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A B S T R A C T

The emergence of mutant strains of COVID-19 reduces the effectiveness of vaccines in preventing infection,
but remains effective in preventing severe illness and death. This paper established a heterogeneous mixing
model of age groups with pharmaceutical and non-pharmaceutical interventions by analyzing the transmission
mechanism of breakthrough infection caused by the heterogeneity of protection period under the action of
vaccine-preventable infection with the original strain. The control reproduction number 𝑅𝑐 of the system is
analyzed, and the existence and stability of equilibrium are given by the comparison principle. Numerical
simulation was conducted to evaluate the vaccination program and intervention measures in the customized
scenario, demonstrating that the group-3 coverage rate 𝑝3 plays a key role in 𝑅𝑐 . It is proposed that accelerating
the rate of admission and testing is conducive to epidemic control by further fitting data of COVID-19
transmission in real scenarios. The findings provide a general modeling idea for the emergence of new vaccines
to prevent infection by mutant strains, as well as a solid theoretical foundation for mainland China to formulate
future vaccination strategies for new vaccines. This manuscript was submitted as part of a theme issue on
‘‘Modelling COVID-19 and Preparedness for Future Pandemics".
1. Introduction

The infectious disease COVID-19 caused by SARS-CoV-2 has trig-
gered a global pandemic (WHO, 2020), posing unprecedented chal-
lenges to public health systems. To deal with the potential impact of the
COVID-19 on social, the Chinese government and other governments
have implemented a variety of intervention measures. The interven-
tions are divided into non-pharmaceutical interventions (NPIs) and
pharmaceutical interventions. The former includes mass nucleic acid
testing, contact tracking, isolation, quarantine, and other measures,
whereas the latter includes vaccines and targeted medications (Lai
et al., 2020; Flaxman et al., 2020; Ngonghala et al., 2020). The most
effective and convenient method of preventing and controlling COVID-
19 is timely vaccination, and this strategy has gained global acceptance.
On 31 December 2020, Pfizer/BioNTech’s BNT162b2 vaccine was the
first vaccine certified by WHO for emergency use against the original
strain. Since then, ten vaccines have been listed on the Emergency
Use List and their clinical trial data show excellent efficacy and im-
munogenicity, with robustest vaccine efficacy of 95% (Thomas et al.,
2021). Whether individually or as a group, vaccination can contribute
to reducing infection, morbidity, severe illness and death. The original
strain has mutated at important genetic loci, and five VOCs-Alpha
(B.1.1.7), Beta (B.1.351), Gamma (p.1), Delta (B.1.617.2) and Omicron
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(B.1.1.529) - have been reported against which existing vaccines have
limited effectiveness (Nasreen et al., 2022; Andrews et al., 2022; Bernal
et al., 2021). The vaccine is less effective in preventing infection,
but it does provide some protection against morbidity, severe illness,
and death. In this paper, a mathematical model was established for
the prevention of infection by vaccines against the original strains,
and also provides theoretical guidance for scientific distribution when
new vaccines against mutant strains become available in the future.
This model also applies to the emergence of new vaccines that can
prevent infection in the future, but not for scenarios where the ability
of vaccines to prevent serious illness and death should be considered.

In the normalization stage, the scientific and active implementation
of immunization considering population heterogeneity has more crucial
practical significance for the herd immunity. The immune system of
different age groups is heterogeneous, resulting in significant hetero-
geneity of the immune response after vaccination (Collier et al., 2021),
and the immunogenicity of the single-dose vaccine decreases with
age (Faro-Viana et al., 2022). Secondly, heterogeneity in prevalence
was evident from the onset of the pandemic in the age distribution of
cases (ODriscoll et al., 2021; Castro and Singer, 2021), a phenomenon
that can be attributed to differences in population susceptibility or
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infectivity leading to inconsistent clinical symptom tendencies (Davies
et al., 2020). In this paper, the relative susceptibility of the popu-
lation is considered. It is likewise a result of the heterogeneity of
the immune system in age groups. Finally, heterogeneity of contact
between age groups is also a major reason for considering age groups
in our model (Cui et al., 2019, 2022; Feng et al., 2015, 2020). The
social stage is characterized by peer contact, while the private stage
is dominated by the interaction between all age groups (Seno, 2020;
Prem et al., 2021). Therefore, this paper establishes a mathematical
model against the background of mutual transmission of age groups
to discuss how to vaccinate can prevent the spread of COVID-19 and
achieve herd immunity. Overall, vaccines provide extensive protection
against SARS-CoV-2 infection, but the protection period of vaccines for
individuals is limited and heterogeneous. Individual immunity weakens
over time, especially after the protection period, and being vaccinated
can still develop breakthrough infections and spread the virus (Keehner
et al., 2021; Juthani et al., 2021). Therefore, breakthrough infection in
modeling is not negligible. At the same time, with herd immunity not
truly achieved globally and variants persisting, the risk of a resurgence
of COVID-19 remains high if NPIs are abandoned. The inclusion of NPIs
in the model is indisputable.

Understanding the role of age in the transmission of COVID-19 is
critical for implementing interventions targeting the original strain.
In the absence of vaccines and drugs, using age-structured subpopu-
lation model (Babajanyan and Cheong, 2021; Cuevas-Maraver et al.,
2021) or incorporating real-time contact data into COVID-19 dynamics
model (Iyaniwura et al., 2022) can accurately capture differences in
symptoms and behavior across age groups. Monod et al. show that
targeted interventions to aged 20 to 49 is an important consideration
in halting resurgent COVID-19 (Monod et al., 2021). Therefore, it is
extremely important to consider age structure into a dynamic model.
The compartment model with age structure was not only used by
Gozzi et al. to study the interplay of vaccines rollout and behavioral
dynamics (Gozzi et al., 2021), but also by Moore to predict the pos-
sible long-term dynamics of SARS-CoV-2 during the planned vaccine
rollout (Moore et al., 2021). Jiménez et al. took into account the ways
in which people of different ages respond to the virus and evaluated
two vaccination programs (Jiménez-Rodríguez et al., 2021). At the
same time, novel analytical methods have sprung up. Lovell-Read et al.
considered the effects of heterogeneities age-related factors on the
SARS-CoV-2 transmission for infected individuals of ages by branching
process model (Lovell-Read et al., 2022). In addition, the optimization
theory also provides a research idea for determining the vaccina-
tion program under the different target of determining the original
strain (Han et al., 2021; Das et al., 2021; Acuña-Zegarra et al., 2021).
Using an age-stratified model paired with optimization algorithms,
Matrajt et al. determined optimal vaccine allocation for different met-
rics (Matrajt et al., 2021b), and strategies with one and two doses
of vaccine under various degrees of viral transmission (Matrajt et al.,
2021a). However, the mathematical model of vaccination alone is not
appropriate for the normalized stage, and it is necessary to incorporate
NPIs into the model. Zou et al. combined vaccination and quarantine
strategies to derive the key quarantine rate for controlling transmission
and the vaccination rate for achieving herd immunity (Zou et al.,
2022). Using age-stratified compartmental model, Bauer quantified the
rate of increase in NPIs relative to vaccination progress without over-
whelming the healthcare system (Bauer et al., 2021), Choi estimated
the infection probability for each age group under different levels of
social distancing implemented in Korea and investigated the effective
age-dependent vaccination strategies (Choi et al., 2021). Among of
these references mentioned above with extensive content, breakthrough
infections caused by heterogeneity in the protection period have not
been well incorporated into the model, as well as representative normal
measures such as mass testing and tracking are not well coupled with
the immune system heterogeneity. Therefore, this paper proposes a het-
2

erogeneous mixing age-group model with NPIs and imperfect vaccines
to capture age-specific characteristics, and attempts to solve the fol-
lowing questions: In the case of breakthrough infections, with specific
vaccines for specific strains, what are the effects of the combination
of different vaccination strategies and levels of NPIs on the spread of
COVID-19? Are there differences for achieving herd immunity? What
factors are extremely important in terms of reproduction number?

