receptor 4 expressed on the microglia
(Laflamme and Rivest, 2001) and afferent VN (Hosoi et al.,
2005). However, the relationship between LPS-driven immune
activation and alteration of behavior remains to be established.

The immune system in the early postnatal period undergoes
the most rapid and radical changes compared with other
systems in the body (Goenka and Kollmann, 2015). Commensal
microbiota is essential for driving normal immune stimulation
and maturation (Kamada et al., 2013; Olin et al., 2018). In
infants, the cells of the innate immune system (e.g., monocytes
and macrophages) are mostly developed prenatally, but their
functions remain less developed in newborns (Simon et al.,
2015). This lower activity could be to avoid unnecessary immune
reactions during the period of continuous developmental
remodeling (Prabhudas et al., 2011; Franchi et al., 2012). The
cells of the adaptive immune system (e.g., B and T cells) are
low in number and are functionally immature in infants (Tasker
and Marshall-Clarke, 2003; Haines et al., 2009), which is most
likely due to limited exposure to antigens required to develop an
immune memory (Prabhudas et al., 2011). With the development
of immune cells in early life, the level of their secretory products
(i.e., cytokines) can also change over time (Corbett et al., 2010).
This dynamic nature of immune mediators in the early postnatal
life is likely to contribute to the development of the brain and
associated behavior.

Metabolic Mediators
Metabolites are low molecular weight compounds, typically
under 1,000 Da, which are reactants, intermediates, or products
of enzyme-mediated biochemical reactions (Fanos et al., 2012).
Metabolites play essential roles in the GBA and can have either
direct or indirect (e.g., interaction with a neural mediator)
effects on brain function. Metabolites can be produced either
by the host, the GI microbiota, or the interactions in between
them. Among various metabolites produced in the body,
tryptophan (TRP) metabolites, SCFA, and neurotransmitters
are increasingly recognized as potential mediators
of the GBA.

Tryptophan Metabolites
Tryptophan is an essential amino acid for the synthesis of
body proteins, and it is a precursor to several metabolites.
Once absorbed, TRP can be metabolized in enterocytes and
hepatocytes, thereby reducing its availability to the rest of the
body, including the brain (Waclawiková and El Aidy, 2018).

TRP is metabolized through different pathways (hydroxylation
and kynurenine) in the GI mucosa, producing neuroactive
compounds (Bender, 1983) that are of importance for the GBA.

The hydroxylation pathway generates two important
metabolites, 5-HT and melatonin that participate in the GBA
(Bender, 1983). The neurotransmitter 5-HT is involved in GI
functions such as gastric secretion and motility (Gershon and
Tack, 2007), and in the brain it regulates mood and is involved
in cognitive and behavioral functions (Cowen and Sherwood,
2013; Carhart-Harris and Nutt, 2017). About 95% of total 5-HT
in the body is synthesized by enterochromaffin cell, a subtype
of EEC, and 5% is synthesized in the central nervous system
(Gershon and Tack, 2007). So far, there is no evidence for the
production of 5-HT by the GI microbiota, but studies have
shown that microbiota mediates 5-HT synthesis in EEC, which
could account for up to 50% of GI-derived 5-HT (Reigstad et al.,
2015; Yano et al., 2015).

There is no evidence supporting that 5-HT produced in the
GI tract can cross the BBB. Nakatani et al. (2008) showed that
brain-derived 5-HT could cross the BBB to reach the peripherical
circulation in rats. Interestingly, microbes in the GI tract have
shown to influence the brain 5-HT level in a mouse model
(Clarke et al., 2013). More studies are required to evaluate
the bi-directional transport of 5-HT across the BBB and the
potential regulatory role by the GI microbiota. Recently, studies
have shown that certain commensal microbes and probiotic
strains can uptake luminal 5-HT via specific transporters, which
in turn can influence the microbial colonization of the GI
tract (Lyte and Brown, 2018; Fung et al., 2019). By linking
these findings, it could be inferred that the GI microbiota
both requires 5-HT produced in the GI tract and regulates the
concentration of 5-HT both in the GI tract and brain. Hence,
the role of microbiota in the host serotonergic system warrants
further attention.

