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Background: Ecosystems with seasonal fluctuations in climate and food availability

present physiological challenges to resident mammals and may cause “stress.” The

two predominant physiological responses to stressors are (1) the activation of the

hypothalamic-pituitary-adrenal axis and (2) the modulation of the autonomic nervous

system. To date, the primary indicator for “stress” in wildlife- and zoo animal research

are glucocorticoid levels. By measuring the autonomic regulation of cardiac activity,

particularly the vagal tone, heart rate variability (HRV) is presently emerging as a suitable

indicator of “stress” in farm- and domestic animal research.

Objective: The aim of this study was to use HRV, a novel method in wildlife research,

to assess seasonal patterns of “stress” in a group of free-ranging Przewalski’s horses

(Equus ferus przewalskii).

Methods: Six pregnant Przewalski’s horses from one harem within the Hortobágy

National Park in Hungary were subjected to the study. We used a dedicated telemetry

system consisting of a subcutaneously implanted transmitter and a receiver and storage

unit in a collar to record HRV, heart rate (HR), subcutaneous body temperature, and

activity throughout a one-year study period—climate data was also collected. We defined

“stress” as a decrease in parasympathetic nervous system tone and calculated RMSSD

(root mean square of successive differences) as a measure of HRV. Linear mixed effects

models with random intercept per individual were used for statistical analysis.

Results: HRV and HR varied considerably throughout the year. Similar to temperate

ruminants and hibernating mammals, Przewalski’s horses experienced lower HR and

HRV during winter, when resources are limited indicating decreased metabolic rates

coupled with “stress.” In spring, we observed a drop of HRV along with a peak in HR

indicating an increase of allostatic load that is most likely associated with increased
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energy demands during pregnancy and/or seasonal routines such as the adjustment of

the gastrointestinal system to better quality diet.

Conclusion: Measuring telemetric HRV is a proven method to study undisturbed

reactions of wild animals to their changing environment over the long term. Przewalski’s

horses experience a loss of complexity in cardiovascular dynamics over the winter and

particularly during spring, indicating seasonal “stress.”

Keywords: adaptation, allostatic load, Equus ferus przewalskii, heart rate variability, parasympathetic nervous

system, Przewalski’s horse, seasonal variations, stress

INTRODUCTION

In seasonal environments, free-ranging organisms experience
regular patterns of physiological and behavioral responses that
allow the individual to cope with predictable environmental
changes (Romero, 2002; McEwen andWingfield, 2003; Boonstra,
2004; Reeder and Kramer, 2005). Measuring “stress” allows us
to quantify these responses and to investigate how organisms
integrate their life cycles in the natural world—knowledge critical
for conservation physiology (Wikelski and Cooke, 2006; Tarlow
and Blumstein, 2007; Busch and Hayward, 2009; Dantzer et al.,
2014).

“Stress” was first described by Hans Selye in 1936, who
defined it as a non-specific response of the body to any demand
for change (Selye, 1936). Later, the concept has been refined
by introducing the terms “stressor” and “stress response.” A
stressor is a stimulus that threatens homeostasis (stability of
physiological variables), whereas the stress response is the
reaction of the organism to regain homeostasis (Chrousos,
2009). “Stress” would then be a state in which homeostasis
is threatened. The hypothalamic-pituitary-adrenocortical (HPA)
axis and the autonomic nervous system are the two key-players
of the stress response (McEwen and Wingfield, 2003; Reeder and
Kramer, 2005; Koolhaas et al., 2011). These systems respond to
unpredictable stressful events in daily life, but also to predictable
challenges throughout the day and year.

To date, measuring “stress” in wildlife has mainly focused
on the quantification of glucocorticoid steroid hormones (i.e.,
cortisol and corticosterone), the primary mediators of the HPA

axis (Möstl and Palme, 2002; Millspaugh and Washburn, 2004;
Schwarzenberger, 2007; Busch and Hayward, 2009; Sheriff et al.,
2011; Dantzer et al., 2014). In human medicine and farm- and

companion animal research, heart rate variability (HRV) has
been used increasingly over the past decades to evaluate physical

and psychological stress (Mohr et al., 2002; Pumprla et al.,
2002; VonBorell et al., 2007; Stucke et al., 2015). HRV quantifies
the constantly changing time intervals between consecutive
heartbeats (NN-intervals). This means that it is based on the
antagonistic oscillatory influences of the parasympathetic- and
sympathetic-nervous system on the heart and thus reflects the
functioning of the autonomic nervous system (Malik et al., 1996;
Pumprla et al., 2002; VonBorell et al., 2007).