The paper is structured in the following way. Section 2 introduces
the heterogeneous mixing age-group model with NPIs and imperfect
vaccines. Section 3 derives the formal expression of reproduction num-
ber 𝑅𝑐𝑘 in single age group-𝑘 and 𝑅𝑐 in multiple age group, and
emonstrates the threshold dynamics determined by 𝑅𝑐 . In Section 4

presents numerical results of different vaccination programs in hy-
pothetical scenarios and data fitting using actual COVID-19 data in
Shanghai. Finally, we make some discussions in Section 5.

2. Model formulation

Considering the heterogeneity of contact patterns, transmission risk,
infection risk and vaccination risk, the model comprises four age groups
0–2, 3–17, 18–59, 60+. Group-1 called the infant group, has a lower
risk of participating in transmission but a higher risk of vaccination,
so vaccination is not considered. Group-2 called the adolescent group.
Group-3 is the young and middle-aged group, which is characterized
by high risk of transmission. Group-4 is the elderly group with many
underlying diseases and a higher risk of death.

The population in group-𝑘 are sorted into susceptible 𝑆𝑘, being
accinated but non-responsive 𝑆0

𝑘 , being vaccinated and responsive 𝑉𝑘,
mmunity invalidation 𝑉 0

𝑘 , latent 𝐸𝑘, asymptomatic and not been tested
𝑘, symptomatic and not been tested 𝐼𝑘, being tested positive and

solated 𝑄𝑘, hospitalized 𝐻𝑘 and recovered 𝑅𝑘. Fig. 1 illustrates the
asic modeling structure of the transmission mechanisms of COVID-19
etween age group-𝑘 and 𝑘 + 1, with details described in Section 2.1.

.1. Assumptions and descriptions

The establishment of the model mainly refers to the multiple out-
reaks of COVID-19 in mainland China. The NPIs used are numerous
nd accurate, among which testing and contact tracking are special
nder the ‘‘dynamic zero-COVID’’ policy. Testing can quickly identify
he infectious source, and tracking can help break the transmission
hain. These methods can effectively curb the spread of COVID-19. The
ransmission mechanism in single age group-𝑘 is detailed in Fig.S1 (see

Supplementary Material), including the vaccination process in Fig.S2
and the COVID-19 transmission process. The interpretations of the
variables and parameters are described in Table 1.

The detail of vaccination under the heterogeneity of immune protec-
tion is shown in Fig.S2. The vaccination starts from the susceptible, and
the immune protection period 1

𝜃𝑘
after being vaccinated is 0, fixed and

infinite. If immune period is zero, that is, being vaccinated but non-
responsive 𝑆0

𝑘 , which is characterized by being able to participate in
transmission. Otherwise, the vaccination is considered successful. Such
people belong to 𝑉𝑘, in which a small proportion of the population gets
lifelong immunity into 𝑅𝑘. Others become 𝑉 0

𝑘 after the immune period
due to immune wane, and they can still participate in transmission,
but whether the risk of prevent morbidity will be lower or higher than
𝑆𝑘 is unknown. Therefore, 𝑆0

𝑘 and 𝑉 0
𝑘 were infected as breakthrough

infection. Moreover, the doses is not considered in this model, i.e., the
first vaccination is regarded as the vaccinated population.

To construct the corresponding model in Fig. 1, the following
assumptions and descriptions are given:

(1) The paper does not take into account the fatality rate, which
is currently extremely low in mainland China. The latent period is not
considered infectious.

(2) For contact pattern of group-𝑗, 𝐶𝑗 is the average contact number,
𝜌𝑗𝑘 is the proportion of the group-𝑗 individual contacts with members

of specific group-𝑘. So the average number of group-𝑘 contacted by
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Fig. 1. Illustration of the basic modeling structure. The light green plane and light blue plane are the maps of COVID-19 transmission in age group-𝑘 and 𝑘+ 1, respectively. The
rose lines represent age group-𝑘 becomes age group-(𝑘 + 1) due to aging.
a group-𝑗 individual per day is 𝐶𝑗𝜌𝑗𝑘, denoted 𝐶𝑗𝑘. Therefore, inci-
dence rate between infectious of group-𝑗 and susceptible of group-𝑘
is 𝜆𝑘1𝐶𝑗𝑘

𝑆𝑘
𝑁𝑘
𝐼𝑗 or 𝜆𝑘1𝐶𝑘𝑗𝑆𝑘

𝐼𝑗
𝑁𝑗

, where 𝜆𝑘1 is susceptibility of 𝑆𝑘. It is

worth noting that 𝜆𝑘1𝐶𝑗𝑘
𝑆𝑘
𝑁𝑘
𝐼𝑗 = 𝜆𝑘1𝐶𝑘𝑗𝑆𝑘

𝐼𝑗
𝑁𝑗

needs the balance condition
𝐶𝑗𝑁𝑗𝜌𝑗𝑘 = 𝐶𝑘𝑁𝑘𝜌𝑘𝑗 to be established (Cui et al., 2019).

(3) The group-𝑘 will naturally into the group 𝑘+1 over time, which
is the aging rate 𝜔. All newborns are susceptible of group-1.

(4) The class 𝑄𝑘 is nucleic acids tested positive and isolated, its
input includes two aspects. The first is characteristic of infectious
diseases, 𝐴𝑘 and 𝐼𝑘 follow the epidemiological pathology naturally into
𝑄𝑘. The second is social behavior in disease prevention and control,
that is, mass testing and close contact tracking. In the population within
𝑄𝑘, 𝜌𝑘 is proportion of the hospitalized treatment, and 1 − 𝜌𝑘 remains
in 𝑄𝑘 for medical observation.

(5) Close contact tracking is to track and isolate close contacts of a
person who is positive as soon as being found. Suppose a symptomatic
infected 𝐼𝑗 in group-𝑗 is found. In that case, the symptomatic infected
belonging to group-𝑘 among its close contacts is 𝜂𝐶𝑗𝑘

𝐼𝑘
𝑁𝑘

, where the
probability of close contacts being tracked is 𝜂.

Therefore, the model can be modified to adapt to different stages of
prevention and control. As with the Wuhan outbreak in 2020, there
were no medicines or vaccines in the early stage of COVID-19, and
the measures were mainly NPIs. The schematic diagram of transmission
mechanism is shown in Fig.S3(a). Then vaccination was imminent, the
transmission mechanism of spread and vaccination at the same time is
shown in Fig.S1, just like the Nanjing outbreak in 2021. Now that the
vaccination work has been basically completed, and the transmission
mechanism shown in Fig.S3(b) has been formed, which is applicable to
the outbreak situation of Shanghai in 2022.

Table 1 summarizes the notions of the main epidemiological pa-
rameters, which are determined by three aspects. First, the vaccine
itself determines the variables: immunity wane rate 𝜃𝑘, vaccination
success probability 𝛼𝑘, lifelong immunity probability 𝜉𝑘. Particularly,
vaccination success probability is not vaccine efficacy. Secondly, social
behavior determines the variables: contact patterns 𝐶𝑗𝑘, the rate of pos-
itive detected in mass testing is 𝛽, the probability of close contacts being
tracked is 𝜂. Thirdly, virus determines variables: natural evolution rate
of 𝐸 → 𝐴, 𝐸 → 𝐼 , 𝐴→ 𝑅, 𝐼 → 𝑅, 𝑄 → 𝑅.