FIGURE 3 | Tryptophan metabolism along different pathways. Key metabolites
(serotonin, melatonin, kynurenine, and indole) are in red. Rate-limiting enzymes
shown are Trpytophan-2,3-dioxygenase (TDO), indoleamine-2,3-dioxygenase
(IDO), tryptophan hydroxylase (TPH), Aromatic L-amino acid decarboxylase
(AADC), N-acetyl transferase (NAT), hydroxyindole-O-methyl transferase
(HIOMT), tryptophanase (tnaA). *All the downstream metabolites and enzymes
of the kynurenine pathway have not been shown for simplicity.
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TRP is metabolized to 5-HT in a two-step process (Figure 3).
TRP hydroxylase (TPH), a rate-limiting enzyme in the
biosynthesis of 5-HT, exists in two isoforms in the GI tract
(TPH1) and the brain (TPH2) (Bender, 1983; Badawy, 2019).
The conversion of 5-HT to melatonin is another two-step
process and is catalyzed by two limiting enzymes: N-acetyl
transferase and hydroxyindole-O-methyltransferase (Bender,
1983; Zagajewski et al., 2012). Melatonin is produced both
in the GI mucosa and the pineal gland (Zagajewski et al.,
2012). Melatonin regulates circadian rhythms of behavior,
physiology, and sleep patterns, and also regulates GI motility
(Richard et al., 2009).

The kynurenine pathway is gaining interest due to the role
of kynurenine and downstream metabolites (collectively called
kynurenines) on the GI tract and brain functions, and thus on
GBA signaling (Cervenka et al., 2017). The kynurenine pathway is
responsible for around 90% of TRP degradation (Badawy, 2017).
Kynurenine is produced from TRP by the action of TRP-2,3-
dioxygenase and indoleamine-2,3-dioxygenase (IDO) (Platten
et al., 2019). Kynurenine is further metabolized into downstream
metabolites, of which kynurenic acid, 3-hydroxykynurenine, and
quinolinic acid are of particular interest for their neuroactive
effect on the brain (Badawy, 2017). The metabolite kynurenic
acid has a neuroprotective effect, while 3-hydroxykynurenine and
quinolinic acid have a neurotoxic effect (Schwarcz and Stone,
2017). The enzyme TRP-2,3-dioxygenase is expressed in the
liver, and IDO is widespread in numerous tissues, including the
GI tract and the brain (Le Floc’h et al., 2011). The activity of
IDO is regulated by proinflammatory cytokines (e.g., interferon-
γ) released by toll-like receptor activation (Mahanonda et al.,
2007), suggesting that the kynurenine pathway is more active in
periods of immune activation or pathological conditions (Clarke
et al., 2012). Unlike 5-HT, kynurenine, and 3-hydroxykynurenine
produced in the GI tract can cross the BBB and can be further
metabolized in the brain (Fukui et al., 1991).

An increase in TRP metabolism along the kynurenine pathway
can result in a reduced availability of TRP for 5-HT synthesis and
increased production of harmful kynurenine metabolites in the
brain, contributing to mood disorder (Maes et al., 2011). This
may also imply decreased melatonin levels which are associated
with circadian malfunctioning and can increase the risk of mood
disorders (Quera-Salva et al., 2011). Interestingly, melatonin
appears to promote the expression of IDO, suggesting a negative
feedback loop through which melatonin regulates the balance
between kynurenine and 5-HT pathways (Li et al., 2017).

The GI microbes can also metabolize TRP (Wikoff et al.,
2009; Zheng et al., 2011; Waclawiková and El Aidy, 2018). The
primary metabolite produced by microbial metabolism of TRP is
indole, which is catalyzed by the enzyme tryptophanase (Jaglin
et al., 2018; Waclawiková and El Aidy, 2018). Recently, Jaglin
et al. (2018) have shown that administration of indole directly in
the rat’s cecum, where microbes metabolizing TRP to indole are
highly abundant, was associated with decreased motor activity
and anxiety-like behavior. However, the effect of indole on the
human brain and behavior has not been studied yet.

It is important to note that TRP metabolites: kynurenine,
kynurenic acid, indole, and indole- derivatives are important

ligands for aryl hydrocarbon receptor (AHR) (DiNatale et al.,
2010; Mezrich et al., 2010; Jin et al., 2014). The AHR is
a cytoplasmic ligand-induced receptor, which is ubiquitously
expressed on almost all tissues (Yamamoto et al., 2004) and
contributes to immune homeostasis by having an antimicrobial
and anti-inflammatory effect (Zelante et al., 2013, 2014). For
instance, lactobacilli utilize TRP to produce indole-3-aldehyde,
an AHR ligand, which has shown to activate innate lymphoid cells
that provide mucosal resistance against the pathogen C. albicans
(Zelante et al., 2013). Interestingly, microbial metabolites such
as SCFA were found to regulate AHR and its target genes in
the intestine, which in turn influence the microbial composition,
highlighting the bi-directional communication of AHR and
the GI microbiota (Korecka et al., 2016). Evidence on the
role of AHR in brain development and function is limited.
A study by Latchney et al. (2013) showed altered hippocampus
neurogenesis and contextual fear memory in AHR deficient adult
mice, suggesting a role of AHR in brain development. Whether
the regulation of neurodevelopment by AHR is due to TRP
metabolites is yet to be proven.