Whilst the parasympathetic nervous system promotes

homeostasis and optimizes the function of internal viscera, the

sympathetic nervous system responds to challenges from outside

the body. In an attempt to redefine “stress,” Porges (1995a)
proposed a model based on the tradeoff between internal and
external needs—when internal needs (homeostasis) are no longer
being adequately serviced by the parasympathetic nervous system,
the organism is experiencing stress (Porges, 1995a). Thus, “stress”
can be investigated by measuring parasympathetic nervous
system function.

Compared to the sympathetic nervous system, the
parasympathetic modulation of the heart is much faster
(Pumprla et al., 2002). Various HRV measures that reflect
these rapid changes, and hence cardiac vagal activity, have
recently been reviewed in order to determine the best method to
characterize parasympathetic nervous system function (Laborde
et al., 2017). Of all measures, root mean square of successive
differences (RMSSD) has been considered the preferred index
under free-running conditions, as it is relatively free from
respiratory influences (Penttila et al., 2001; Hill and Siebenbrock,
2009; Saboul et al., 2013) and fairly easy to calculate and interpret
(Malik et al., 1996; VonBorell et al., 2007; Plews et al., 2013).

In this study, we investigated seasonal patterns of “stress”
in a group of free-ranging Przewalski’s horses (Equus ferus
przewalskii) within the Hortobágy National Park in Hungary
by measuring HRV—a novel method in wildlife research. We
employed RMSSD as an indicator for parasympathetic nervous
system tone and measure of “stress.”

The Przewalski’s horse (Equus ferus przewalskii Poljakov,
1881) is a typical steppe herbivore whose distribution once
covered the entire Eurasian steppe belt (Wakefield et al., 2002).
Pasture competition with livestock and over-hunting led to the
horses moving east to Asia, and eventually becoming extinct
in the wild in the 1960s (Boyd and Houpt, 1994; Wakefield
et al., 2002). The species has been saved from total extinction
by breeding in captivity (Ryder and Wedemeyer, 1982; Ryder,
1993) and reintroduction into its formal range in Mongolia
(Wakefield et al., 2002; King et al., 2015). There, temperatures
range from−40◦ to+40◦C andwater resources are limited (Boyd
and Houpt, 1994). Semi reserves, such as the Hortobágy National
Park in Hungary, were created to prepare horses for release into
the wild and to offer opportunities for research (Zimmermann,
2005)—understanding the species’ physiological capabilities and
seasonal adjustments is critical for the successful management of
reintroduced animals and hence, conservation of the Przewalski’s
horse.

In order to observe undisturbed reactions of free-ranging
Przewalski’s horses to their changing environment over the long
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term, we recorded cardiac activity with a transmitter-implant
under the skin of the horses. We hypothesized that HRV would
be highest during the summer and lowest during the winter,
indicating seasonal “stress” due to energetic bottlenecks.

MATERIALS AND METHODS

Study Site
The study was performed in the Pentezug region of the semi
reserve Hortobágy National Park in Hungary. Pentezug is a
steppe region of 2,388 ha (27 ha forest, 2,361 ha meadow)
that is under the highest level of protection. It is closed to the
public and any agricultural activity that might cause damage
to the sensitive fauna and flora is prohibited. At present,
∼300 Przewalski’s horses freely roam the grasslands of the
park representing the largest population in the world. The
horses live in harem units, consisting of one mature breeding
stallion and up to eight adult mares with their offspring. Female
horses frequently give birth to one foal per year and, as there
are no predators in the park, the population is increasing. In
fact, more than 50 foals are currently being born annually
(Zimmermann et al., 2009b; Makra, 2016). Average temperature
within the park ranges around 21◦C in the summer and −2.5◦C
in the winter. The average annual rainfall is ∼500 mm, and
snowfall ∼2–10 cm, distributed throughout 40–45 days per year
(Zimmermann et al., 2009a). The horses depend entirely on the
natural vegetation and are fully exposed to the changing climatic
conditions.

