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ABSTRACT
Objectives To operationalise fairness in the adoption of 
medical artificial intelligence (AI) algorithms in terms of 
access to computational resources, the proposed approach 
is based on a two- dimensional (2D) convolutional neural 
networks (CNN), which provides a faster, cheaper and 
accurate- enough detection of early Alzheimer’s disease 
(AD) and mild cognitive impairment (MCI), without the 
need for use of large training data sets or costly high- 
performance computing (HPC) infrastructures.
Methods The standardised Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) data sets are used for the 
proposed model, with additional skull stripping, using the 
Brain Extraction Tool V.2approach. The 2D CNN architecture 
is based on LeNet- 5, the Leaky Rectified Linear Unit 
activation function and a Sigmoid function were used, and 
batch normalisation was added after every convolutional 
layer to stabilise the learning process. The model was 
optimised by manually tuning all its hyperparameters.
Results The model was evaluated in terms of accuracy, 
recall, precision and f1- score. The results demonstrate 
that the model predicted MCI with an accuracy of 0.735, 
passing the random guessing baseline of 0.521 and 
predicted AD with an accuracy of 0.837, passing the 
random guessing baseline of 0.536.
Discussion The proposed approach can assist clinicians 
in the early diagnosis of AD and MCI, with high- enough 
accuracy, based on relatively smaller data sets, and 
without the need of HPC infrastructures. Such an approach 
can alleviate disparities and operationalise fairness in the 
adoption of medical algorithms.
Conclusion Medical AI algorithms should not be 
focused solely on accuracy but should also be evaluated 
with respect to how they might impact disparities and 
operationalise fairness in their adoption.

INTRODUCTION
Recent studies show that artificial intelligence 
(AI) applications can perform on par with 
medical experts on MRI analysis.1 Such appli-
cations, to date, tend to oppose the accuracy 
of AI to the performance of clinicians. For 
instance, there have been more than 20 000 
studies on deep learning (DL) methods for 
MRI analyses the last decade, which compare 
the performance of AI to the one of clini-
cians.2 Recent work suggests that future 
studies should focus on the comparison of 

performance between clinicians using AI and 
their performance without an AI aid.3 The 
recent global pandemic, however, revealed 
another urgent need of early disease diag-
nosis: the ability to make predictions based on 
a limited number of cases. The AI computer- 
aided detection (CAD) frameworks, to date, 
are based on large amounts of data and 
require high- performance computing (HPC) 
infrastructures. To address that lacuna, we 
propose a synergistic approach, in which 
clinicians and scientists collaborate for faster, 
cheaper and more accurate detection, relying 
on small data sets to make accurate- enough 
predictions. A promising frontier where AI 
can assist clinicians is Alzheimer’s disease 
(AD) since the release of promising clinical 
studies for a new drug have unearthed the 
need for its early detection. As it can take 

Summary box

What is already known?
 ► Most prior studies on early Alzheimer’s disease (AD) 
and mild cognitive impairment (MCI) detection have 
used a three- dimensional (3D) convolutional neural 
networks (CNN) approach.

 ► The 3D CNN approach is computationally expensive 
requiring high performance computing (HPC) infra-
structures, and, due to the high number of parame-
ters, it requires larger data sets for training.

 ► A two- dimensional (2D) CNN needs less parameters, 
less computational power and execution time, while 
requires smaller data sets for training, but has not 
been applied to date for MCI detection.

What does this paper add?
 ► The proposed approach based on a 2D CNN oper-
ationalises fairness in the adoption of medical ar-
tificial intelligence (AI) algorithms by providing fast, 
cheap and accurate- enough detection of early AD 
and MCI without the need for use of large data sets 
or costly HPC infrastructures.

 ► The proposed approach can be extended to other 
diseases as well as to other cases where time is 
scarce, powerful computational resources are not 
available, and large data sets are out of reach.
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up to 20 years before patients with AD show any signs of 
cognitive decline, it can be challenging to diagnose AD 
in early stages. We, thus, motivate and implement an 
AI- CAD framework for the early detection of mild cogni-
tive impairment (MCI) and AD to assist clinicians, while 
the approach can be extended for the diagnosis of other 
diseases.