The combined increase in surface area for nutrient absorption
(Thompson et al., 1998) and diversity of the commensal
microbiota (Nagpal et al., 2017) during the maturation of the
GI tract in the early postnatal period, means that more TRP
is absorbed and/or more TRP metabolites are produced and
released in the peripheral circulation. However, the impact
of GI tract maturation on TRP metabolism in the early
postnatal life is poorly understood. Interestingly, a study in
infants showed that cereals enriched with TRP increased plasma
concentrations of melatonin and improved sleep quality (Cubero
et al., 2009). As the sleep-wake cycle is controlled by TRP-
derived melatonin (Brown, 1994) and more melatonin levels
resulted in better sleep (Cubero et al., 2009). This evidence
could be indicative of more TRP metabolism through the
hydroxylation pathway than other pathways. The role of the
TRP pathways and resulting neuroactive metabolites in brain
development and function in early postnatal life is a fertile
area of research.

Short-Chain Fatty Acids
The organic acids SCFA are saturated fatty acids with a chain
length from one to six carbon atoms. They are the primary
end-products of bacterial fermentation and are produced in
the GI tract depending on the content of dietary (e.g., fiber)
(Bergman, 1990), and non-dietary components (e.g., mucins)
(Hoskins and Boulding, 1981; Montoya et al., 2017). The most
abundant SCFA produced in the human GI lumen are acetate,
butyrate, and propionate (Dalile et al., 2019). The majority of
SCFA produced are absorbed (Ruppin et al., 1980; Hoogeveen
et al., 2020) and utilized by enterocytes as an energy source at
different ratios (Huda-Faujan et al., 2010; Dalile et al., 2019).
Acetate is the most abundant SCFA, and it is produced by
most microbes, while butyrate and propionate are produced
by fewer GI tract bacterial species (Cummings et al., 1987;
Morrison and Preston, 2016).

The SCFA regulate various GI functions. For instance,
butyrate, acetate, and propionate help to maintain barrier
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integrity protect from inflammation, and affect mucous
production in the GI tract (Dalile et al., 2019). Recently, SCFA
are gaining attention for their potential role in the GBA.
Studies have found that GLP-1 and PYY secreting EEC, co-
expressed SCFA receptors like free fatty acid receptor 2 and
3 (Karaki et al., 2008; Tolhurst et al., 2012), and deletion of
these SCFA receptors in EEC in a mouse model has resulted
in impaired PYY expression (Samuel et al., 2008) and reduced
GLP-1 blood concentration (Tolhurst et al., 2012). Collectively,
these findings suggest that SCFA may stimulate the release
of these GI hormones that act as an essential mediators of
GBA function, as discussed above. SCFA have been shown
to promote TPH1 expression in a human carcinoid cell line
derived from pancreatic tissues that share functional similarities
with EEC, suggesting that SCFA can regulate production of
5-HT by EEC (Reigstad et al., 2015). However, caution must
be exercised while translating cell lines result on humans,
as these cell divides continuously and may express unique
gene patterns that are absent in cells in vivo (Kaur and
Dufour, 2012). Further evidence of SCFA importance in the
GBA comes from a study where butyrate administration by
intraperitoneal injection has been shown to attenuate social
behavior deficiency in rodents (Kratsman et al., 2016). Butyrate
and propionate can also activate tyrosine hydroxylase, the
rate-limiting enzyme for catecholamine synthesis (c.f., section
“Neurotransmitters”)(Nankova et al., 2014).

Other studies showed that SCFA could also directly influence
the GBA. Brain uptake of SCFA was reported following the
injection of a mix of 14C-SCFA into the carotid artery, which
suggests that BBB might be permeable to SCFA (Oldendorf,
1973). SCFA might also directly activate vagal afferents. Luminal
perfusion of sodium butyrate into the jejunum of anesthetized
male rats evoked vagal efferent nerve responses that were
abolished following vagotomy (Lal et al., 2001). Therefore, SCFA
can participate in GBA both directly and indirectly; however,
further studies are required to understand their role in GBA
under physiological conditions.