Data Collection
The study and all procedures were performed 2008 in Hungary.
The responsible veterinary administration authorities in the
Hajdú-Bihar County approved the captures and subsequent
procedures according to the Act on Animal Protection 1998.
In 2008, there was no provision for the Animal Welfare and
Ethics Committee of the Vetmeduni Vienna to review or approve
projects carried out outside of Austria.

In October 2008, we captured six adult Przewalski’s horse
mares (aged 3–11 years old; mean ± SD age, 6 ± 3 years;
mean estimated weight, 295 ± SD 15 kg; range, 270–320 kg) by
remote darting from foot or vehicle. Only female horses from
one harem were selected for two reasons: (1) their behavior is
synchronized reducing interindividual variability (Souris et al.,
2007), (2) stallions tend to break valuable monitoring equipment
due to their aggressive behavior (Kolter and Zimmermann, 2001).
All of the six mares were pregnant and gave birth to healthy foals
during the study period (6thMay–7th June 2009; mean 23rdMay
± SD 5 days).

A combination of 10mg butorphanol (Torbugesic, Fort
Dodge Animal Health, Fort Dodge, Iowa 50501, USA), 10mg
detomidine (Domosedan, Orion Corp. Farmos Finland), and
0.7–1.4mg ethorphine (M99, C-Vet Veterinary Products, Lancs,
UK) was used to induce anesthesia. Anesthesia was maintained
with an intravenous infusion of guaifenesin-ketamine-xylazine [1
L of 5% guaifenesin (Myolaxin, Vétoquinol UK Ltd, Buckingham,
MK18 1PA, UK) 1,000mg ketamine (Ketamidor, Richter Pharma,
4600 Wels, Austria) and 500mg xylazine (Rompun, Bayer

Austria Ges.m.b.H, 1160 Vienna, Austria)]. For further details
regarding anesthesia, see Walzer et al. (2009).

The horses were fitted with collars, which included a dual-
axis motion sensor to monitor activity, and very high frequency
(VHF) transmitters for tracking purposes. In order to measure
cardiac activity, we used a system consisting of an implantable
transmitter unit with two electrodes (Figure 1), and a receiver
and storage unit located in the collar. The microprocessor-
controlled transmitter (50 g, 65× 35× 11mm) was encapsulated
in physiologically inert medical-grade silicone rubber and housed
a thermistor. Two electrode plates (surgical steel, 8 mm diameter)
were connected to the transmitter with a coiled silicone rubber-
insulated wire of multi-stranded stainless steel fitted in silicone
rubber tubing. We surgically implanted the transmitter between
the muscle and subcutaneous fat on the ventro-lateral aspect
on the left side of the neck. Two small caudo-ventral incisions
served to pull the electrodes subcutaneously from the transmitter
to a peristernal position. Once instrumentation was in place, we
affixed the transmitter and the electrodes to the subcutaneous
tissue and closed the skin incisions with absorbable suture
material. The implantable unit recorded heart rate (HR) and
subcutaneous body temperature at intervals of 1 min. Every
15 min, cardiac activity was recorded on a beat-to-beat basis
for a time window of 3 min. Resolution of body temperature
was 0.01◦C, and of cardiac measurements beats per minute
(bpm).

The parameters were transmitted at 100 kHz via a short-range
telemetry data link to the receiver and storage unit in the collar.
We obtained hourly climate data (outdoor temperature, wind,
rain, and humidity) from a weather station located in the study
area.

Data was retrieved from the collars 18 months after
instrumentation. One horse lost its collar 3 months after
instrumentation (it was therefore excluded from the study) and
two horses at∼10 months.

FIGURE 1 | Photograph showing the self-constructed transmitter with the two

electrode plates. We implanted the transmitter under the skin of the left side of

the neck. Electrodes were placed next to the sternum.
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Data Analysis
The raw, telemetrically obtained, data contained obviously
erroneous values due to electronic noise and disturbance during
transmission. We removed all HR-values outside the described
physiological range for horses of 10–250 bpm from the database.
We computed the corresponding NN-intervals and converted
the values into milliseconds (i.e., divided 60 through the HR,
and multiplied the resulting values with 1,000). In order to
clean the data from transmission errors and other noise, we
removed sessions with <30 measurements and removed NN-
interval values that deviated more than two standard deviations
from the respective session mean. To avoid a bias resulting from
handling and surgery, the first 2 weeks after anesthesia and
surgery were discarded from statistical analysis. As the duration
of recordings varied between the individuals, data of no longer
than 12 months were included.