2.2. Population dynamics of age groups

Suppose that the natural birth rate or death rate is proportional to
the population and the total population 𝑁(𝑡) is at a steady state during
the short period of COVID-19 prevalent. The transition between age
3

groups is only with aging as shown in Fig.S4, corresponding to the
system

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑑𝑁1
𝑑𝑡

= 𝑏𝑁 − 𝜔1𝑁1 − 𝑏𝑁1,

𝑑𝑁2
𝑑𝑡

= 𝜔1𝑁1 − 𝜔2𝑁2 − 𝑏𝑁2,

𝑑𝑁3
𝑑𝑡

= 𝜔2𝑁2 − 𝜔3𝑁3 − 𝑏𝑁3,

𝑑𝑁4
𝑑𝑡

= 𝜔3𝑁3 − 𝑏𝑁4,

(2.1)

where 𝑏 is the natural birth or death rate, 𝜔𝑘 represents the aging rate
of group-𝑘, 𝑁𝑘 is the population size of group-𝑘. 𝑁 =

∑4
𝑘=1𝑁𝑘 denotes

the total population, which remains constant 𝑁∗ and can be scaled to
1. Each group model with demography, 𝑁𝑘(𝑡) varies with time 𝑡. The
system Eq. (2.1) is one-order linearly differential equations system. Let

𝑛1 =
𝑁1
𝑁∗ , 𝑛2 =

𝑁2
𝑁∗ , 𝑛3 =

𝑁3
𝑁∗ , 𝑛4 =

𝑁4
𝑁∗

are the proportion of each group population to the total population
respectively. Therefore, the normalized system as follows

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑑𝑛1
𝑑𝑡

= 𝑏 − 𝜔1𝑛1 − 𝑏𝑛1,

𝑑𝑛2
𝑑𝑡

= 𝜔1𝑛1 − 𝜔2𝑛2 − 𝑏𝑛2,

𝑑𝑛3
𝑑𝑡

= 𝜔2𝑛2 − 𝜔3𝑛3 − 𝑏𝑛3,

𝑑𝑛4
𝑑𝑡

= 𝜔3𝑛3 − 𝑏𝑛4.

(2.2)

Theorem 2.1. The system Eq. (2.2) exists a unique positive equilibrium
(𝑛∗1 , 𝑛

∗
2 , 𝑛

∗
3 , 𝑛

∗
4), and is globally asymptotically stable.

Proof. See Appendix A for proof. □

2.3. Transmission dynamics of COVID-19 in age groups

Considering the transmission mechanism of COVID-19 in age
groups, the schematic diagram is shown in Fig.S1. Appendix B presents
the corresponding non-autonomous system Eq. (B.1) established by
population size, which is depends on time through the function 𝑁𝑘(𝑡).
By using the limit as time goes to infinity 𝑁𝑘(𝑡) → 𝑁∗𝑛∗𝑘 and let
𝑆𝑘
𝑁∗ = 𝑠𝑘,

𝑆0
𝑘

𝑁∗ = 𝑠0𝑘,…
𝑅𝑘
𝑁∗ = 𝑟𝑘 be measured as the proportion of each

compartment population in group-𝑘 to the total population. Therefore
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we replace Eq. (B.1) with the following limiting system
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⎪
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⎩

𝑑𝑠𝑘
𝑑𝑡

= 𝑏𝛿𝑘,1 −
4
∑

𝑗=1
𝜆𝑘1𝐶𝑗𝑘

1
𝑛∗𝑘
𝑠𝑘(𝜀𝑎𝑗 + 𝑖𝑗 ) − (1 − 𝛿𝑘,1)𝑝𝑘𝑠𝑘

− 𝑏𝑠𝑘 + 𝜔𝑘−1𝑠𝑘−1 − 𝜔𝑘𝑠𝑘,

𝑑𝑠0𝑘
𝑑𝑡

= (1 − 𝛿𝑘,1)𝑝𝑘(1 − 𝛼𝑘)𝑠𝑘 −
4
∑

𝑗=1
𝜆𝑘2𝐶𝑗𝑘

1
𝑛∗𝑘
𝑠0𝑘(𝜀𝑎𝑗 + 𝑖𝑗 )

− 𝑏𝑠0𝑘 + 𝜔𝑘−1𝑠
0
𝑘−1 − 𝜔𝑘𝑠

0
𝑘,

𝑑𝑣𝑘
𝑑𝑡

= (1 − 𝛿𝑘,1)𝑝𝑘𝛼𝑘𝑠𝑘 − (1 − 𝜉𝑘)𝜃𝑘𝑣𝑘 − 𝜉𝑘𝑣𝑘 − 𝑏𝑣𝑘 + 𝜔𝑘−1𝑣𝑘−1 − 𝜔𝑘𝑣𝑘,

𝑑𝑣0𝑘
𝑑𝑡

= (1 − 𝜉𝑘)𝜃𝑘𝑣𝑘 −
4
∑

𝑗=1
𝜆𝑘3𝐶𝑗𝑘

1
𝑛∗𝑘
𝑣0𝑘(𝜀𝑎𝑗 + 𝑖𝑗 ) − 𝑏𝑣

0
𝑘 + 𝜔𝑘−1𝑣

0
𝑘−1 − 𝜔𝑘𝑣

0
𝑘,

𝑑𝑒𝑘
𝑑𝑡

=
4
∑

𝑗=1
𝜆𝑘1𝐶𝑗𝑘

1
𝑛∗𝑘
𝑠𝑘(𝜀𝑎𝑗 + 𝑖𝑗 ) +

4
∑

𝑗=1
𝜆𝑘2𝐶𝑗𝑘

1
𝑛∗𝑘
𝑠0𝑘(𝜀𝑎𝑗 + 𝑖𝑗 )

+
4
∑

𝑗=1
𝜆𝑘3𝐶𝑗𝑘

1
𝑛∗𝑘
𝑣0𝑘(𝜀𝑎𝑗 + 𝑖𝑗 )

− (𝛽𝑒𝑘 +
4
∑

𝑗=1
𝜓𝑒𝑞𝑗 𝜂𝐶𝑗𝑘

1
𝑛∗𝑘
𝑒𝑘𝑒𝑗 +

4
∑

𝑗=1
𝜓𝑎𝑞𝑗 𝜂𝐶𝑗𝑘

1
𝑛∗𝑘
𝑒𝑘𝑎𝑗

+
4
∑

𝑗=1
𝜓 𝑖𝑞𝑗 𝜂𝐶𝑗𝑘

1
𝑛∗𝑘
𝑒𝑘𝑖𝑗 )

− 𝜎𝑘𝑒𝑘 − 𝜙𝑘𝑒𝑘 − 𝜓
𝑒𝑞
𝑘 𝑒𝑘 − 𝑏𝑒𝑘 + 𝜔𝑘−1𝑒𝑘−1 − 𝜔𝑘𝑒𝑘,

𝑑𝑎𝑘
𝑑𝑡

= − (𝛽𝑎𝑘 +
4
∑

𝑗=1
𝜓𝑒𝑞𝑗 𝜂𝐶𝑗𝑘

1
𝑛∗𝑘
𝑎𝑘𝑒𝑗

+
4
∑

𝑗=1
𝜓𝑎𝑞𝑗 𝜂𝐶𝑗𝑘

1
𝑛∗𝑘
𝑎𝑘𝑎𝑗 +

4
∑

𝑗=1
𝜓 𝑖𝑞𝑗 𝜂𝐶𝑗𝑘

1
𝑛∗𝑘
𝑎𝑘𝑖𝑗 )

+ 𝜎𝑘𝑒𝑘 − 𝜇𝑘𝑎𝑘 − 𝜓
𝑎𝑞
𝑘 𝑎𝑘 − 𝑏𝑎𝑘 + 𝜔𝑘−1𝑎𝑘−1 − 𝜔𝑘𝑎𝑘,

𝑑𝑖𝑘
𝑑𝑡

= − (𝛽𝑖𝑘 +
4
∑

𝑗=1
𝜓𝑒𝑞𝑗 𝜂𝐶𝑗𝑘

1
𝑛∗𝑘
𝑖𝑘𝑒𝑗

+
4
∑

𝑗=1
𝜓𝑎𝑞𝑗 𝜂𝐶𝑗𝑘

1
𝑛∗𝑘
𝑖𝑘𝑎𝑗 +

4
∑

𝑗=1
𝜓 𝑖𝑞𝑗 𝜂𝐶𝑗𝑘

1
𝑛∗𝑘
𝑖𝑘𝑖𝑗 )

+ 𝜙𝑘𝑒𝑘 − 𝛿𝑘𝑖𝑘 − 𝜓
𝑖𝑞
𝑘 𝑖𝑘 − 𝑏𝑖𝑘 + 𝜔𝑘−1𝑖𝑘−1 − 𝜔𝑘𝑖𝑘,

𝑑𝑞𝑘
𝑑𝑡

= 𝛽(𝑒𝑘 + 𝑎𝑘 + 𝑖𝑘) +
(𝑒𝑘 + 𝑎𝑘 + 𝑖𝑘)