In the early postnatal period, SCFA production and
proportion are expected to change in response to microbial
colonization of the GI tract (Midtvedt and Midtvedt, 1992; Norin
et al., 2004; Bergström et al., 2014). For instance, exclusively
breastfed infants had relatively more acetate in their stools as
compared to non-breastfed infants (Bridgman et al., 2017), likely
due to the fermentation of oligosaccharides present in human
breast-milk by members of the Bifidobacterium genus (Azad et al.,
2016). The introduction of solid food results in the establishment
of different microbial colonizers, which change the SCFA profile
in the fecal sample (Differding et al., 2020). However, direct and
indirect effects of SCFA production in the early postnatal period
on GBA and subsequent consequences for the development of
the brain and behaviors are poorly understood.

Neurotransmitters
Chemical substances that carry information between neurons
are called neurotransmitters. There are about 100 different
neurotransmitters produced in the body and each with different
functions. Based on chemical composition, neurotransmitters

are mainly classified as amino acids and biogenic amines.
Functionally, neurotransmitters can be classified as excitatory
(increase action potential firing), inhibitory (decrease action
potential firing), or modulatory (fine-tune the action of both
excitatory and inhibitory neurotransmitters).

Dietary amino acids are precursors for the synthesis of 5-HT,
gamma-aminobutyric acid (GABA), norepinephrine, dopamine,
and histamine. The synthesis of 5-HT is exclusively from dietary
TRP. In contrast, dietary phenylalanine (an essential amino
acid) serves as a precursor to tyrosine (a non-essential amino
acid), which is essential for the synthesis of norepinephrine and
dopamine, and histidine (an essential amino acid) serves as a
precursor for histamine (reviewed in Fabisiak et al., 2017; Mittal
et al., 2017; Fernstrom and Fernstrom, 2018).

Genes responsible for metabolizing amino acids to
neurotransmitters (or precursors of thereof) have been identified
in some bacteria, in vitro. For instance, Lactobacillus and
Klebsiella spp. possess a histidine decarboxylase gene that
converts histidine to produce histamine (Kim et al., 2001;
Lucas et al., 2008). Legionella pneumophila and Pseudomonas
spp. have a phenylalanine hydroxylase gene that facilitates
the conversion of phenylalanine to tyrosine (precursor of
dopamine and norepinephrine), which has been demonstrated
in vitro (Letendre et al., 1975; Flydal et al., 2012). From the above
evidence, it could be speculated that neurotransmitter production
by the GI microbes might be modulated by dietary amino acids
and contributes to GBA signaling. A list of neurotransmitters
and their production by microbial species and their amino acid
precursors are shown in Table 1. However, the uptake and
metabolism of dietary amino acid by the GI microbiota for
neurotransmitter synthesis has not been studied.

Some studies report evidence of the metabolism of
neurotransmitters by the microbiota. Pathogenic Escherichia
coli O157:H7 has an increasing growth rate in the presence of
norepinephrine and dopamine (Freestone et al., 2002). An extract
of peel and pulp of banana, which is rich in neurochemicals
(e.g., norepinephrine, dopamine, and 5-HT), has been shown
to promote the growth of both pathogenic and non-pathogenic
bacteria (Lyte, 1997). The mechanisms by which the GI
microbiota can metabolize neurotransmitters in vivo are yet
to be understood.

There is accumulating evidence in vivo, suggesting that the
GI microbiota plays a role in modulating the abundance of
neurotransmitters. For instance, GF mice have reduced levels
of norepinephrine in cecal content (Asano et al., 2012), and
of GABA in feces and plasma (Matsumoto et al., 2013).
The turnover rate of norepinephrine, dopamine, and 5-HT
was higher in the striatum (part of the brain) of GF mice
compared with the SPF mice (Heijtz et al., 2011). These
reduced levels of neurotransmitters are in line with the altered
anxiety-like response in the GF phenotype, suggesting the role
of microbiota in the modulation of behavior (Heijtz et al.,
2011; Neufeld et al., 2011). However, no studies have yet
reported whether the microbiota directly affects the level of
neurotransmitters in the body or modulates host production
of neurotransmitters. There is also no evidence whether
neurotransmitters from the GI tract can cross the BBB to
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TABLE 1 | Potential neurotransmitters in the gut-brain axis.

