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ARTICLE

ABSTRACT
Group work in science, technology, engineering, and mathematics courses is an effective 
means of improving student outcomes, and many different factors can influence the dy-
namics of student discussions and, ultimately, the success of collaboration. The substance 
and dynamics of group discussions are commonly examined using qualitative methods 
such as discourse analysis. To complement existing work in the literature, we developed a 
quantitative methodology that uses graph theory to map the progression of talk-turns of 
discussions within a group. We observed groups of students working with peer facilitators 
to solve problems in biological sciences, with three iterations of data collection and two 
major refinements of graph theory calculations. Results include general behaviors based 
on the turns in which different individuals talk and graph theory parameters to quantify 
group characteristics. To demonstrate the potential utility of the methodology, we present 
case studies with distinct patterns: a centralized group in which the peer facilitator be-
haves like an authority figure, a decentralized group in which most students talk their fair 
share of turns, and a larger group with subgroups that have implications for equity, diversi-
ty, and inclusion. Together, these results demonstrate that our adaptation of graph theory 
is a viable quantitative methodology to examine group discussions.

INTRODUCTION
Collaboration and small-group discussions form the foundation for many evi-
dence-based instructional practices and are effective means of enhancing student 
learning in science, technology, engineering, and mathematics (STEM). Learning the-
ories such as constructivism provide broad explanations for the theoretical basis of 
group discussions (National Research Council, 2000; Chi, 2009; Chi and Wylie, 2014). 
Empirically, group discussions help students develop cognitive skills such as critical 
thinking (Webb, 1982b; Gokhale, 1995; Bligh, 2000), problem solving (Heller et al., 
1992), and disciplinary understanding (Freeman et al., 2014); enhance important 
skills such as communication (Webb and Farivar, 1994) and metacognition (Webb and 
Mastergeorge, 2003; Veenman et al., 2006; Bromme et al., 2010); improve affect such 
as interest and motivation (Skinner and Belmont, 1993; Ryan, 2000); and increase 
completion rates in courses and persistence in STEM majors (Tinto, 1997; Freeman 
et al., 2014; Loes et al., 2017; Figure 1, right).

The effectiveness of discussions depends on how the members of a group interact 
with one another, and many factors can influence group dynamics (Figure 1, left). 
Some of these factors are related to group composition, including academic prepared-
ness (Hillyard et al., 2010), gender and race (Springer et al., 1999), student personal-
ities (French and Kottke, 2013), and group size (Bligh, 2000; Aggarwal and O’Brien, 
2008; Fiechtner and Davis, 2016). Other factors involve what students value and how 
they behave. Group discussions are only effective when students find the activities 
useful (Blumenfeld et al., 1996) and thus are motivated to engage with the activities 
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(Machemer and Crawford, 2007; Micari et al., 2010). Similarly, 
prior experience and attitudes while working in groups 
(Forrest and Miller, 2003; Hillyard et al., 2010), perception of 
free riders (Hall and Buzwell, 2012), and the amount of on-task 
behavior of other group members (Latané et al., 1979; Aggar-
wal and O’Brien, 2008) can influence group dynamics. Commu-
nity also plays an important role. Positive or negative influences 
on group dynamics are affected by a strong sense of belonging 
(Anderman, 2003; Freeman et al., 2007), intimidation by fel-
low group members (Micari and Drane, 2011), and comparison 
of one’s academic and social standing relative to other group 
members (Micari and Pazos, 2014).

In the literature, the substance of group discussions is com-
monly studied using qualitative methods, specifically discourse 
analysis (Figure 1, middle). Discourse analysis is defined as “the 
study of language-in-use” (Gee, 2011, p. 8), which considers 
how and why certain actions occur and how they become real-
ity (Dunn and Neumann, 2016). Typical applications of dis-
course analysis in this area include understanding student com-
prehension, knowledge construction, and cognition (King, 
1994; Fall et al., 2000; Anderson et al., 2001; Sfard, 2001; 
Kittleson and Southerland, 2004; Webb et al., 2006; Molenaar 
and Chiu, 2017); scientific argumentation and the substance of 
student conversations (Chiu, 2008a,b; Soter et al., 2008); 
student participation and communication (Sfard and Kieran, 
2001; Empson, 2003); collaboration (Webb et al., 2002; Wells 
and Arauz, 2006; Premo and Cavagnetto, 2018); classroom and 
student dynamics (Nystrand et al., 2003; White, 2003; Ikpeze, 
2007); and students’ emerging STEM identities in the class-
room (Brown et al., 2005; Bishop, 2012; Wood, 2013; Kumpu-
lainen and Rajala, 2017). However, most of these methodolo-
gies capture group discussions only for short durations for 
in-depth qualitative analyses and have certain limits in tracking 
how the conversations progress over time in a quantifiable 
manner.