𝑛∗𝑘

4
∑

𝑗=1
𝜂𝐶𝑗𝑘(𝜓

𝑒𝑞
𝑗 𝑒𝑗 + 𝜓

𝑎𝑞
𝑗 𝑎𝑗 + 𝜓

𝑖𝑞
𝑗 𝑖𝑗 )

+ 𝜓𝑒𝑞𝑘 𝑒𝑘 + 𝜓
𝑎𝑞
𝑘 𝑎𝑘 + 𝜓

𝑖𝑞
𝑘 𝑖𝑘 − (1 − 𝜌𝑘)𝛾𝑘𝑞𝑘 − 𝜌𝑘𝑞𝑘

− 𝑏𝑞𝑘 + 𝜔𝑘−1𝑞𝑘−1 − 𝜔𝑘𝑞𝑘,
𝑑ℎ𝑘
𝑑𝑡

= 𝜌𝑘𝑞𝑘 − 𝜐𝑘ℎ𝑘 − 𝑏ℎ𝑘 + 𝜔𝑘−1ℎ𝑘−1 − 𝜔𝑘ℎ𝑘,

𝑑𝑟𝑘
𝑑𝑡

= 𝜉𝑘𝑣𝑘 + 𝜇𝑘𝑎𝑘 + 𝛿𝑘𝑖𝑘 + (1 − 𝜌𝑘)𝛾𝑘𝑞𝑘 + 𝜐𝑘ℎ𝑘 − 𝑏𝑟𝑘

+ 𝜔𝑘−1𝑟𝑘−1 − 𝜔𝑘𝑟𝑘,

(2.3)

where 𝛿𝑘,1 is the Kronecker delta function, 𝛿𝑘,1 = 1 if 𝑘 = 1, otherwise
𝛿𝑘,1 = 0.

Note: The superscript of parameters also changes accordingly to
maintain the consistency of system symbols, i.e. 𝜓𝑎𝑞𝑘 = 𝜓𝐴𝑄𝑘 . Moreover,
𝑛1 + 𝑛2 + 𝑛3 + 𝑛4 = 1, 𝑛𝑘 = 𝑠𝑘 + 𝑠0𝑘 + 𝑣𝑘 + 𝑣

0
𝑘 + 𝑒𝑘 + 𝑎𝑘 + 𝑖𝑘 + 𝑞𝑘 + ℎ𝑘 + 𝑟𝑘

for 𝑘 = 1, 2, 3, 4.

3. Model analysis

In this section, the control reproduction number of single age group
and multi-group of system Eq. (2.3) is given, and it is further proved
4

that the multi-group reproduction number is the threshold for the
Table 1
Description of variables and parameters.

Variables Description

𝑆𝑘 Number of unvaccinated individuals who are fully susceptible in age
group-𝑘.

𝑆0
𝑘 Number of vaccinated non-responders in age group-𝑘.
𝑉𝑘 Number of successful vaccinator in age group-𝑘.
𝑉 0
𝑘 Number of people whose immunity fails after the immune period in

age group-𝑘.
𝐸𝑘 Number of individuals who are in latent period without infectious in

age group-𝑘.
𝐴𝑘 Number of asymptomatic infections who have not been tested in age

group-𝑘.
𝐼𝑘 Number of symptomatic infections who have not been tested in age

group-𝑘.
𝑄𝑘 Number of people isolated after being tested positive for nucleic acid

in age group-𝑘.
𝐻𝑘 Number of hospitalized patients in age group-𝑘.
𝑅𝑘 Number of individuals who recovered in age group-𝑘.
𝑁 Total population.

Parameters Description

𝑏 Natural birth rate/Natural death rate.
𝜆𝑘1 , 𝜆

𝑘
2 , 𝜆

𝑘
3 Susceptibility of 𝑆𝑘, 𝑆0

𝑘 , 𝑉 0
𝑘 .

𝐶𝑗𝑘 The number of contacts that a person in age group-𝑗 has with
individuals in age group-𝑘.

𝜀 Correction factor for the incidence of asymptomatic infection.
𝑝𝑘 Vaccination coverage in age group-𝑘, 𝑝1 = 0.
𝛼𝑘 Probability of successful vaccination in age group-𝑘.
𝜉𝑘 Probability of lifetime immunity.
𝛽 Probability of 𝐸𝑘 , 𝐴𝑘 , 𝐼𝑘 is found during mass nucleic acid testing

period.
𝜂 Probability of 𝐸𝑘 , 𝐴𝑘 , 𝐼𝑘 is found during close contacts tracking period.
𝜔𝑘 Aging rate from group 𝑘 to 𝑘 + 1, 𝜔0 = 𝜔4 = 0.
1∕𝜃𝑘 Protection period of vaccine in age group-𝑘.
𝜎𝑘 The rate of 𝐸𝑘 → 𝐴𝑘 in age group-𝑘.
𝜙𝑘 The rate of 𝐸𝑘 → 𝐼𝑘 in age group-𝑘.
𝜇𝑘 , 𝛿𝑘 , 𝛾𝑘 The recover rate of 𝐴𝑘, 𝐼𝑘 and 𝑄𝑘 in age group-𝑘.
𝜌𝑘 Proportion of hospitalizations in age group-𝑘.
1∕𝜐𝑘 Length of hospital stay before recovery in age group-𝑘.
𝜓𝑒𝑞
𝑘 The rate of 𝐸𝑘 → 𝑄𝑘 in age group-𝑘.

𝜓𝑎𝑞
𝑘 The rate of 𝐴𝑘 → 𝑄𝑘 in age group-𝑘.

𝜓 𝑖𝑞
𝑘 The rate of 𝐼𝑘 → 𝑄𝑘 in age group-𝑘.

stability of disease-free equilibrium and the existence of endemic equi-
librium.

3.1. Existence of disease-free equilibrium

Lemma 3.1. Model Eq. (2.3) is well posed, i.e., nonnegative initial
conditions lead to nonnegative solutions for 𝑡 > 0.

From Lemma 3.1, the feasible region can be shown as nonnegative
one
4×10
+ ={(𝑠𝑘, 𝑠0𝑘, 𝑣𝑘, 𝑣

0
𝑘, 𝑒𝑘, 𝑎𝑘, 𝑖𝑘, 𝑞𝑘, ℎ𝑘, 𝑟𝑘) ∈ R4×10 ∣

(𝑠𝑘, 𝑠0𝑘, 𝑣𝑘, 𝑣
0
𝑘, 𝑒𝑘, 𝑎𝑘, 𝑖𝑘, 𝑞𝑘, ℎ𝑘, 𝑟𝑘) ≥ 𝟎,

4
∑

𝑘=1
𝑛𝑘 = 1}

where R4×10
+ is subset of hyperplane ∑4

𝑘=1 𝑛𝑘 = 1. To simplify analysis,
equations 𝑞𝑘, ℎ𝑘 and 𝑟𝑘 can be ignored because they are decoupled.
Therefore, only consider the initial conditions in the bounded area

𝛤 = {(𝑠𝑘, 𝑠0𝑘, 𝑣𝑘, 𝑣
0
𝑘, 𝑒𝑘, 𝑎𝑘, 𝑖𝑘) ∈ R4×7

+ ∣
4
∑

𝑘=1
𝑠𝑘 + 𝑠0𝑘 + 𝑣𝑘 + 𝑣

0
𝑘 + 𝑒𝑘 + 𝑎𝑘 + 𝑖𝑘

≤ 1, 𝑘 = 1, 2, 3, 4}

and the area is positive invariant.
This section explains that the system Eq. (2.3) has a disease-free

equilibrium and is unique. Set each derivative equal to 0 with 𝑒𝑘 =
𝑎𝑘 = 𝑖𝑘 = 0, then solve the algebraic equation. For 𝑠𝑘,

𝑏𝛿𝑘,1 − (1 − 𝛿𝑘,1)𝑝𝑘𝑠𝑘 − 𝑏𝑠𝑘 + 𝜔𝑘−1𝑠𝑘−1 − 𝜔𝑘𝑠𝑘 = 0, 𝑘 = 1, 2, 3, 4,
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⎩