AD is caused by an accumulation of β-amyloid (Aβ) 
plaques, and abnormal amounts of tau proteins in the 
brain. This results in synapse loss, where the impulse does 
not reach the neurons, and in loss of structure or func-
tion of neurons, including their death, causing memory 
impairment and other cognitive problems.4 AD has 
strong impact on the cognitive and physical functioning 
of patients, resulting in death. Recent developments in 
slowing AD decline have increased the relevance of its 
early detection,5 and MCI plays an important role in 
this. MCI is a syndrome where the patients have greater 
cognitive decline than normally expected, but it does not 
necessarily affect their daily lives. Although some patients 
with MCI remain stable or return to cognitively normal 
(CN), there is a 10%–15% risk per year of progression 
to AD.4 Before the aetiology of AD became known, its 
diagnosis relied on neurocognitive tests. The develop-
ment of biomarkers improved AD detection. A common 
method to diagnose AD is hippocampus segmentation, 
which relates to memory function, and its small volume 
is an AD biomarker. For a long time, AD diagnosis was 
done manually by looking at the brain structure and size 
of the hippocampus on MRI, which requires practice and 
precision. Prior studies on automated methods for hippo-
campus segmentation have used DL approaches with 
promising results.6 Automated hippocampus segmenta-
tion for the diagnosis of AD and MCI, however, requires 
clinicians’ expertise and is sensitive to interrater and intr-
arater variability.6

Convolutional neural networks (CNN) can become the 
foundation of an AI- CAD framework for supporting clini-
cians in the detection of early AD and MCI, since it is 

a successful approach for image classification. CNN can 
improve the performance of image classification,7 and 
they are becoming increasingly popular in MRI analysis. 
For instance, recent studies show that CNN can work on 
par with specialists for classifying MRI of patients with skin 
cancer.1 Similar approaches with three- dimensional (3D) 
as well as two- dimensional (2D) CNN have also been used 
for AD detection with promising results. When it comes 
to the inner mechanics of these approaches, the classifi-
cation filter of a 3D CNN slides along all the three dimen-
sions of the input image, resulting in 3D feature maps, 
whereas in a 2D CNN the classification filter slides along 
only the height and width of the input image. Thus, the 
latter results in 2D feature maps, which need less param-
eters, computational power and execution time. Most 
prior studies have used 3D CNN achieving high accu-
racy,8 while others obtained similar results with 2D CNN.9 
Although previous work on the topic has established that 
3D CNN perform better for patch classifications, the 
results between 2D and 3D approaches for whole image 
labelling did not differ much.10 A 3D CNN, however, is 
more computationally expensive, and, due to the high 
number of parameters, it requires larger data sets for 
training.11 Concurrently, prior studies have not incorpo-
rated a 2D CNN approach for detecting MCI. A summary 
of prior 2D and 3D CNN applications in the literature is 
presented in table 1.

We suggest that medical algorithms should not be solely 
focused on accuracy but should also be evaluated with 
respect to how they might impact disparities and opera-
tionalise fairness in their adoption. Thus, we investigate 
the extent to which a 2D CNN can detect MCI and early 
AD.

METHODS
CNN is the most common neural network (NN) archi-
tecture for image classification. Fully connected NN take 
multiple inputs, and hidden layers perform calculations 

Table 1 Performance comparison of 2D and 3D approaches in the literature

Study

2D CNN 3D CNN

AD MCI AD MCI

Basaia et al8 – – 0.99 0.87

Feng et al16 – – 0.95 0.86

Korolev et al25 – – 0.80 –

Liu et al17 – – 0.85 –

Liu et al18 – – 0.91 –

Senanayake et al26 – – 0.76 0.75

Hon and Khan27 0.96 – – –

Sarraf and Tofighi19 0.99 – – –

Sarraf and Tofighi20 0.97 – – –

Wang et al9 0.98 – – –

AD, Alzheimer’s disease; CNN, convolutional neural network; MCI, mild cognitive impairment.
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on them, while the neurons in the network connect to each 
other. Neurons in CNN, however, connect only to those 
close to them. CNN, therefore, needs fewer parameters, 
which results in benefits such as small risk of overfitting, 
higher accuracy and faster processing time. Moreover, 
in CNN, there is no need to transform the input images 
to one dimensional, a process which can result in loss of 
structural information, as the CNN can learn the relation-
ships among the pixels of input by extracting representa-
tive features with kernel convolutions4 :
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where I  is the input and K  is the kernel; the input 
indices are represented by  i  and  j , and the kernel indices 
are represented by m  and n .