The dynamics of how students interact and talk with one 
another in groups is at the crux of many different active-learn-

ing strategies and is also critical for equity for and inclusion of 
all students. To understand how different factors contribute to 
group dynamics and how different interactions lead to different 
student outcomes, it is imperative to be able to quantify how 
students participate and engage in groups (Figure 1). By quan-
tifying how students interact and talk with one another in 
groups, we can identify factors that contribute to how margin-
alized and minoritized students may or may not be able to 
engage in groups. Furthermore, understanding the dynamics of 
student group discussions will help elucidate the mechanisms 
by which different types of interactions contribute to different 
student outcomes.

Currently, there are not sufficient quantitative tools to exam-
ine the dynamics of student group discussions. In this paper, we 
adapt graph theory to track how students communicate with 
one another in groups by recording the order in which each 
participant talks and analyzing these talk-turn patterns in a 
quantitative manner. Our methodology is developed and tested 
through three iterations of data collection and two major refine-
ments of the mathematical calculations. Case studies are 
selected to demonstrate the potential patterns observed and 
highlight the utility of this methodology in biology education 
research.

THEORETICAL FRAMEWORK
There are several learning theories that deal with the funda-
mental basis of how people learn. We focused on social con-
structivism because of its relevance to group learning, and we 
also used cultural-historical activity theory (CHAT) to under-
stand how students interact to make a collaborative group 
effective. Social constructivism posits that learning is a social 
process, emphasizing how student interactions in a group or 
classroom setting contribute to how they learn, think, and con-
verse within the academic community (Hirtle, 1996; Adams, 
2006; Powell and Kalina, 2009). Vygotsky postulated that peo-
ple learn by social interaction, and Dewey believed that learners 
are part of a greater community that teaches and enriches all of 

FIGURE 1. Small-group discussions in STEM learning. Student discussions can be influenced by a number of factors, including group 
composition, sense of belonging, and values and behaviors related to collaborative activities. The dynamics and quality of these 
discussions can affect student outcomes, such as cognitive learning, development of process skills, affect, and persistence. In the 
existing literature, quality of small-group discussions is typically analyzed by discourse analysis. In this study, we adapt graph theory 
methodologies to examine the dynamics of these discussions. Citations are available in the body of the text.
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its members (Hirtle, 1996). From Vygotsky and Dewey, it can be 
said that an open environment where students are able to col-
laborate with one another is essential for knowledge building 
(Powell and Kalina, 2009). This social process of learning forms 
the foundation of active-learning strategies, which have been 
shown to be effective across STEM disciplines and settings 
(Freeman et al., 2014). Social constructivists strive to provide 
an open environment for students to share their thoughts freely 
and to give students democratic control over their learning to 
foster a sense of deeper inquiry and learning (Davydov, 1995; 
Hirtle, 1996; Adams, 2006). In this environment, instructors 
serve as facilitators in the discussions and provide scaffolds for 
students whenever necessary (Davydov, 1995; Adams, 2006; 
Powell and Kalina, 2009). To truly understand learning in the 
social constructivist view, we need to examine how students 
interact with one another and with their instructors.

Active engagement with spoken or written language is an 
important medium for learning, according to the social con-
structivist perspective (Hirtle, 1996). When students feel wel-
comed and their communication styles acknowledged, they are 
more willing to engage and get more out of activities in the 
classroom (Hirtle, 1996; Powell and Kalina, 2009). In addition, 
a welcoming and inclusive environment allows students to 
freely contribute different perspectives and experiences, which 
can help enhance student understanding of the subject matter 
(Davydov, 1995; Adams, 2006; Powell and Kalina, 2009). How-
ever, differences in communication styles can also bring another 

FIGURE 2. Cultural-historical activity theory (CHAT). In this study, we used CHAT to 
consider how the relationships among students (the subjects), the learning activity (the 
object), tools, rules, community, and division of labor in small groups can contribute to 
the final learning outcome. CHAT emphasizes the interconnectedness of these various 
components. These connections are not always easily observable, thus necessitating a 
methodology that can quantify some of these connections. Specifically, we developed a 
methodology based on graph theory to quantify the division of labor, the interactions 
among students and peer facilitators in small groups (the community), and potentially 
hidden rules that guide how different students may or may not engage with the activity 
(the object).

set of challenges, which may arise based on how students view 
other ethnicities and how willing they are to work with others 
(Atwater, 1996; Powell and Kalina, 2009). To foster an inclusive 
classroom, it is imperative to be able to quantify how different 
students may or may not engage with the group learning envi-
ronments, so we can understand the potential biases that are 
present, among other factors that contribute to an effective col-
laboration in the learning process.