We determined HRV by calculating the square root of the
mean of the sum of the squares of differences between adjacent
NN intervals (RMSSD). It is recommended to perform basal
cardiac measurements in horses only under resting conditions,
when parasympathetic activity is high (Parker et al., 2010; Stucke
et al., 2015). Therefore, we first evaluated RMSSD throughout the
24-h period of the day and used only data from the 6-h period of
the day with the highest values for further analysis.

Statistical tests were performed using R 3.3.1 for Windows
(The R Foundation, Vienna, Austria). We used a linear mixed-
effects model to assess the effect of two continuous independent
climate variables (outdoor temperature and humidity), two
binary independent climate variables (rain and wind), two
continuous independent physiological variables (HR and body
temperature), and one binary independent physiological variable
(activity) on one continuous dependent variable (RMSSD) for
all Przewalski’s mares. The mixed-effects model allows repeated
measures by including a random intercept for each subject (each
horse). Standardized scores were used for continuous variables,
and RMSSD was log-transformed to account for its heavily
skewed distribution. We fit multiple nested models including
(1) random intercepts for each horse and a fixed effect for HR
and month. We then stepwise added fixed effects for (2) activity
and body temperature, (3) climate data, and (4) a quadratic
effect of outdoor temperature. Akaike’s Information Criterion
(AIC) was used to compare the goodness of fit for the set of
models.

RESULTS

Mean values of RMSSD for each hour of the day are plotted in
Figure 2—RMSSD was highest between 12 p.m. and 6 p.m., the
third quarter of the day, and lowest at around midnight.

Figures 3, 4 represent mean values of RMSSD (Figure 3)
and HR (Figure 4) for the third quarter of each day of
the year (individual values are represented in Supplementary
information: Figures 1, 2). Cardiac activity varied considerably
throughout the year. RMSSD and HR showed lower values
during the winter than during the summer. RMSSD dropped in
April along with a concurrent peak in HR.

When compared to January, RMSSD experienced a
pronounced drop in April. It increased rapidly thereafter
and remained on significantly higher levels from June to October
(mean 120 ms) whereby highest values were observed in August.
RMSSD decreased in fall, and remained lower (mean 87 ms)
during the winter-months when compared to the summer
months (Figure 3).

In contrast, HR increased considerably during March and
experienced a pronounced peak in April. This peak was
concurrent with the observed drop in RMSSD. After a rapid
decrease, HR remained on an intermediate level (mean 50 bpm)
during summer and further declined during autumn to reach a
mean of ∼45 bpm during the winter. The total annual change
was approximately twofold, with a maximum of 80 bpm in spring
(Figure 4).

RMSSD correlated negatively with HR and body temperature,
and positively with activity. Regarding climatic effects, RMSSD
correlated positively with rain. Humidity showed a small
positive effect on RMSSD, whereas wind had no significant
effect. Outdoor temperature had a negative effect on RMSSD—
this effect was quadratic: temperatures of around 18◦C were
associated with minimum RMSSD values. The model including
the quadratic effect of outdoor temperature showed the lowest
AIC (i.e., the best fit, see Supplementary Table 1). In summary,
the energetic consequences of thermoregulation and weather
conditions contributed significantly to the seasonal changes in
RMSSD (Table 1). Of all physiological and climatic parameters,
activity had the strongest effect on RMSSD. HR only accounted
for∼2.5% of variation.