The data sets used in this study were obtained under 
permission from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database ( adni. loni. usc. edu). The 
ADNI was launched in 2003 as a public–private partner-
ship. The primary goal of ADNI has been to test whether 
MRI, biological markers and clinical as well as neuropsy-
chological assessment can be combined to measure the 
progression of MCI and early AD. The ADNI is sepa-
rated into three studies of 5 years, while the first was 
prolonged by 2 years under the name ADNI- GO. In total, 
2517 people of ages 55–90 participated in the study. The 
ADNI encourages the use of their standardised data sets 
to ensure consistency in analysis and direct comparison of 
various methods among studies. We, therefore, used their 
two standardised data sets ‘ADNI1: complete 2 year 1.5T’ 
and ‘ADNI1: complete 3 year 1.5T’, which contain MRI 
that has passed quality control assessment.12

Our data set consists of 3312 images, distributed in 828 
MRI of CN subjects, 453 MRI of patients with AD and 1203 
MRI of patients with MCI. The data set was split into one 
with CN and AD subjects (1281 MRI), and one with CN 
and MCI subjects (2031 MRI). Since the participants of 
the ADNI study returned for more than one check- up, any 
patient can have up to 12 MRI, which are not identical as 
they are taken at different moments, and every MRI in the 
standardised data set was treated independently. The data 
set, thus, refers to 99 patients with AD, 212 patients with 
MCI and a control group of 165 CN subjects. We present 
the demographic information of the included subjects in 
table 2, to enable comparison with other studies.

While the data sets are preprocessed, we further 
performed skull stripping using the Brain Extraction 
Tool V.2 (BET2), which is part of the NiPype library. Skull 
stripping locates the brain in the MRI and removes all 
surroundings to further remove noise from images. For 
optimal skull stripping results, neck slices were removed 
with the robustfov function. We used a fraction intensity 
of 0.3 as an evaluation of BET2 parameters for the ADNI 
data set found that this leads to best results. Due to the 
differences in scanners and techniques used by the ADNI 
over the years, the MRIs used in the data sets were of 
different sizes, and, therefore, had to become uniform. 
All the MRIs in our data set were resized to: (136, 192, 
160) with the ndimage zoom function of the Scipy library, 
which zooms the array using spline interpolation. Resizing 
the MRI results in a different range of pixel values, and, 
therefore, to assure that the pixel values of all MRI had 
the same range, z- score normalisation was applied, which 
is defined as follows:

 
zi =

xi−µ
(
x
)

σ
(
x
)

  
where  x  is the MRI data and  zi  the  i th normalised MRI. 

The data set was then split into train set, validation set 
and test set with a ratio of 60:20:20, respectively.

An NN consists of an input layer, hidden layers and 
an output layer. A CNN has hidden layers divided into 
convolution, pooling, activation and classification layers. 
We based our architecture on LeNet- 5, which includes 
two convolutional layers, two pooling layers and two fully 
connected layers (supplementary files, table 3).

We employ the Leaky Rectified Linear Unit (LReLU) 
as activation function for all convolutional layers, which 
allows for a small non- zero gradient.13 The LReLU activa-
tion function in the model, with  x  being the input data, 
is described as:

 

y
(
x
)

=




x, ifx < 0

0.01x, otherwise   
A Sigmoid activation function was applied to the dense 

layer, which outputs the probability of the images’ class, 
with 0 if healthy and 1 if not (AD or MCI). The Sigmoid 
activation function in the model, with  x  being the input 
data, is described as:

 
σ
(
x
)
= 1(

1+e−x
)
 . 

We optimised the model by manually tunning the 
hyperparameters (see table 4).

The batch size was set to 16 and we used the Adam opti-
miser14 with a learning rate of 10-3. The model showed 

Table 2 Demographic information of subjects in the 
dataset

MCI AD CN

Images 891 412 662

Subjects 212 99 165

Gender 142 M / 70 F 52 M / 47 F 82 M / 83 F

Age μ=75.84
σ=7.02

μ=76.49
σ=7.43

μ=76.93
σ=5.23

AD, Alzheimer’s disease; CN, cognitively normal; MCI, mild 
cognitive impairment.

Table 3 CNN architecture

Layer C1 P1 C2 P2 FC1 FC2 FC3

Kernel 3×3 2×2 3×3 2×2 – – –
Filter 32 32 64 64 128 64 2

CNN, convolutional neural network.
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overfitting, which means that it includes more terms or 
uses more complicated approaches than necessary.15 
Regularisation can control overfitting and drop- out 
regularisation is a commonly used approach because it 
is computationally inexpensive, and it prevents coadap-
tation among feature map units.11 In drop- out regularisa-
tion, only a fraction of the weights is learnt by the NN in 
each iteration. We added a drop- out layer with a value of 
0.2 after each pooling layer (ie, 80% of the weights were 
learnt in each iteration), leading to better results on all 
the train, validation and test sets. To stabilise the learning 
process, we added batch normalisation after every convo-
lutional layer. For each unit in a layer, the value was 
normalised as follows:
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where  a  represents the activation vector of the ith layer  l . 
Thereafter, the normalised values were scaled and shifted 
accordingly. After ~40 epochs, the model did not show 
increment in accuracy or reduction in loss, and overfit-
ting increased, thus, we applied an early stopping at 40 
epochs instead of the initial set of 50.