CHAT is another theoretical framework relevant to student 
learning and especially articulates the connection between 
what people think and what people do (Roth, 2004; Roth et al., 
2009; Nussbaumer, 2012). Specifically, second-generation 
CHAT considers how the relationships among people (the sub-
jects), the activity (the object), tools, rules, community, and 
division of labor can all affect the final outcome (Figure 2), and 
a core idea of CHAT is the interconnectedness of these various 
components (Roth, 2004; Roth et al., 2009; Nussbaumer, 
2012). In the literature, CHAT has been used to observe stu-
dent–student relationships and student–instructor relation-
ships by examining the division of labor, the learning commu-
nity, and the unwritten rules guiding these relationships 
(Nussbaumer, 2012). Researchers have also used CHAT to 
examine how variations in the subject and composition of the 
community contribute to the learning process by observing 
how the combined effects of students’ demographics, cultural 
backgrounds, and perceptions of learning connect to the out-
come (Roth et al., 2009). Connections defined across the differ-

ent components in CHAT cannot necessar-
ily be easily seen directly (Roth et al., 
2009; Roth, 2012), thus necessitating a 
methodology that can quantify some of 
these connections.

METHODOLOGICAL FRAMEWORK
Graph Theory
We chose graph theory to model the order 
in which students talk in a group, which 
we consider a proxy for the dynamics of 
the discussion. Graph theory uses a set of 
mathematical principles and formulas to 
examine the relationships among objects 
of interest (Zweig, 2016). In its simplest 
form, a graph consists of nodes and edges 
(Godsil and Royle, 2001): Nodes represent 
the objects of interest, and edges represent 
the connections between them (Figure 3A). 
In our methodology, we model the partici-
pants of the group as nodes. When one 
participant talks after another, an edge is 
connected between them, and we define 
such as an edge as a talk-turn. There are 
several interpretations for edges. They 
may track how the discussion turns from 
one participant to another, who is willing 
to speak after others, and/or who contrib-
utes ideas that could be expanded upon or 
responded to. An edge does not necessarily 
suggest that two participants talk directly 
to each other; in fact, when a participant 
talks, everyone else in the group may be 
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listening, but only one person talks in the next turn. Thus, an 
edge only indicates that one participant talks after the other.

Edges have additional important features. First, edges can be 
weighted, usually to present frequency (Godsil and Royle, 2001; 
Figure 3B). We use edge weight to represent the number of times 
one participant talks after another participant, capturing the fre-
quency of talk-turns between any two participants. Second, 
edges may be directed (pointing from one node to another) or 
undirected (simply connecting two nodes; Godsil and Royle, 
2001; Figure 3C). In our methodology, the edges in a directed 
graph track the sequential order in which participants talk. We 
used a directed graph rather than an undirected graph, because 

we can track the reciprocation between a pair of nodes; that is, if 
one person responds more after another person but not the other 
way around. On the other hand, an undirected graph shows only 
that there was a talk-turn between the two nodes. Tracking the 
directionality of conversations is important for understanding 
the equity and inclusion of different students in group learning 
environments; for example, Webb and Kenderski (1985) found 
that males are less likely to respond to females’ requests in con-
versations, while females are more likely to reciprocate.

Graphs can have many mathematical parameters, and we 
selected relevant parameters to capture information on the 
dynamics of group discussions (Table 1). Degree and density are 
related parameters dealing with the number of connections that 
nodes have with one another (Figure 3, D and E); here, these 
parameters represent how many participants talk after another 
participant. Degree is a parameter of individual nodes and mea-
sures the number of edges connected to a node (Zafarani et al., 
2014). Density is a parameter for the entire graph and is the 
total number of edges in a graph normalized to the maximum 
number of possible edges (Borgatti et al., 2013). Density for a 
given graph ranges from 0 to 1 in value and is calculated as

Density = No. of edges
Maximum no. of possible edges

Nodes with higher degrees indicate participants who engage 
in talk-turns with or between more people. Graphs with higher 
density values indicate greater overall diversity in participants 
talking after one another; in other words, participants are 
talking after different people more often.

Centrality and centralization are another pair of related 
parameters for individual nodes and the entire graph respec-
tively (Figure 3, F and G). Centrality captures the notion that 
some nodes are more important to the connections of edges in 
a graph than others (Zafarani et al., 2014). Centrality can be 
estimated using a variety of methods that emphasize different 
interpretations for what an edge means in a graph. Many types 
of centrality deal with connections of edges beyond two nodes 
and are often used to examine the flow of information across 
many people. In this study, we model talk-turns between two 
participants as the smallest unit of analysis; we also do not 
imply that information is flowing only from one participant to 
the next, as everyone in the group can be listening to the infor-
mation. Thus, degree centrality is the most appropriate, because 
it relies only on the degree of a node or the number of edges 
connected to a node. Degree centrality for a given node is cal-
culated as

Degree centrality = No. edges pointed to a node

+ No. edges pointed out of a node

A node with high degree centrality means that the participant 
talks before and after many different people, which is another 
proxy for active participation. This parameter provides addi-
tional information to the frequency of talk-turns (edge weights).

While centrality is a parameter for individual nodes, central-
ization is the equivalent parameter for the entire graph and 
measures whether the graph is centered around a particular 
node (Borgatti et al., 2013). Similarly, we use degree centraliza-
tion, because it does not involve edges beyond two nodes. 