DISCUSSION

This is the first study using HRV to measure seasonal patterns
of “stress” in free-ranging wildlife. During the past decades,
measuring fecal glucocorticoid metabolite levels has become
the method of choice to non-invasively index “stress” in zoo-
and wild animal research (Möstl and Palme, 2002; Touma
and Palme, 2005; Schwarzenberger, 2007; Sheriff et al., 2011;
Dantzer et al., 2014; Hadinger et al., 2015). However, long-term
recordings with short sampling intervals are often logistically
difficult. Samples collected under field conditions cannot always
be preserved immediately, the length of time between defecation
and collection is often unknown, and assignment of the sample to
an individualmight be difficult, all factors influencing final results
(Huber et al., 2003; Sheriff et al., 2011; Hadinger et al., 2015). HR
is another parameter that has been used to study physiological
reactions of free-ranging wildlife to environmental stressors
(MacArthur et al., 1979; Harlow et al., 1987; Weisenberger et al.,
1996; Ackerman et al., 2004; Theil et al., 2004; Arnold et al.,
2006; Laske et al., 2011). With advancements in technology,
transmitters that include cardiac monitors have become smaller
and less invasive, while the monitoring period has increased
from days to months to years (White and Garrott, 1990;
Rutz and Hays, 2009). Although, HR measurement has been
applied to assess short-term effects of “stress,” it more exactly
represents an indicator for metabolic rate and energy expenditure
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FIGURE 2 | Hourly mean RMSSD throughout the 12 months study period [x-axis time of the day (hour), y-axis RMSSD (ms)]. RMSSD is highest during the third

quarter of the day (12 p.m. to 6 p.m.).

FIGURE 3 | Mean RMSSD from 12 p.m. to 6 p.m. throughout the 12 months study period [x-axis date (month), y-axis RMSSD (ms)]. RMSSD is lower during the

winter than during the summer—it experiences a drop in spring.

(Weimerskirch et al., 2002; Butler et al., 2004; Groscolas et al.,
2010; Green, 2011). By measuring the autonomic regulation
of cardiac activity, particularly the vagal tone, HRV is now
progressively emerging as a suitable indicator of “stress” in
farm- and domestic animal research (VonBorell et al., 2007).
In wildlife research, it is a fairly new approach, and only few
previous studies have applied it (Theil et al., 2004; Mentaberre
et al., 2010; Støen et al., 2015; Evans et al., 2016). All of these
studies used SDANN (standard deviation of the average NN
interval calculated over short periods, usually 5min) as ameasure
of HRV. In contrast, we applied RMSSD (the square root of
the mean squared differences of successive NN intervals) as a

measure of HRV. Our aim was to assess seasonal variations in
parasympathetic nervous system activity and hence, “stress” in
free ranging Przewalski’s horses. Whereas SDANN represents a
general measurement of vagal and sympathetic influences on the
heart, RMSSD specifically reflects vagally mediated alterations
in the autonomic nervous system (Malik et al., 1996; VonBorell
et al., 2007). SDANN is easier to calculate, but RMSSD has
superior statistical properties (Malik et al., 1996). In our study,
HRV was recorded in sequences of 3 min. The Task Force of The
European Society of Cardiology and TheNorth American Society
of Pacing and Electrophysiology recommends recordings of at
least 5-min-intervals to generate accurate HRV measurements
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FIGURE 4 | Mean HR from 12 p.m. to 6 p.m. throughout the 12 months study period [x-axis date (month), y-axis HR (bpm)]. HR is lower during the winter than during

the summer—it experiences a peak in spring.

(Malik et al., 1996). However, it has been shown that RMSSD,
but not SDANN, can reliably be assessed from shorter recordings
(Nussinovitch et al., 2011; Plews et al., 2013; Esco and Flatt, 2014;
Munoz et al., 2015). Given our hypothesis and the experimental
setting, RMSSD was the better parameter to choose. Parker et al.
(2010) compared an automatic RR-detector (Polar R©S810) with a
gold standard ECG in horses and described failure to correctly
identify one or more R-peaks. Different electrode types might
explain the different signal quality between the two systems.
In our study, electrodes were implanted under the skin of
the horses, providing greater contact than conventional RR-
detectors. To date, there are no studies comparing insertable
cardiac monitors with conventional ECG in horses or other
animals. The assessment of sensitivity of the current method
was outside the scope of the study, but would be of great future
interest.

In domestic horses, it is recommended to perform basal
cardiac measurements only under resting conditions (Parker
et al., 2010; Stucke et al., 2015). We overcame this problem by
documenting diurnal variations in RMSSD. We identified the
quarter of the day with the highest RMSSD values and included
only data from that respective quarter of the day in statistical
analysis.