Neurotransmitter Amino acid precursor Microbial species1 Gastrointestinal tract role Brain role

Serotonin Tryptophan Escherichia coli (K-12), Klebsiella
pneumoniae (Özoğul, 2004;
Shishov et al., 2009)

Regulates gastric secretion and
motility (Misiewicz et al., 1966)

Mood regulation by decreasing
anxiety and stress (Williams et al.,
2006)

GABA2 Glutamine3 Lactobacillus brevis and
Bifidobacterium dentium (Barrett
et al., 2012)

Regulates gastric emptying,
secretion, and motility (Hyland and
Cryan, 2010)

Process sensory information and
regulates memory and anxiety
(Kalueff and Nutt, 1996)

Dopamine Phenylalanine Escherichia, and lactic
acid-producing bacteria such as
Lactococcus and Lactobacilli spp.
(Shishov et al., 2009; Özogul, 2011)

Regulates motility (Li, 2006) Voluntary movement, induces
feeling of pleasure (Juárez Olguín
et al., 2016)

Norepinephrine Phenylalanine Escherichia, Bacillus, and
Saccharomyces spp. (Shishov
et al., 2009; Lyte, 2011)

Regulates blood flow (Schwarz
et al., 2001)

Motor control, emotion and
endocrine modulation (Kobayashi,
2001)

Histamine Histidine Lactobacillus and Pediococcus
spp. (Landete et al., 2007; Özogul
et al., 2012)

Modulation of motility,
enhancement of gastric acid
production (Kano et al., 2004; Kim
et al., 2011)

Regulates wakefulness, and
motivation (Brown et al., 2001;
Torrealba et al., 2012)

1The list of bacterial strains is mostly based on in vitro studies and may not be present in the gastrointestinal tract and are provided as examples. 2Gamma aminobutyric
acid (GABA) is the only inhibitory amino acid neurotransmitter and all others are modulatory biogenic neurotransmitters. 3Glutamine is the only non-essential amino acid
precursor, whereas all other precursors of neurotransmitters are essential amino acids.

reach the brain. Interestingly, the vagal afferent nerve express
receptors for 5-HT, GABA, and dopamine (Egerod et al.,
2018), suggesting the possibility of an alternative route for
communication between the GI tract and brain. Therefore, GI
derived neurotransmitters appear to be a potential mediator
of the GBA, and further studies are required to confirm
their potential.

In the early postnatal period, histological (e.g., crypt depth)
and functional (e.g., enzyme) GI tract changes can result in
different rates of amino acid uptake and host neurotransmitter
production. The increased relative abundance and diversity
of the GI microbiota could also influence neurotransmitter
production. For instance, Bifidobacterium strains have shown
to dominate the GI tract of breastfed infants (Kato et al.,
2017; Nagpal et al., 2017; Lawson et al., 2020) and also
one of the strain Bifidobacterium brevis has shown the
ability to produce GABA (Barrett et al., 2012). Change
in abundance of different Bifidobacterium strains postnatally
(Kato et al., 2017) could result in an alteration of the
GABA level in the GI tract. Changes in the production of
neurotransmitters (type and amount) and their role in the
GBA in response to early postnatal developmental remain
to be established.

CONCLUDING REMARKS

The early postnatal years of life are marked by rapid
developmental changes both in the GI tract and brain. The
process of microbial colonization and cognitive development
coincide in the first years of life. Sophisticated complex
communication systems involving mediators such as VN, GI
hormones, cytokines, and the GI-derived metabolites are known
to govern the crosstalk between the GI tract and the brain. The
establishment of microbes in the GI tract can influence immune

(e.g., microglia) and metabolic (e.g., neurotransmitters and TRP
metabolites) mediators that ultimately may have an impact on
the brain development and behavioral outcomes. Early life foods
(breast-milk, formula, and complementary foods) are crucial
determinants of GBA mediators in the early postnatal period.
Breast-milk could have a potential role in the development
of the myelination pattern of VN and the production of
hormones in the GI tract, which acts as an essential intermediary
between the GI tract and the brain. Overall, the role the GBA
mediators during the critical period of development is ill-
defined.

It should be noted that many studies relating to the GBA
have been carried out on rodent animal models, but considerable
differences in developmental patterns of the GI tract and the
brain between humans and rodents exist. The use of animal
models with more comparable anatomy and physiology (e.g.,
piglets and primates) to that of humans is desirable to gain
a better understanding of the mechanistic pathways of GBA
and improve the translation of research to infants. Future
research is required to understand whether the expected changes
in GBA mediators occur during the critical period of GI
tract and brain development and how they can be related
to cognitive behavioral outcomes that are the manifestation
brain development in infants. For this, longitudinal studies
of postnatal life are required. Insights in this area can be
targeted via dietary interventions to optimize the communication
between the GI tract and the brain to improve cognitive
outcomes in infants.
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