FIGURE 3. Relevant graph theory parameters. (A) In a graph, nodes 
represent the objects of interest, and edges represent the connec-
tions between them. The graph shown here contains five nodes 
and four edges. (B) Edges can be weighted, typically to represent 
frequency of some sort, or unweighted. (C) Graphs can be directed 
(with edges pointing from one node to another) or undirected 
(with edges simply connecting two nodes). Directed graphs have 
more information, as they show how much reciprocation is present 
between a pair of nodes. (D) Degree indicates the number of edges 
connected to a node. The degree of each node is labeled. (E) Three 
graphs with their associated densities: As more edges are added, 
density increases. (F) Degree centralities of a graph with five nodes: 
The degree centrality is exactly the degree of each node. (G) The 
centralization of two graphs that both have five nodes: The left 
graph has a higher centralization, because it is more centralized on 
node 1, while the right graph is less centralized.
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Degree centralization for a given graph ranges from 0 to 1 and 
is calculated as

Centralization = No. of nodes Maximum degree of any node

– degree centralities

×

∑

We use degree centralization to determine to what extent a 
discussion is dominated by its most active participant.

Finally, subgraphs are smaller graphs within graphs (Godsil 
and Royle, 2001). We use subgraphs to determine highly con-
nected subgroups within the larger group of participants based 
on edges and their relative weights (Supplemental Material). 
High connectedness means that individuals talk more fre-
quently after one another within the subgroup than after partic-
ipants outside the subgroup. Within the subgroup, participants 
may be willing to speak after one another or are more likely to 
contribute ideas among one another that could be expanded 
upon or responded to.

Comparison to Similar Frameworks
A similar research methodology, social network analysis, has 
emerged in recent years in biology and physics education 
research (Grunspan et al., 2014; Bruun, 2016). However, social 
network analysis and graph theory are not the same, even 
though their names are often used interchangeably in the litera-
ture (Zweig, 2016). Graph theory is a branch of mathematics 
that seeks to understand how different parameters and graphi-
cal structures are related to one another (Zweig, 2016), and 
social network analysis is a specific application of graph theory 
more focused on relating the properties of the graph to under-
stand the flow of information and social capital, as well as the 
formation of beliefs and identities, within a group of people 
(Knaub et al., 2018). In this paper, we use graph theory to track 
the talk-turns among participants in small-group discussions 
rather than the flow of information in a social network (Table 1).

METHODS
Study Context
This study was conducted at a large, private, not-for-profit, doc-
toral university (highest research activity), with an undergrad-

uate profile that is 4-year, full-time, primarily residential, more 
selective, and lower transfer-in, as reported by the Carnegie 
Classification of Institutions of Higher Education (McCormick 
and Zhao, 2005). We observed groups of introductory biology 
students tackling conceptual problems related to their course 
work in an optional, peer-led academic program (Drane et al., 
2005, 2014; Light and Micari, 2013). In this program, consis-
tent groups of five to seven students meet weekly to work with 
peer facilitators who have previously excelled in the course 
(Swarat et al., 2004), and groups were observed in the second 
half of the academic quarter. This study was approved by the 
Institutional Review Board at Northwestern University.

Data Collection
Our methodology was developed through three iterations of 
data collection based on observations of students solving prob-
lems in groups (Figure 4). In the first iteration, qualitative notes 
and memos were written during observations to track the dis-
cussions. Partial talk-turn data were included as part of the 
notes. In the second iteration, the relative physical positions of 
participants in each group were recorded in hand-drawn dia-
grams. Each talk-turn between any two participants was drawn 
as a line between them, and the number of talk-turns was 
tracked by tally marks. This resulted in undirected data for our 
graph theory calculations.

The third and final iteration combined both the earlier itera-
tions and also recorded the order of talk-turns. In addition to the 
hand-drawn diagrams for physical positions, talk-turn data were 
recorded in a question-or-response format in a spreadsheet, and 
qualitative notes and memos were written during observations. 
Each participant was assigned a number based on the initial 
order in which he or she first talked in the group. Whenever a 
participant talked, his or her number was recorded under either 
the question or response column, which resulted in directed data 
for our graph theory calculations. For the purpose of this study, 
questions were nonrhetorical (Smith et al., 2013), and responses 
were defined as utterances that did not contain a question. 
While we acknowledge that group discussions have complex dis-
course patterns not captured in this simple format, we wanted to 
include discourse moves as part of the methodology, so future 

TABLE 1. Graph theory parameters used in the development of our methodology

Parameter Definition Our methodology Social network analysis

Node An object of interest Student or facilitator Person
Edge A connector between two nodes Talk-turn between two individuals Flow of information between two people
Direction Defines which node points to another 

using the edge
Indicates which individual talks after the 

other
Indicates which person has ties to the 

other
Weight A number associated with an edge Frequency of talk-turns between two 

individuals
Frequency of information flow between 

two people
Degree Number of edges connected to a node Number of people an individual talks 

before/after
Number of people an individual has ties 

to
Density Number of edges divided by number of 

possible edges
Talk-turns occurring among different 

individuals
Interactions occurring among different 

people
Centrality A number for the importance of a given 

node in the graph
Amount of talk-turn contributions for an 

individual
Amount of influence of each person

Centralization A number for the importance of the 
central node

Dependence of a group on its most active 
individual

Dependence of a network on its most 
active person

Subgraph A smaller graph within a graph Individuals who talk after each other 
more

Individuals who have closer ties to each 
other
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studies can examine group discussions by combining quality dis-
course data and our quantitative methodology.