𝐸01 =

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑏

𝑏 + 𝜔1
, 0, 0, 0, 0, 0, 0, 0, 0, 0

𝐸02 =

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜔1𝑠∗1

𝑝2 + 𝑏 + 𝜔2
,
𝑝2(1 − 𝛼2)
𝑏 + 𝜔2

𝑠∗2 ,
𝑝2𝛼2

(1 − 𝜉2)𝜃2 + 𝜉2 + 𝑏 + 𝜔2
𝑠∗2 ,

(1 − 𝜉2)𝜃2
𝑏 + 𝜔2

𝑣∗2 , 0, 0, 0, 0, 0,
𝜉2

𝑏 + 𝜔2
𝑣∗2

𝐸03 =

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜔2𝑠∗2

𝑝3 + 𝑏 + 𝜔3
,
𝑝3(1 − 𝛼3)𝑠∗3 + 𝜔2𝑠0∗2

𝑏 + 𝜔3
,

𝑝3𝛼3𝑠∗3 + 𝜔2𝑣∗2
(1 − 𝜉3)𝜃3 + 𝜉3 + 𝑏 + 𝜔3

,
(1 − 𝜉3)𝜃3𝑣∗3 + 𝜔2𝑣0∗2

𝑏 + 𝜔3
, 0, 0, 0, 0, 0,

𝜉3𝑣∗3 + 𝜔2𝑟∗2
𝑏 + 𝜔3

𝐸04 =

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜔3𝑠∗3
𝑝4 + 𝑏

,
𝑝4(1 − 𝛼4)𝑠∗4 + 𝜔3𝑠0∗3

𝑏
,

𝑝4𝛼4𝑠∗4 + 𝜔3𝑣∗3
(1 − 𝜉4)𝜃4 + 𝜉4 + 𝑏

,
(1 − 𝜉4)𝜃4𝑣∗4 + 𝜔3𝑣0∗3

𝑏
, 0, 0, 0, 0, 0,

𝜉4𝑣∗4 + 𝜔3𝑟∗3
𝑏

(3.1)

Box I.
w

(

hat is, linear inhomogeneous system

−𝜔1 − 𝑏 0 0 0
𝜔1 −𝑝2 − 𝑏 − 𝜔2 0 0
0 𝜔2 −𝑝3 − 𝑏 − 𝜔3 0
0 0 𝜔3 −𝑝4 − 𝑏

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝑠1
𝑠2
𝑠3
𝑠4

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

−𝑏
0
0
0

⎞

⎟

⎟

⎟

⎟

⎠

.

t is not difficult to know that the above equation system has a unique
olution {𝑠𝑘} = (𝑠∗1 , 𝑠

∗
2 , 𝑠

∗
3 , 𝑠

∗
4)
𝑇 , where

∗
1 = 𝑏

𝑏 + 𝜔1
, 𝑠∗2 =

𝜔1𝑠∗1
𝑝2 + 𝑏 + 𝜔2

, 𝑠∗3 =
𝜔2𝑠∗2

𝑝3 + 𝑏 + 𝜔3
, 𝑠∗4 =

𝜔3𝑠∗3
𝑝4 + 𝑏

.

Next, similar methods are used to solve algebraic equations of other
variables, and the equilibrium are shown in Appendix C. Then system
Eq. (2.3) has a unique disease-free equilibrium 𝐸0 = (𝐸01, 𝐸02, 𝐸03, 𝐸04),

here 𝐸0𝑘 is the disease-free equilibrium of age group-𝑘 as below (see
ox I).
here each of these components are the coordinate components of 𝐸0.

.2. Threshold analysis

The basic reproduction number 𝑅0 is the most important index
n epidemic model. It measures the internal transmission ability of
nfectious diseases without intervention. An infectious will lead to an
utbreak if 𝑅0 > 1, and put pressure on health care system. Otherwise,
here will be no outbreak. The State Council joint prevention and
ontrol mechanism against COVID-19 issues control schemes to make
hreshold less than 1, which is also called control reproduction number
𝑐 . In this part, the thresholds of multi-group and single group are
iven respectively.

.2.1. Multi-group threshold analysis
Using the next-generation matrix method to calculate the threshold

f system Eq. (2.3). Only the disease compartments 𝑒, 𝑎, 𝑖 can be
onsidered. Let  be the increasing rate of secondary infection,  is
volution operator and represents the internal evolution law (e.g., nat-
ral birth and death, and movements among compartments). Calculate
he Jacobian F and V at the disease-free equilibrium 𝐸0 respectively,
ee Appendix D.

Hence, 𝐹 , 𝑉 , 𝑉 −1 as follows

𝐹 =
⎛

⎜

⎜

⎝

0 𝜀𝐹13 𝐹13
0 0 0
0 0 0

⎞

⎟

⎟

⎠

, 𝑉 =
⎛

⎜

⎜

⎝

𝑉11 0 0
𝑉21 𝑉22 0
𝑉31 0 𝑉33

⎞

⎟

⎟

⎠

,

𝑉 −1 =
⎛

⎜

⎜

⎝

𝑉11 0 0
𝑉21 𝑉22 0
𝑉31 0 𝑉33

⎞

⎟

⎟

⎠

.

(3.2)

Following Van den Driessche and Watmough (2002), 𝐹𝑉 −1 is the next
generation matrix and set

−1
5

𝑅𝑐 = 𝜌(𝐹𝑉 )
here 𝜌 is the spectral radius of 𝐹𝑉 −1.
The effective matrix elements for calculating the threshold is

𝜀𝐹13, 𝐹13)(𝑉21, 𝑉31)𝑇 . But this system is more difficult to calculate 𝑅𝑐 ,
the specific form is not calculated in this paper. Moreover, let

𝑀 = 𝐹 − 𝑉 =
⎛

⎜

⎜

⎝

−𝑉11 𝜀𝐹13 𝐹13
−𝑉21 −𝑉22 0
−𝑉31 0 −𝑉33

⎞

⎟

⎟

⎠

, (3.3)

−𝑀 has the Z sign pattern, 𝐹 is non-negative and 𝑉 is non-singular
M-matrix, following Theorem 2 in Van den Driessche and Watmough
(2002)

𝑅𝑐 < 1 ⇔ s(𝑀) < 0; 𝑅𝑐 > 1 ⇔ s(𝑀) > 0

is holds, where s(𝑀) = Max{Re𝜆 | 𝜆 is the eigenvalue of 𝑀}.

3.2.2. Single-group threshold analysis
Similar to the previous method, this part only considers the control

reproduction number of a single age group, which further explains the
biological significance of the results. It is worth noting that the aging
rate still needs to be considered, because it is a natural phenomenon
and is part of the population dynamics. Through analysis, the control
reproduction number 𝑅𝑐𝑘 for single group-𝑘 as

𝑅𝑐𝑘 = 𝐶𝑘𝑘𝜀𝐹
(𝑘)
13 ×

𝜎𝑘
𝑉 (𝑘)
11

× 1
𝑉 (𝑘)
22

+𝐶𝑘𝑘𝐹
(𝑘)
13 ×

𝜙𝑘
𝑉 (𝑘)
11

× 1
𝑉 (𝑘)
33

, 𝑘 = 1, 2, 3, 4. (3.4)

Taking group-2 as an example,

𝑅𝑐2 =𝐶22
𝜆21𝑠

∗
2 + 𝜆

2
2𝑠

0∗
2 + 𝜆23𝑣

0∗
2

𝑛∗2
× 1
𝛽 + 𝜎2 + 𝜙2 + 𝜓

𝑒𝑞
2 + 𝑏 + 𝜔2

× (
𝜀𝜎2

𝛽 + 𝜇2 + 𝜓
𝑎𝑞
2 + 𝑏 + 𝜔2

+
𝜙2

𝛽 + 𝛿2 + 𝜓
𝑖𝑞
2 + 𝑏 + 𝜔2

),

only the intra-group transmission is considered, and contact matrix
takes the diagonal element 𝐶22. 𝑅𝑐2 indicates the total infection of
three classes of susceptible 𝑠2, 𝑠02 and 𝑣02 infected by two classes of
infectious 𝑎2 and 𝑖2. In the system, all positive cases are admitted to
isolation and are no longer involved in transmission. Therefore, the
period from infectious to entering 𝑄 class is regarded as the infectious
period, further explained as Fig.S5. The other groups are similar, the
difference is that 𝑠0∗1 = 𝑣0∗1 = 0 in 𝑅𝑐1 because babies are not vaccinated.
There is no aging rate in 𝑅𝑐4, i.e. 𝜔4 = 0.