We found that free-ranging Przewalski’s horses exhibited
diurnal variations of the autonomic nervous system function.
RMSSD values were highest during the third quarter of the
day (12 p.m.–6 p.m.), indicating an increased parasympathetic
tone. At around midnight, parasympathetic tone was lowest.
Accordingly, a peak in resting behavior in the middle of the day
and a more vigilant and reactive behavior during the night has
been observed in Przewalski’s horses under natural conditions
(Berger et al., 1999; Souris et al., 2007; King et al., 2016). Circadian
patterns of HRV have been described in only a few domestic
animal species. In contrast to our study, parasympathetic tone
was higher during the night and lower during the day in

most domestic species, possibly reflecting adaptation to human
diurnality (Kuwahara et al., 1999a,b; Murphy, 2010; Gehrke et al.,
2011; Kovács et al., 2016). Photoperiod is known to strongly
influence daily and seasonal cycles in autonomic nervous system
function (Buijs et al., 2003; Hastings et al., 2007; Vandewalle,
2007). However, the examination of the possible association
between day-length and HRV was beyond the scope of this study.

RMSSD and HR varied considerably throughout the year.
Both parameters showed lower values during the winter than
during the summer. In spring, RMSSD dropped significantly
along with a concurrent peak in HR.

The lower levels of RMSSD during winter and particularly the
decrease during spring indicate a considerable reduction of
the vagal tone. This is in agreement with the main assumptions
of the polyvagal theory of Porges (1995a,b, 2007), who
considered the vagal nerve as a mediator in reaction to
stress. According to the theory, the vagal nerve is distinct
with two different branches: (1) the myelinated vagus that is
associated with attention, motion, and emotion, and (2) the
unmyelinated vagus that mediates the reflexive regulation of
visceral function. Both branches may have different outputs
to the heart, but both branches can cause bradycardia.
Upon reduction of the myelinated vagal tone, HR increases.
At the same time, cardiac pacemakers are still prone to
neurogenic bradycardia mediated by the unmyelinated vagus
(Porges, 1995b, 2007). This means that, even though HR is
lower during the winter, the organism can still experience
“stress.”

HR correlates with cardiac output and oxygen consumption.
Therefore, it can be used as an indicator for energy expenditure
(Butler et al., 2004; Green, 2011). The Przewalski’s horses in our
study had a lower metabolic rate during the winter than during
the summer. In spring, there was a peak in energy expenditure.
A low metabolic rate during the winter and resumption of high
metabolic activity in spring are well known from hibernators
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TABLE 1 | Factors associated with seasonal variation of daily mean RMSSD.

RMSSD

Coefficient Confidence

Interval

Std. Error p-value

FIXED EFFECTS

(Intercept) −0.38 −0.90 to 0.15 0.27 0.157

Heart Rate −0.16 −0.17 to −0.14 0.01 <0.001

Activity 0.35 0.32 to 0.38 0.02 <0.001

Body Temperature −0.04 −0.06 to −0.03 0.01 <0.001

Rain 0.15 0.10 to 0.20 0.03 <0.001

Wind 0.01 −0.01 to 0.04 0.01 0.172

Outdoor Temperature −0.12 −0.14 to −0.09 0.01 <0.001

Outdoor Temperature2 0.06 0.05 to 0.07 0.01 <0.001

Humidity 0.03 0.02 to 0.05 0.01 <0.001

Month (Feb) 0.14 0.10 to 0.19 0.02 <0.001

Month (Mar) −0.03 −0.08 to 0.02 0.03 0.245

Month (Apr) −0.75 −0.82 to −0.67 0.04 <0.001

Month (May) 0.01 −0.06 to 0.08 0.04 0.808

Month (Jun) 0.23 0.16 to 0.30 0.04 <0.001

Month (Jul) 0.30 0.22 to 0.38 0.04 <0.001

Month (Aug) 0.85 0.74 to 0.96 0.06 <0.001

Month (Sep) 0.34 0.27 to 0.42 0.04 <0.001

Month (Oct) 0.21 0.14 to 0.27 0.03 <0.001

Month (Nov) −0.02 −0.07 to 0.03 0.03 0.439

Month (Dec) 0.12 0.07 to 0.17 0.03 <0.001

RANDOM EFFECTS

σ
2 0.577

τ00, Implant 0.353

NImplant 5

ICCImplant 0.380

Observations 26671

R2/�2
0 0.522/0.522

The table provides the fixed and random effects for our final model. Activity, Rain,

and Wind are coded as binary variables (i.e., “present” or “not present”). Heart Rate,