General Behaviors
We examined how many questions and responses were pro-
vided by each participant (peer facilitator and students) in a 
group. Questions and responses per hour were calculated using 
the following formulas, and scatter plots were generated to 
visualize the talk patterns of participants. These plots especially 
allowed us to compare the behaviors of peer facilitator versus 
students within a group.

Questions per hour = No. of question turns by a participant
Time in hours

Responses per hour = No. of response turns by a participant
Time in hours

For comparisons across groups, a normalized talk ratio was 
calculated based on a fair-share number of turns for each partic-
ipant, assuming that all participants in the group talked for an 
equal number of turns. Normalized talk ratio for a given partic-
ipant was then calculated as the number of talk-turns by that 
participant divided by the fair-share number of turns in the 
group.

Fair-share no. of turns = Total no. of talk turns
No. of participants (nodes)

-Normalized talk ratio = No. of talk turns by a participant
Fair share no. of turns

A participant who talked more than his or her fair share of 
turns would have a normalized talk ratio of >1.0, whereas a 
participant who talked less than his or her fair share of turns 
would have a normalized talk ratio of <1.0, regardless of the 
size of the group.

Episode Length
From our third iteration of data collection with the ques-
tion-and-response format, we defined an episode in the discus-
sion as the number of talk-turns from a question to the last 
response immediately before the next question. We reasoned 
that a question was likely to indicate a new episode, especially 
in the initiation–reply–evaluation discourse pattern typically 
observed in a classroom (Macbeth, 2003), while acknowledg-

ing that many other scenarios may also occur, for example, a 
non sequitur response that leads to a new and productive direc-
tion (or episode) of the discussion. Nonetheless, we wanted to 
establish and test a robust methodology that can handle epi-
sodes, a common feature in discourse analysis, for potential 
future studies. With this operationalized definition of episodes, 
we calculated the frequency of episodes in different lengths.

Graph Theory Parameters
Data were processed and analyzed using a combination of Mic-
rosoft Excel (Microsoft Corporation, 2016), NodeXL Basic (Smith 
et al., 2010), MATLAB (Mathworks, 2017), and R (R Core Team, 
2017). For analysis in NodeXL Basic, data in the question-or- 
response format were converted into an edge list, which included 
participant pairs who engaged in talk-turns, with corresponding 
weights for each of the edges. Subgroups were identified using 
the Girvan–Newman algorithm, a hierarchical method designed 
for small groups (Girvan and Newman, 2002). To automate data 
processing and to make data analysis more transparent, we 
developed custom scripts in MATLAB and R. Our MATLAB script 
takes the talk-turn data in the question-and-response format and 
generates an edge list and a corresponding weight list for the 
edges. These two lists serve as inputs for our R script, which uses 
the igraph package to calculate graph theory parameters that we 
define in the Methodological Framework section (Kolaczyk and 
Csardi, 2014). All scripts and the source code (at the time of 
publication) are available online in the Supplemental Material.

Case Study Selection
We use a case study approach to highlight the potential utility of 
our methodology. Case studies are especially useful for two pur-
poses: 1) to examine the range and variations that exist within 
a setting and 2) to probe particular instances that are problem-
atic or unusual (Case and Light, 2011). As such, the strength 
and value of case studies are not about generalizability; rather, 
case studies can provide insights as exemplars (Flyvbjerg, 
2006). Here, we selected three case studies that demonstrate 
outcomes in group dynamics that could be observed using our 
methodology. Two cases were selected to contrast the extremes 
of talk-turn behaviors observed in discussions, and a third case 
was selected to highlight the existence of hidden subgroups.

RESULTS
Talk-Turn Behaviors in Groups
We used the question-and-response data to examine at the talk-
turn behaviors of individual participants in groups, comparing 

FIGURE 4. Three iterations of data collection. In the first iteration, qualitative memos were recorded in live observations of student groups 
(n = 8). In the second iteration, hand-drawn graphs depicting dynamics of student conversations were created (n = 3). In the final iteration, 
talk-turns were recorded in a table format along with notes (n = 4). Each talk-turn was either a question (“q”) or response (“r”).