Through numerical calculation, 𝑅𝑐 > 𝑅𝑐𝑘 can be obtained for 𝑘 =
1, 2, 3, 4. In the biological sense, this conclusion can also be explained.
𝑅𝑐 includes not only the intra group transmission ability, i.e. 𝑅𝑐𝑘, but
also transmission due to natural contact between groups, as well as
transmission within and between groups due to aging into the next age
group.
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3.3. Stability analysis of disease-free equilibrium

Theorem 3.1. If 𝑅𝑐 < 1, the disease-free equilibrium 𝐸0 of system
Eq. (2.3) is locally asymptotically stable.

Proof. Analysis of the stability of the disease-free equilibrium using lin-
earization around the equilibrium. The Jacobian matrix at disease-free
equilibrium 𝐸0 is

𝐽𝐸0
=
⎛

⎜

⎜

⎝

𝐴 𝐵 0
0 𝑀 0
𝐶 𝐷 𝐸

⎞

⎟

⎟

⎠

. (3.5)

The block matrices 𝐴 and 𝐸 are both lower triangular matrices whose
eigenvalues are less than 0. In other words, s(𝐴) < 0 and s(𝐸) < 0.
f 𝑅𝑐 < 1, then s(𝑀) < 0. Therefore, all eigenvalues of the Jacobian
ave negative real parts, i.e., s(𝐽𝐸0

) < 0. From Theorem 2 in Van den
riessche and Watmough (2002), the disease-free equilibrium 𝐸0 is

locally asymptotically stable. □

Theorem 3.2. If 𝑅𝑐 < 1, the disease-free equilibrium 𝐸0 of system
Eq. (2.3) is global attractiveness.

Proof. To illustrate the global attractiveness, it is only necessary to
prove that lim𝑡→∞ 𝑒𝑘(𝑡) = 0, lim𝑡→∞ 𝑎𝑘(𝑡) = 0, lim𝑡→∞ 𝑖𝑘(𝑡) = 0 (𝑘 =
1, 2, 3, 4) is established when 𝑅𝑐 < 1. First, consider auxiliary system

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑑𝑠̄𝑘
𝑑𝑡

= 𝑏𝛿𝑘,1 − (1 − 𝛿𝑘,1)𝑝𝑘𝑠̄𝑘 − 𝑏𝑠̄𝑘 + 𝜔𝑘−1𝑠̄𝑘−1 − 𝜔𝑘𝑠̄𝑘,

𝑑𝑠̄0𝑘
𝑑𝑡

= (1 − 𝛿𝑘,1)𝑝𝑘(1 − 𝛼𝑘)𝑠̄𝑘 − 𝑏𝑠̄0𝑘 + 𝜔𝑘−1𝑠̄
0
𝑘−1 − 𝜔𝑘𝑠̄

0
𝑘,

𝑑𝑣̄𝑘
𝑑𝑡

= (1 − 𝛿𝑘,1)𝑝𝑘𝛼𝑘𝑠̄𝑘 − (1 − 𝜉𝑘)𝜃𝑘𝑣̄𝑘 − 𝜉𝑘𝑣̄𝑘 − 𝑏𝑣̄𝑘 + 𝜔𝑘−1𝑣̄𝑘−1 − 𝜔𝑘𝑣̄𝑘,

𝑑𝑣̄0𝑘
𝑑𝑡

= (1 − 𝜉𝑘)𝜃𝑘𝑣̄𝑘 − 𝑏𝑣̄0𝑘 + 𝜔𝑘−1𝑣̄
0
𝑘−1 − 𝜔𝑘𝑣̄

0
𝑘,

(3.6)

all eigenvalues of the corresponding Jacobian have negative real parts,
equilibrium (𝑠̄∗1 , 𝑠̄

0∗
1 , 𝑣̄

∗
1 , 𝑣̄

0∗
1 , 𝑠̄

∗
2 ,…, 𝑣̄0∗4 )𝑇 is locally asymptotically stable

and equal to (𝑠∗1 , 𝑠
0∗
1 , 𝑣

∗
1 , 𝑣

0∗
1 , 𝑠

∗
2 ,…, 𝑣0∗4 )𝑇 . Furthermore, the auxiliary

system Eq. (3.6) is linear system, equilibrium is globally asymptoti-
cally stable. From system Eq. (3.6) is quasi-monotone increasing sys-
tem, 𝑠𝑘(𝑡) ≤ 𝑠̄𝑘(𝑡), 𝑠0𝑘(𝑡) ≤ 𝑠̄0𝑘(𝑡), 𝑣𝑘(𝑡) ≤ 𝑣̄𝑘(𝑡), 𝑣0𝑘(𝑡) ≤ 𝑣̄0𝑘(𝑡) is
holds by using comparison principle. Therefore, lim sup𝑡→∞ 𝑠𝑘(𝑡) ≤ 𝑠̄∗𝑘,
lim sup𝑡→∞ 𝑠0𝑘(𝑡) ≤ 𝑠̄0∗𝑘 , lim sup𝑡→∞ 𝑣𝑘(𝑡) ≤ 𝑣̄∗𝑘, lim sup𝑡→∞ 𝑣0𝑘(𝑡) ≤ 𝑣̄0∗𝑘 .

In the following prove that 𝑒𝑘(𝑡), 𝑎𝑘(𝑡), 𝑖𝑘(𝑡) tend to 0 if 𝑡 → ∞. Define
𝑀̄ =𝑀 + 𝜃𝑀̂ , where

𝑀 = 𝐹 − 𝑉 , 𝑀̂ =
⎛

⎜

⎜

⎝

𝑀̂11 𝑀̂12 𝑀̂13
𝑀̂21 𝑀̂22 𝑀̂23
𝑀̂31 𝑀̂32 𝑀̂33

⎞

⎟

⎟

⎠

(3.7)

of which

𝑀̂12 = 𝜀𝑀̂13,

𝑀̂13 = {𝑋𝑗𝑘}4×4 = {𝐶𝑘𝑗
1
𝑛∗𝑗

(𝜆𝑗1 + 𝜆
𝑗
2 + 𝜆

𝑗
3)}4×4, 𝑗, 𝑘 = 1, 2, 3, 4.

̂ 11 = 𝑀̂21 = 𝑀̂22 = 𝑀̂23 = 𝑀̂31 = 𝑀̂32 = 𝑀̂33 = 𝟎.

It is well known that 𝑅𝑐 < 1 ⇒ s(𝑀) < 0. And s(𝑀 + 𝜃𝑀̂) is
continuous with small 𝜃, there exits enough small 𝜃̌ > 0 such that
s(𝑀̄) = s(𝑀+ 𝜃̌𝑀̂) ≤ 0. The following discusses the solution of Eq. (3.8)
if 𝑡 → ∞. Taking 𝜃̌, there exits some 𝑡′ such that 𝑠 (𝑡) ≤ 𝑠̄∗ + 𝜃̌,
6

𝑘 𝑘
𝑠0𝑘(𝑡) ≤ 𝑠̄0∗𝑘 + 𝜃̌, 𝑣0𝑘(𝑡) ≤ 𝑣̄0∗𝑘 + 𝜃̌ for 𝑡 > 𝑡′. Set

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝑒𝑘
𝑑𝑡

=
4
∑

𝑗=1
𝜆𝑘1𝐶𝑗𝑘

1
𝑛∗𝑘

(𝑠̄∗𝑘 + 𝜃̌)(𝜀𝑎̄𝑗 + 𝑖𝑗 ) +
4
∑

𝑗=1
𝜆𝑘2𝐶𝑗𝑘

1
𝑛∗𝑘

(𝑠̄0∗𝑘 + 𝜃̌)(𝜀𝑎̄𝑗 + 𝑖𝑗 )