The CNN was built with a Jupyter Notebook using Python 
V.3.6.4, Tensorflow V.2.4.0 and Keras V.2.4.0. To load the 
data in NIfTI format, we used the Nilearn library, and we 
used the scikit- learn and SciPy libraries for data prepro-
cessing. The development, testing and application of the 
model took place on the Google Cloud Console, where 

we used a storage bucket to store the data sets, and three 
compute engine instances to perform the skull stripping 
and preprocessing and to run our model independently 
as these steps require different computational resources. 
For skull stripping, we used an instance with 8 vCPUs, 52 
GB RAM, and two NVIDA Tesla K80 GPUs, for prepro-
cessing, we used an instance with 40 vCPUs and 961 GB 
RAM. For the CNN, we used an instance with 64 vCPUs, 
416 GB RAM and four NVIDA Tesla T4 GPUs.

RESULTS
The model was evaluated in terms of accuracy, recall, preci-
sion and f1- score. Recall provides sensitivity information 
on how many patients were correctly identified. Preci-
sion expresses how many of the positives that the model 
returns were actually positive. F1- score is the harmonic 
mean between precision and recall. An NN adjusts its 
weights to optimise the loss, which is calculated with the 
use of binary cross entropy loss:

 
CE = −

C
′
=2∑

i=1
tilog

(
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= t1log
(
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)
−

(
1 − t1

)
log

(
1 − s

)
  

where  C  represents the classes,  si  is the predicted prob-
ability value for class  i  and  t  is the true probability for 
that class. Since the data were unevenly distributed, the 
accuracy baseline of random guessing was also calculated. 
The baseline was calculated with respect to the class distri-
bution of the data set. First, we trained and tested our 

Figure 1 Model performance for the AD and MCI datasets. AD, Alzheimer’s disease; MCI, mild cognitive impairment.

Table 4 Parameter tuning on the AD dataset

Parameters

Round 1 2 3 4 5 6 7 8 9 10*

Learning rate 0.0001 0.0001 0.001 0.001 0.001 0.001 0.001 0.0001 0.01 0.001 0.001

Batch size 32 16 16 8 32 16 8 8 8 8 16

Epochs 50 50 50 30 30 30 30 30 30 30 40

Dropout – 0.3 0.3 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.2

Batch norm. – x x x x x – x x x x

Metrics

Loss 1.040 0.711 0.637 0.461 0.742 0.600 2.292 0.805 0.639 0.600 0.677

Acc 0.833 0.794 0.802 0.840 0.833 0.840 0.728 0.767 0.825 0.833 0.837

Precision 0.881 0.977 0.891 0.768 0.947 0.949 0.628 0.972 0.788 0.859 0.948

Recall 0.628 0.447 0.521 0.809 0.574 0.596 0.628 0.372 0.713 0.649 0.585

AD, Alzheimer’s disease.
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model on the AD data set. After passing the baseline of 
random guessing on the training data (>0.548) with an 
accuracy of 0.994, we applied the same model on the MCI 
data set. The random guessing baseline for the test data 
set of the AD model was 0.536 and for the test data set of 
the MCI model was 0.521. The overepochs performance 
of the model is depicted in figure 1 for AD (left) and for 
MCI (right).

While the above graphs indicate a normal learning 
curve, as the performance of the model keeps increasing 
on the train data set, the validation performance flattens, 
which implies overfitting. This appears to be true mainly 
on the AD data set. Our model achieved accuracy of 0.837 
on the AD test set. Irrespective of overfitting, the achieved 
test accuracy on the AD data set surpasses the random 
guessing baseline of 0.536. The model predicted MCI with 
accuracy of 0.735, passing the random guessing baseline 
of 0.521. Table 5 presents the performance metrics of the 
models on the test sets. The model performs better than 
chance on both sets, with a better predictive performance 
for the AD data set than for the MCI data set. The MCI 
model, however, seems to perform better on selecting 
relevant items (ie, recall, predicted positives relative to all 
positives). The MCI model shows notably less overfitting 
than the AD model, which might be due to the size of 
the data set, as the dataset used for the MCI was larger 
(almost double in size) than the AD one.

By comparing our study to previous ones in the rele-
vant literature (see table 6), we notice a large difference 

in the size of the used data sets. Moreover, some of the 
prior studies only report the number of subjects in the 
used data set,8 16–18 but the number of images can differ 
from these since one subject can have up to 12 images 
in these data sets. As expected, studies with larger data 
sets achieved higher accuracy. Furthermore, some of 
the studies with a 2D approach treated the slices inde-
pendently,9 19 20 thereby enlarging the size of their data 
set, however, the MRI was not treated as a whole.