Body Temperature, Humidity, and Outdoor Temperature are standardized and normally

distributed. Our dependent variable is RMSSD, which we log-transformed to account for

its highly skewed distribution.

and species exhibiting daily torpor (Heldmaier et al., 2004;
Evans et al., 2016). This phenomenon has also been previously
described in a number of other non-hibernating mammal species
(Weiner, 1977; Moen, 1978; Mesteig et al., 2000; Arnold et al.,
2004; Theil et al., 2004), including the Przewalski’s horse in
the National Park Neusiedlersee-Seewinkel in Austria (Arnold
et al., 2006). It is believed that these mammals, reduce body
mass and organ size during the winter, and decrease endogenous
heat production to be able to cope with predictable energetic
bottlenecks (Ruf and Heldmaier, 1992; Arnold et al., 2004;
Heldmaier et al., 2004).

In a recent study, Evans et al. (2016) investigated the
drivers of hibernation in the Scandinavian brown bear. Amongst
others, they examined HR and HRV (by measuring SDANN)
throughout the year and found, similar to our study, that both
parameters were significantly lower during the winter than

during the summer. In our study, HRV correlated negatively
with HR and body temperature. This is not surprising as an
increase in HR results, in most cases, from a combination of
reduced vagal activity (measured as a decrease in RMSSD) and
increased sympathetic activity (VonBorell et al., 2007; Battipaglia
and Lanza, 2015). The associated increase in metabolic heat
production leads to an elevation of body temperature (Buller
et al., 2013; Sim et al., 2014). In our (linear) model with log-
transformed RMSSD, HR only accounted for ∼2.5% of the
observed variance. The primary reason to log-transform the
raw RMSSD scores was to account for its skewed distribution,
and this could have influenced the relationship between our
HRV and HR measures. It would be interesting to explore
this further with different operationalization of HRV in future
research.

Of all physiologic parameters measured in our study, activity
had the highest effect on HRV. When horses were active,
RMSSD increased indicating that horses were more relaxed when
moving as compared to standing still. Accordingly, Theil et al.
(2004) described highest HRV values for locomotive behavior
in European roe deer. In domestic horses in contrast, HRV
increased from rest to walk, but decreased from walk to trot and
gallop (Physick-Sheard et al., 2000; Kinnunen et al., 2006).

Theil et al. (2004) further described a positive effect of
wind speed on HRV in European roe deer. Of all climatic
parameters measured in this study, wind had no significant effect
on RMSSD. Rain in contrast, was associated with a significant
increase in RMSSD. Precipitation is the single most important
climatic variable controlling the ecology of semiarid steppe-
regions, the Przewalski’s horse’s habitat (Boyd and Houpt, 1994;
Zimmermann et al., 2009a; Werger and VanStaalduinen, 2012).
Hence, rainfall highly influences vegetation quality and water
availability (Lauenroth and Sala, 1992; Kuntz et al., 2006), and
might therefore indirectly affect HRV (Singh et al., 2000).