CBE—Life Sciences Education • 18:ar29, Summer 2019 18:ar29, 7

Graph Theory to Examine Group Discussion

peer facilitators with students and students with one another. 
From the four groups observed in this iteration of data collec-
tion, we identified two extreme patterns (Figure 5). First, using 
the question and response per hour data, we found that the 
peer facilitators in groups A and B were nearly indistinguishable 
from students in their respective groups (Figure 5, first row). In 
these groups, the peer facilitators and students engaged in sim-
ilar number question turns and response turns. For example, in 
group A, the peer facilitator had 17.3 question turns and 88.0 
response turns per hour, compared with 13.3 question turns 
and 80.7 response turns per hour for the next most active per-
son in the group. On the other hand, in groups C and D, the 
peer facilitators had distinct behaviors compared with students. 
These peer facilitators engaged in many more talk-turns com-
pared with students in their groups and also had more question 
turns per hour compared with the peer facilitators in groups A 
and B. For example, in group D, the peer facilitator had 141.3 
question turns and 120.0 response turns per hour, compared 
with 14.7 question turns and 73.3 response turns per hour for 
the next most active person in the group.

To compare across groups more easily, we used the normal-
ized talk ratio defined in the Methods section (Figure 5, second 
row). Consistent with the question and response per hour data, 
the peer facilitator in group A had a normalized talk ratio of 
1.36, closest to 1 out of all the peer facilitators. In contrast, the 
peer facilitator in group D had a normalized talk ratio of 3.08, 
highest among the groups. Group A also had the smallest varia-
tion in normalized talk ratios among all participants (SD = 0.40, 
max = 1.36, min = 0.45, range = 0.91). Group B had a similar 
variation in normalized talk ratios (SD = 0.57, max = 1.96, 

min = 0.35, range = 1.61). On the other end of the spectrum, 
group D had the largest variation in normalized talk ratios 
(SD = 1.22, max = 3.08, min = 0.11, range = 2.97), followed by 
group C (SD = 0.75, max = 2.05, min = 0.27, range = 1.79). 
Within each individual group, the peer facilitators had the high-
est normalized talk ratios. Across groups, we can infer that, in 
groups A and B, the peer facilitators behaved similarly to the 
students, whereas in groups C and D, the peer facilitator 
behaved more like a traditional classroom authority figure.

Groups A and B had longer episode lengths and fewer total 
number of episodes compared with groups C and D (Figure 5, 
third row). In one extreme, group A had episodes ranging from 
2 to 20 talk-turns, with an average of 4.85 episodes per hour; 
on the other hand, group D had episodes ranging from 1 to 5 
talk-turns, with an average of 3.26 episodes per hour. Groups A 
and B also had lower proportions of episodes with 2 talk-turns 
at 20 and 30%, respectively, compared with groups C and D, 
with 61 and 62%, respectively. We found that episode lengths 
tended to be longer in groups in which the peer facilitators and 
students had similar talk-turn behaviors.

Graph Theory Analysis
To demonstrate the potential utility of our methodology, we 
present three case studies highlighting a decentralized graph, 
a centralized graph, and a graph with subgroups (Figure 6 and 
Table 2). Case 1 (Figure 5, group A) is a decentralized graph 
containing four nodes, with a majority male peer facilitator 
(node 1), two majority female students (nodes 3 and 4), and 
one underrepresented minority (URM) male student (node 2), 
seated physically in a circular format similar to that of a 

FIGURE 5. Characteristics of individual and group talk-turn behaviors. In the first row, questions and responses per hour are shown in 
scatter plots. Each point represents a student in the group, with the peer facilitator indicated by “X.” Four groups (A–D) are arranged based 
on the average distance of each student from the peer facilitator in the scatter plot to highlight peer facilitator talk behaviors in compari-
son to student talk behaviors. In the second row, normalized talk-turn ratios are plotted in descending order for each individual in the 
group, with Person 1 being the peer facilitator. Individuals are numbered based on the order in which they first talked. In the third row, 
histograms represent the distribution of episodes in one recorded session for each group. For the purpose of this study, episodes are 
defined as the number of talk-turns in between two questions.
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roundtable (Figure 6, left). The graph has a total of 12 edges, 
resulting in a density of 1.00; that is, all possible pairs of par-
ticipants engaged in at least 1 talk-turn between them. The 
peer facilitator has a degree centrality value of 6.00, and the 
network has a centralization value of 0.00, meaning that no 
one participant is the majority speaker in the group. The two 
female participants talked for 55% of turns, and the two male 
participants talked for 45% of the turns; both percentages are 
near 50% of the fair share between genders based on the num-
ber of participants. The one URM participant talked for 11% 
of the turns, lower than the 25% of the fair share based on 
ethnicity.