+
4
∑

𝑗=1
𝜆𝑘3𝐶𝑗𝑘

1
𝑛∗𝑘

(𝑣̄0∗𝑘 + 𝜃̌)(𝜀𝑎̄𝑗 + 𝑖𝑗 ) − 𝛽𝑒𝑘 − 𝜎𝑘𝑒𝑘

− 𝜙𝑘𝑒𝑘 − 𝜓
𝑒𝑞
𝑘 𝑒𝑘 − 𝑏𝑒𝑘 + 𝜔𝑘−1𝑒𝑘−1 − 𝜔𝑘𝑒𝑘,

𝑑𝑎̄𝑘
𝑑𝑡

= − 𝛽𝑎̄𝑘 + 𝜎𝑘𝑒𝑘 − 𝜇𝑘𝑎̄𝑘 − 𝜓
𝑎𝑞
𝑘 𝑎̄𝑘 − 𝑏𝑎̄𝑘 + 𝜔𝑘−1𝑎̄𝑘−1 − 𝜔𝑘𝑎̄𝑘,

𝑑𝑖𝑘
𝑑𝑡

= − 𝛽𝑖𝑘 + 𝜙𝑘𝑒𝑘 − 𝛿𝑘𝑖𝑘 − 𝜓
𝑖𝑞
𝑘 𝑖𝑘 − 𝑏𝑖𝑘 + 𝜔𝑘−1𝑖𝑘−1 − 𝜔𝑘𝑖𝑘,

(3.8)

is quasi-monotone increasing system. Because s(𝑀 + 𝜃̌𝑀̂) ≤ 0, the
solution of system Eq. (3.8) are all close to 0 if 𝑡 → ∞. By comparison
theorem,

lim
𝑡→∞

𝑒𝑘(𝑡) = lim
𝑡→∞

𝑎𝑘(𝑡) = lim
𝑡→∞

𝑖𝑘(𝑡) = 0, 𝑘 = 1, 2, 3, 4.

On the other hand, from the theory of asymptotic autonomous sys-
tems (Thieme, 1992) can be

(𝑠𝑘(𝑡), 𝑠0𝑘(𝑡), 𝑣𝑘(𝑡), 𝑣
0
𝑘(𝑡)) → (𝑠∗𝑘, 𝑠

0∗
𝑘 , 𝑣

∗
𝑘, 𝑣

0∗
𝑘 ), 𝑡 → ∞, 𝑘 = 1, 2, 3, 4

The proof is complete. □

By Theorems 3.1 and 3.2, the following results must be true.

Theorem 3.3. If 𝑅𝑐 < 1, the disease free equilibrium 𝐸0 of system
Eq. (2.3) is globally asymptotically stable.

3.4. Existence of endemic equilibrium

The purpose of subsection is to illustrate the existence of endemic
equilibrium by using threshold condition and consistent persistence
theory. To this end, the following definitions are made

𝛤 = {(𝑠1, 𝑠01, 𝑣1, 𝑣
0
1, 𝑒1, 𝑎1, 𝑖1,… 𝑎4, 𝑖4) ∈ R4×7

+ ∣
4
∑

𝑘=1
𝑠𝑘 + 𝑠0𝑘 + 𝑣𝑘 + 𝑣

0
𝑘 + 𝑒𝑘 + 𝑎𝑘 + 𝑖𝑘 ≤ 1, 𝑘 = 1, 2, 3, 4},

0 = {(𝑠1, 𝑠01, 𝑣1, 𝑣
0
1, 𝑒1, 𝑎1, 𝑖1,… 𝑎4, 𝑖4) ∈ 𝛤 ∣ (𝑒𝑘, 𝑎𝑘, 𝑖𝑘) > 𝟎, 𝑘 = 1, 2, 3, 4},

𝛤0 = 𝛤 ⧵ 𝛤0.

heorem 3.4. If 𝑅𝑐 > 1, there exits positive real number 𝛿 > 0, such
hat for any initial (𝑠𝑘(0), 𝑠0𝑘(0), 𝑣𝑘(0), 𝑣

0
𝑘(0), 𝑒𝑘(0), 𝑎𝑘(0), 𝑖𝑘(0)) ∈ 𝛤0 with

𝑘(0) ≤ 𝛿, 𝑎𝑘(0) ≤ 𝛿, 𝑖𝑘(0) ≤ 𝛿, the solution satisfies

im sup
𝑡→∞

max
𝑘

{𝑒𝑘(𝑡), 𝑎𝑘(𝑡), 𝑖𝑘(𝑡)} > 𝛿 (3.9)

nd 𝑘 = 1, 2, 3, 4.

roof. On the contrary, assume that there exits positive real 𝛿 > 0, 𝑇 >
, such that 𝑒𝑘(𝑡) < 𝛿, 𝑎𝑘(𝑡) < 𝛿, 𝑖𝑘(𝑡) < 𝛿 for all initial values belong to
0 with 𝑡 > 𝑇 . Now consider perturbation system

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝑠𝑘
𝑑𝑡

= 𝑏𝛿𝑘,1 − 𝛿
4
∑

𝑗=1
𝜆𝑘1𝐶𝑗𝑘

1
𝑛∗𝑘
𝑠𝑘(𝜀 + 1) − (1 − 𝛿𝑘,1)𝑝𝑘𝑠𝑘

− 𝑏𝑠𝑘 + 𝜔𝑘−1𝑠𝑘−1 − 𝜔𝑘𝑠𝑘,

𝑑𝑠0𝑘
𝑑𝑡

= (1 − 𝛿𝑘,1)𝑝𝑘(1 − 𝛼𝑘)𝑠𝑘 − 𝛿
4
∑

𝑗=1
𝜆𝑘2𝐶𝑗𝑘

1
𝑛∗𝑘
𝑠0𝑘(𝜀 + 1)

− 𝑏𝑠0𝑘 + 𝜔𝑘−1𝑠
0
𝑘−1 − 𝜔𝑘𝑠

0
𝑘,

𝑑𝑣𝑘
𝑑𝑡

= (1 − 𝛿𝑘,1)𝑝𝑘𝛼𝑘𝑠𝑘 − (1 − 𝜉𝑘)𝜃𝑘𝑣𝑘 − 𝜉𝑘𝑣𝑘 − 𝑏𝑣𝑘 + 𝜔𝑘−1𝑣𝑘−1 − 𝜔𝑘𝑣𝑘,

𝑑𝑣0𝑘
𝑑𝑡

= (1 − 𝜉𝑘)𝜃𝑘𝑣𝑘 − 𝛿
4
∑

𝑗=1
𝜆𝑘3𝐶𝑗𝑘

1
𝑛∗𝑘
𝑣0𝑘(𝜀 + 1) − 𝑏𝑣0𝑘 + 𝜔𝑘−1𝑣

0
𝑘−1 − 𝜔𝑘𝑣

0
𝑘.
(3.10)
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It is quasi-monotone increasing system linear system. Similar to system
Eq. (3.6), system Eq. (3.10) has a unique equilibrium
(𝑠̃1(𝛿), 𝑠01(𝛿), 𝑣̃1(𝛿), 𝑣01(𝛿),… 𝑣04(𝛿)), which is globally asymptotically
table.