Outdoor temperature in contrast had a negative effect onHRV
indicating that horses might be more vulnerable to heat-stress
than to cold-stress. However, the effect of outdoor temperature
was quadratic: minimum values of RMSSD were associated
with temperatures ranging at around 18◦C. This is the case
during spring, when we observed a pronounced drop in HRV
along with a peak in HR. A peak in metabolic rate during
May has been described in European roe deer (Theil et al.,
2004) and free-ranging Przewalski’s horses within the National
Park Neusiedlersee-Seewinkel in Austria (Arnold et al., 2006).
Theil et al. (2004) suggested that this peak probably reflects
the increased energetic costs of gestation and preparation for
lactation. As all horses in our study were pregnant, reproduction
might be a possible cause for the increased energy demands
observed in April. Additional load on the cardiovascular system,
hormonal control and induction of insulin resistance to provide
energy to the growing fetus result in metabolic stress (Fowden
et al., 1984; Pashen, 1984; Boyd and Houpt, 1994; Satué and
Domingo, 2011). Interestingly, the horses of our study did
not give birth until 1 month after the observed drop in HRV
and peak in HR. Likewise, the roe deer in Theil et al. (2004)
study only gave birth in early June whereas the peak took
already place in May. This could be explained by a pronounced
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increase in fetal size during this stage of pregnancy in both
species (Robbins and Robbins, 1979; Platt, 1984). However,
domestic horses have been shown to only exhibit a slight
increase in HR and no significant changes in RMSSD toward
the end of pregnancy and postpartum (Nagel et al., 2011, 2012).
Furthermore, Arnold et al. (2006) described a May peak in
HR in a mare that only foaled in August. Thus, higher energy
expenditure for gestation does not seem to entirely explain the
drop of parasympathetic nervous system activity and peak of
metabolic rate during spring. Kuntz et al. (2006) argued that
seasonal changes in forage composition might be the driver of
respective physiological changes in the Przewalski’s horses. As
crude protein increases during the vegetative period in spring,
dry matter intake increases and hence, energy intake. After being
in a katabolic state over the winter, horses have to adapt, amongst
others, their gastrointestinal system to the higher quality forage
and increase food intake to restore energy balance (Arnold et al.,
2006; Kuntz et al., 2006). These metabolic changes have been
found to occur prior to seasonal changes in plant phenology,
suggesting an endogenous control mechanism preparing the
organism in advance to the predictable seasonal changes in food
quality (Arnold et al., 2006). In order to understand the role of
pregnancy within these metabolic changes, seasonal variations
in HR and HRV need to be studied in male and non-pregnant
female horses.

For decades, demands associated with predictable seasonal
variations have been considered stressful and have not been
differentiated from “stress” associated with life-threatening
events (Landys et al., 2006). The “concept of allostasis,”
maintaining stability through change, allows us to distinguish
between these two types of stress (McEwen and Wingfield,
2003). Daily and seasonal adjustments that maintain homeostasis
within narrow life-sustaining ranges represent “allostatic state.”
If environmental changes or changes in life history make the
animal work harder to maintain homeostasis, an additional cost
(allostatic load) is incurred. This increase in workload can be
measured with overall energy expenditure. The animal enters
life-threatening “allostatic overload” when energy expenditure
exceeds energy intake (McEwen and Wingfield, 2003).

The combined measurement of RMSSD as a parameter for
stress, and HR as an indicator for energy expenditure allowed us
to assess allostatic load in our study. The decrease of HRV and
HR during the winter indicate the adjustment of homeostatic set
points and “allostatic state.” The decrease of HRV during spring
with the associated increase in energy expenditure indicate that
horses engendered an “allostatic load.”

A major limitation of our study was the small number of
study-animals and the relatively high inter-individual variation
in HRV. We dealt with this issue by implementing a longitudinal
design that allows heterogeneity between individuals. Addressing
effects of behavior and social interactions on HRV in free
ranging Przewalski’s horses would be of interest for future
studies. Applying HRV in several wildlife species would allow for
investigation of interspecific variations.

Here, we demonstrate that measuring telemetric HRV is
a proven method to study undisturbed reactions of wild

animals to their changing environment over the long term.
Seasonal “stress” can be identified by using HRV measures,
such as RMSSD, that indicate parasympathetic nervous system
activity. We recommend to measure HR on a beat-to-beat
basis, when collecting physiological data in future studies,
in order to allow the additional assessment of HRV. We
recorded cardiac activity in 3-min sequences with a self-
constructed telemetric system. For future studies, the length
of sequences should be increased to at least 5 min and more
than one parameter for HRV should be calculated (Malik
et al., 1996) i.e., estimates of overall HRV (such as SDNN,
standard deviation of NN interval), long term components
of HRV (e.g., SDANN), and short term components of
HRV (RMSSD). Simultaneous evaluation of fecal corticoid
metabolites would be of interest for method validation and
comparison.

In conclusion, measuring HRV represents a promising
tool to understand how animals integrate their life cycles
in an ever-changing environment and potentially identify
anthropogenic influences that cause stress. The combined
measurement of HRV as an indicator for autonomic nervous
system function and HR as an indicator for energy expenditure
enables the valuation of allostatic load and “stress” in
individual free-ranging mammals over a prolonged period
of time.
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