Case 2 (Figure 5, group D) is a centralized graph containing 
five nodes, with a majority male peer facilitator (node 1), one 
minority female student (node 5), and three URM male stu-
dents (nodes 2, 3, and 4), seated physically in a more tradi-
tional classroom format with the peer facilitator at the front 
(Figure 6, middle). The graph has a total of eight edges, result-
ing in a density of 0.40; that is, not all participants engaged in 
talk-turns with others in the group. The peer facilitator has a 
degree centrality value of 8.00, and the network has a central-
ization value of 1.00, meaning that one participant (the peer 

FIGURE 6. Three cases analyzed by our graph theory methodology. In these graphs, each 
individual and his or her demographics are presented as a node. Transitions between 
talk-turns are represented by arrows, and the arrow thickness indicates the cumulative 
number of transitions. At one extreme, case 1 is a decentralized group in which the peer 
facilitator (Person 1) appears to be nearly indistinguishable from students. At the other 
extreme, case 2 is a centralized group in which the peer facilitator dominates the 
talk-turns. Case 3 is an intermediate case that also highlights the existence of subgroups, 
which are divided between the two genders. Note that case 3 is undirected compared 
with cases 1 and 2, which are directed.

TABLE 2. Summary of graph theory parameters of the selected 
cases

Parameter
Case 1: 

Decentralized
Case 2: 

Centralized
Case 3: 

Intermediate

Nodes 4 5 8
Edges 12 8 17
Density 1.00 0.40 0.61
Centrality (peer 

facilitator)
6 8 6

Centralization 0.00 1.00 0.33
Subgroups None None 2

facilitator) is the majority speaker in the 
group. The five male participants (includ-
ing the peer facilitator) talked for an over-
whelming 98% of the turns, whereas the 
female minority student talked for only 
2% of the conversation; these percentages 
are in stark contrast to the fair-share per-
centages of 80 and 20% for males and 
females, respectively. The three URM stu-
dents talked for 18% of the turns, much 
lower than the 60% of their fair share 
based on ethnicity.

Case 3 is a larger group with an inter-
mediate pattern between the two 
extremes. This graph contains eight nodes: 
a male peer facilitator (node 1), three 
female participants (nodes 3, 4, and 5), 
and four male participants (nodes 2, 6, 7, 
and 8), seated physically in a circular for-
mat (Figure 6, right). The graph has a total 
of 17 edges, resulting in a density of 0.61. 
The peer facilitator has a degree centrality 
of 6.00, and the network has a centraliza-
tion value of 0.33. The peer facilitator 

talked for 28% of the turns (compared with fair share of 12.5%); 
the three female participants talked for only 24% of the turns 
(compared with fair share of 37.5%), whereas the four male 
participants talked for 47% of the turns (compared with fair–
share of 50%). Most interestingly, two subgroups were identi-
fied using the Girvan–Newman algorithm (Girvan and Newman, 
2002), even though they may not be immediately obvious from 
visual inspection of the graph itself. These two subgroups were 
divided by gender, with one subgroup consisting of the female 
participants and the other subgroup the male participants, sug-
gesting that participants of the same gender were more likely to 
talk before and after one another.

DISCUSSION
In this study, we adapted graph theory as a methodology to 
examine the dynamics of discussions by tracking the turns in 
which students talk in small groups. In our peer-led groups, we 
identified two major patterns: one in which the peer facilitator 
and students contribute to the discussion relatively evenly and 
another in which the peer facilitator behaves more like a class-
room authority figure. Furthermore, in one of our large groups, 
we observed subgroups divided along gender lines. Our data 
are consistent with patterns described in previous studies in the 
existing literature, demonstrating the utility and validity of our 
methodology.

In the groups in which the peer facilitator and students had 
similar behaviors, we observed higher episode lengths and 
lower ranges of the normalized talk ratios, lower centralization 
values, and higher graph densities, all indicators of fairly equal 
division of labor. These observations are consistent with the 
peer facilitators guiding discussions to help students build con-
ceptual understanding (Eberlein et al., 2008; Micari et al., 
2010; Pazos et al., 2010). In contrast, in the groups in which the 
peer facilitator behaved more like an authority figure, we 
observed shorter episodes (especially with length = 2), greater 
ranges of normalized talk ratios, higher centralization values, 
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and lower graph densities. The high proportion of episodes 
with length = 2 is consistent with the peer facilitators providing 
directed instruction in the inquiry–response–evaluation dis-
course pattern typically observed in a classroom (Macbeth, 
2003; Micari et al., 2010; Pazos et al., 2010), which is not nec-
essarily aligned with the tenets of social constructivism.

Our data suggest that seating arrangements can be cor-
related with how participants engage in discussion. For exam-
ple, in case 1, students were seated in a circular format facing 
one another, and the resultant graph has a high density, indicat-
ing that students engaged in talk-turns with one another. In 
case 2, students were seated in a more traditional classroom 
structure facing the peer facilitator at the front, and the resul-
tant graph has a low density. These observations suggest that 
physical arrangements of the classroom (i.e., the tools in CHAT) 
can influence how different people engage with the activity. 
These observations are consistent with existing literature: Stu-
dents in circular seating are more likely able to maximize group 
interactions; in contrast, the typical classroom seating with stu-
dents facing the front tends to emphasize the role of the instruc-
tor (or peer facilitator) and minimize student–student interac-
tions (McCorskey and McVetta, 1978; Wannarka and Ruhl, 
2008; Borgatti et al., 2009).