DISCUSSION
While AI- CAD frameworks have been thoroughly studied, 
they have not been proposed as a tool for assisting clini-
cians. Furthermore, while the literature on AI- CAD frame-
works is mostly approached from a computer science 
perspective, clinicians have been shown to lack trust in 
them.2 3 21 Our work addresses that lacuna by providing 
a synergistic approach between clinicians and scientists. 
We contribute to the line of research on using CNN for 
AD and MCI detection, by applying a 2D approach. Our 
model predicts AD better than chance by 0.301 and MCI 
by 0.214. As expected, the model performed worse on 
detecting MCI than AD. The learning process on the MCI 
data set, however, was much cleaner than the process on 
the AD data set. This might be due to the size of the data 
set, which can have a large impact on the process and 
outcomes of the model. The proposed AI- CAD frame-
work, thus, performs better than chance for AD as well as 
for MCI and could assist clinicians in the early detection 
of AD and MCI.

We suggest that medical algorithms should not be 
focused solely on accuracy but should also be evaluated 
with respect to how they might impact disparities and oper-
ationalise fairness in terms of computational resources, 
when it comes to their adoption. Our framework can be 

Table 5 Performance metrics on test data

Data Loss Accuracy Precision Recall F1 MRI

AD 0.677 0.837 0.948 0.585 0.724 1281

MCI 1.377 0.735 0.728 0.894 0.802 2031

AD, Alzheimer’s disease; MCI, mild cognitive impairment.

Table 6 Comparison of data and accuracy with previous studies

Study Subjects Images Dimensions

Accuracy

AD MCI

Basaia et al8 645 – 3D 0.99 0.87

Feng et al16 193 – 3D 0.95 0.86

Korolev et al25 111 111 3D 0.80 –

Liu et al17 193 – 3D 0.85 –

Liu et al18 902 – 3D 0.91 –

Senanayake et al26 – 322 3D 0.76 0.75

Hon and Khan*27 200 6400 2D 0.96 –

Sarraf and Tofighi**19 302 62 335 2D 0.99 –

Sarraf and Tofighi**20 43 367 200 2D 0.97 –

Wang et al.**9 98 17 738 2D 0.98 –

Our 476 3312 2D 0.84 0.74

*Accuracy before transfer learning=0.74.
†Used MRI slices independently.
AD, Alzheimer’s disease; MCI, mild cognitive impairment.
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further extended to other diseases, and to cases where 
time is scarce, computational resources are not available, 
and large data sets are out of reach. Finally, our work is 
in line with the broader Information Systems research 
agenda,22 on the adoption of responsible medical AI algo-
rithms,23 and the stewardship of sensitive personal data.24 
Therefore, our work can give rise to new avenues for 
interdisciplinary research and can become the bedrock 
for novel methodological advances as well as ground- 
breaking empirical findings on the broader topic.

CONCLUSION
Prior studies have used CNN to diagnose MCI and early 
AD, most of which applied 3D approached. The 3D CNN, 
however, have drawbacks that relate to needs for HPC 
infrastructures. Other studies have focused on detecting 
AD with a 2D CNN, achieving similar results as the 3D 
approach. Despite the relevance of detecting MCI, prior 
studies did not investigate how these methods perform 
on detecting MCI. Our main goal was to determine 
whether a 2D CNN can be used to diagnose AD and MCI. 
Our work resulted in an AI- CAD framework that can 
assist clinicians in the early detection of MCI and AD with 
high- enough accuracy, based on a relatively small data 
set, and without the need of HPC infrastructures. Our 
work has limitations that need to be acknowledged. First, 
an important preprogressing step is image resizing. We 
used Scipy ndimage, which distorts the image and could 
have a negative effect on the learning process. A better 
solution for resizing images is needed but to the best of 
our knowledge is not available. Second, the ADNI data 
sets consist of more images than participants. If subjects 
appear in both data sets, the model could learn subject- 
specific features, but the impact on model performance 
is unknown, as most physical features are removed during 
skull stripping. Third, the AD model appears to be over-
fitting, which is a common problem in DL models. To 
further optimise our model, the overfitting problem 
needs to be addressed by future research. Future research 
should also replicate the existing 3D CNN approaches 
and compare their execution time with the 2D CNN one 
of our models on the same computational infrastructure. 
Such a comparison will further illustrate the merits of our 
approach. Finally, future research should also evaluate 
the performance of clinicians using our framework and 
their performance without an AI aid.
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