We observed some important patterns related to equity and 
inclusion in groups, again consistent with existing literature. For 
example, in case 3, two subgroups were identified using graph 
theory methods, and the subgroups were divided by gender, 
suggesting that there are additional hidden social rules within 
the group that are guiding or informing the talk patterns among 
students. In case 2, there was only one female participant, and 
she had the lowest talk-turn contribution out of all the partici-
pants. In contrast, case 1 had an equal number of female and 
male participants, and talk-turn contributions were even across 
the two genders. According to the existing literature, groups 
with gender balance result in females having a slightly greater 
influence and relatively equal achievement across genders, 
whereas when females in a group are in the minority, they tend 
to have less influence and lower achievement than males 
(Strodtbeck and Mann, 1956; Webb, 1982a, 1984; Craig and 
Sherif, 1986). Another important pattern we noticed is in the 
number of talk-turn contributions of URM students. In both 
cases 1 and 2, majority students in the group had higher per-
centages of talk-turn contributions compared with URM stu-
dents. Our results are also in line with previous research: URM 
students are more likely to face intimidation and experience 
social-comparison effects (Micari and Drane, 2011) and tend to 
have fewer interactions within groups (Cohen and Roper, 1972).

Our methodology can serve as an important tool to under-
stand and assess how students participate and engage in group 
discussions. One potential application is observing the effects of 
how different combinations of demographics may affect stu-
dent participation, and this information can then be used to 
inform how instructors can create more equitable classrooms 
for all students to engage in meaningful learning. Second, we 
can use this methodology to examine the effects of class struc-
ture on student participation; these could include physical 
structures such as spatial seating of the classroom and pedagog-
ical structures such as instructor talk (Seidel et al., 2015). Fur-
thermore, information about student participation can be cap-
tured at various time points throughout an academic term to 

determine the progression for how groups may coalesce over 
time to create more effective collaboration. For assessment pur-
poses, this methodology can provide a means for instructors to 
quantify contribution by individual members in a group and 
provide feedback to students. Ultimately, quantitative informa-
tion obtained from this methodology can be used to help stu-
dents learn to collaborate and inform instructors on how to 
moderate discussions.

LIMITATIONS OF THE STUDY
Our study has a few limitations. First, we had a limited number 
of groups in our final iteration of data collection and analysis, 
so we were not able to make generalizable conclusions. How-
ever, our goal was simply to establish a quantitative methodol-
ogy based on graph theory to examine student discussions in 
small groups. Even from our limited data set, we were able to 
observe patterns consistent with various observations the exist-
ing literature, indicating the validity of our methodology.

Second, our methodology does not consider whether an 
individual is addressing the entire group or a specific person. In 
a group, when an individual speaks, everyone else can be listen-
ing. However, it is simply not feasible to determine whether 
each person in the group is listening or not. Furthermore, it is 
not practical to model this kind of listening information using 
graph theory. Assuming that everyone is listening, the resultant 
graph will have edges from the speaker node to all other nodes. 
Essentially, the graph will be saturated with edges and will 
likely not provide any useful information. Our methodology 
tracks the talk-turn behavior of individuals in a group, which 
can tell us much more about the dynamics of the discussion.

Third, our methodology tracks only the sequential order of 
talk-turns and not the content of discussion. One solution to 
this problem is combining our graph-theory methodology with 
discourse analysis to incorporate the substance of the discus-
sion into our mathematical model. We had intentionally devel-
oped the methodology with this purpose in mind; for example, 
including discourse moves and episodes in the data processing 
and analysis pipeline. As such, our methodology should be 
robust enough to handle different kinds of data, including 
clicker discussions, group work in laboratory setting, and vari-
ous small-group learning environments such as problem-based 
learning, peer-led team learning, and process-oriented guid-
ed-inquiry learning.

Some quantitative methods currently exist to analyze pat-
terns of group discussions. For example, a computer-based 
method has been used to map the content of the conversation 
to show how participants contribute in the group and to under-
stand how group dynamics can affect learning outcomes (Barros 
and Felisa Verdejo, 2000). Our methodology complements this 
existing work. We tracked how participants engage in talk-
turns, while the previous study focused on how the content of 
the discussion and the types of contributions may affect learn-
ing outcomes (Barros and Felisa Verdejo, 2000).

Despite these limitations, our methodology can serve as an 
important tool in examining and understanding group work by 
capturing the dynamics of how students engage in talk-turns in 
the discussion (Figure 1). We observed some interesting and 
important patterns, such as centralized versus decentralized 
groups, potential effects of seating arrangements on talk-turn 
behaviors, and influence of gender and minority status in group 
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contributions, all of which are consistent with other observations 
in the existing literature. With this methodology, we will be able 
to examine how various student characteristics may influence 
group dynamics in discussions and how differences in talk-turn 
behaviors may contribute to the success of student outcomes.
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