Now just consider 𝑠𝑘 equation, 𝑠̃1(𝛿) is a continuous function of 𝛿.
It is possible to find some positive real 𝛿 such that 𝑠𝑘(𝛿) ≥ 𝑠∗𝑘 − 𝜏 and
𝜏 > 0. Furthermore,

𝑑𝑠𝑘
𝑑𝑡

= 𝑏𝛿𝑘,1 −
4
∑

𝑗=1
𝜆𝑘1𝐶𝑗𝑘

1
𝑛∗𝑘
𝑠𝑘(𝜀𝑎𝑗 + 𝑖𝑗 ) − (1 − 𝛿𝑘,1)𝑝𝑘𝑠𝑘

− 𝑏𝑠𝑘 + 𝜔𝑘−1𝑠𝑘−1 − 𝜔𝑘𝑠𝑘

≥ 𝑏𝛿𝑘,1 − 𝛿
4
∑

𝑗=1
𝜆𝑘1𝐶𝑗𝑘

1
𝑛∗𝑘
𝑠𝑘(𝜀 + 1) − (1 − 𝛿𝑘,1)𝑝𝑘𝑠𝑘

− 𝑏𝑠𝑘 + 𝜔𝑘−1𝑠𝑘−1 − 𝜔𝑘𝑠𝑘,

there is sufficiently large 𝑇0, such that 𝑠𝑘(𝑡) ≥ 𝑠̃𝑘(𝛿) for 𝑡 > 𝑇0. So
𝑠𝑘(𝑡) ≥ 𝑠∗𝑘−𝜏 is holds if 𝑡 > 𝑇0 > 𝑇 . Similarly, 𝑠0𝑘(𝑡) ≥ 𝑠0∗𝑘 −𝜏, 𝑣0𝑘(𝑡) ≥ 𝑣0∗𝑘 −𝜏
is holds for 𝑡 > 𝑇0 > 𝑇 . Next, consider following

𝑑𝑒𝑘
𝑑𝑡

≥
4
∑

𝑗=1
𝜆𝑘1𝐶𝑗𝑘

1
𝑛∗𝑘

(𝑠∗𝑘 − 𝜏)(𝜀𝑎𝑗 + 𝑖𝑗 ) +
4
∑

𝑗=1
𝜆𝑘2𝐶𝑗𝑘

1
𝑛∗𝑘

(𝑠0∗𝑘 − 𝜏)(𝜀𝑎𝑗 + 𝑖𝑗 )

+
4
∑

𝑗=1
𝜆𝑘3𝐶𝑗𝑘

1
𝑛∗𝑘

(𝑣0∗𝑘 − 𝜏)(𝜀𝑎𝑗 + 𝑖𝑗 )

− (𝛽𝑒𝑘 +
4
∑

𝑗=1
𝜓𝑒𝑞𝑗 𝜂𝐶𝑗𝑘

1
𝑛∗𝑘
𝛿2 +

4
∑

𝑗=1
𝜓𝑎𝑞𝑗 𝜂𝐶𝑗𝑘

1
𝑛∗𝑘
𝛿2 +

4
∑

𝑗=1
𝜓 𝑖𝑞𝑗 𝜂𝐶𝑗𝑘

1
𝑛∗𝑘
𝛿2)

− 𝜎𝑘𝑒𝑘 − 𝜙𝑘𝑒𝑘 − 𝜓
𝑒𝑞
𝑘 𝑒𝑘 − 𝑏𝑒𝑘 + 𝜔𝑘−1𝑒𝑘−1 − 𝜔𝑘𝑒𝑘.

For the sake of convenience, denote

𝐿 =
4
∑

𝑗=1
𝜓𝑒𝑞𝑗 𝜂𝐶𝑗𝑘

1
𝑛∗𝑘
𝛿2 +

4
∑

𝑗=1
𝜓𝑎𝑞𝑗 𝜂𝐶𝑗𝑘

1
𝑛∗𝑘
𝛿2 +

4
∑

𝑗=1
𝜓 𝑖𝑞𝑗 𝜂𝐶𝑗𝑘

1
𝑛∗𝑘
𝛿2.

hen

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝑒𝑘
𝑑𝑡

≥
4
∑

𝑗=1
𝜆𝑘1𝐶𝑗𝑘

1
𝑛∗𝑘

(𝑠∗𝑘 − 𝜏)(𝜀𝑎𝑗 + 𝑖𝑗 ) +
4
∑

𝑗=1
𝜆𝑘2𝐶𝑗𝑘

1
𝑛∗𝑘

(𝑠0∗𝑘 − 𝜏)(𝜀𝑎𝑗 + 𝑖𝑗 )

+
4
∑

𝑗=1
𝜆𝑘3𝐶𝑗𝑘

1
𝑛∗𝑘

(𝑣0∗𝑘 − 𝜏)(𝜀𝑎𝑗 + 𝑖𝑗 ) − 𝐿 − 𝛽𝑒𝑘 − 𝜎𝑘𝑒𝑘

− 𝜙𝑘𝑒𝑘 − 𝜓
𝑒𝑞
𝑘 𝑒𝑘 − 𝑏𝑒𝑘 + 𝜔𝑘−1𝑒𝑘−1 − 𝜔𝑘𝑒𝑘,

𝑑𝑎𝑘
𝑑𝑡

≥ − 𝐿 − 𝛽𝑎𝑘 + 𝜎𝑘𝑒𝑘 − 𝜇𝑘𝑎𝑘 − 𝜓
𝑎𝑞
𝑘 𝑎𝑘 − 𝑏𝑎𝑘 + 𝜔𝑘−1𝑎𝑘−1 − 𝜔𝑘𝑎𝑘,

𝑑𝑖𝑘
𝑑𝑡

≥ − 𝐿 − 𝛽𝑖𝑘 + 𝜙𝑘𝑒𝑘 − 𝛿𝑘𝑖𝑘 − 𝜓
𝑖𝑞
𝑘 𝑖𝑘 − 𝑏𝑖𝑘 + 𝜔𝑘−1𝑖𝑘−1 − 𝜔𝑘𝑖𝑘,

(3.11)

the right system is quasi-monotone increasing system. From 𝑅𝑐 > 1,
i.e. s(𝑀) > 0. The function s(𝑀 − 𝜏𝑀̂) is continues for any small value
𝜏, so can take enough small 𝜏 such that s(𝑀) = s(𝑀 − 𝜏𝑀̂) > 0.

dditionally,

𝑒𝑘(𝑡), 𝑎𝑘(𝑡), 𝑖𝑘(𝑡)) → (∞,∞,∞), 𝑡 → ∞, 𝑘 = 1, 2, 3, 4

which is a contradiction. Therefore, there is

lim sup
𝑡→∞

max
𝑘

{𝑒𝑘(𝑡), 𝑎𝑘(𝑡), 𝑖𝑘(𝑡)} > 𝛿

olds. □

The above Theorem illustrate that at least one infected compartment
s not 0. Furthermore, Wang and Zhao (2004) uniform persistence
heorem is used to demonstrate that the original system has a positive
quilibrium.
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heorem 3.5. If 𝑅𝑐 > 1, system Eq. (2.3) has at least a positive
quilibrium. That is, for initial (𝑠𝑘(0), 𝑠0𝑘(0), 𝑣𝑘(0), 𝑣

0
𝑘(0), 𝑒𝑘(0), 𝑎𝑘(0), 𝑖𝑘(0)) ∈

𝛤0, there is a positive real number 𝛿 > 0 such that

min{ lim
𝑡→∞

inf
𝑘
𝑒𝑘(𝑡), lim𝑡→∞

inf
𝑘
𝑎𝑘(𝑡), lim𝑡→∞

inf
𝑘
𝑖𝑘(𝑡)} ≥ 𝛿, (3.12)

and k = 1,2,3,4.

Proof. To prove that Eq. (3.12) is established, we will demonstrate
that system Eq. (2.3) is uniform persistence with respect to (𝛤0, 𝜕𝛤0).
or simplicity, denote

(𝑡) = (𝑠1(𝑡), 𝑠2(𝑡), 𝑠3(𝑡), 𝑠4(𝑡)), 𝑠0(𝑡) = (𝑠01(𝑡), 𝑠
0
2(𝑡), 𝑠

0
3(𝑡), 𝑠

0
4(𝑡)),…

(𝑡) = (𝑖1(𝑡), 𝑖2(𝑡), 𝑖3(𝑡), 𝑖4(𝑡)).

y definition, 𝛤 , 𝛤0 are positively invariant and 𝜕𝛤0 is the bounded
losed set of 𝛤 . The trajectory starting from R4×7

+ eventually enters the
et 𝛤 , and it can be seen that the system Eq. (2.3) is point-dissipative
i.e. the existence of a bounded globally attracting set).

Let 𝛷(𝑡) is the solution semiflow of system Eq. (2.3) on 𝛤 , 𝑀𝜕 =
𝑥 ∈ 𝜕𝛤0 ∣ 𝛷(𝑡)𝑥 ∈ 𝜕𝛤0, 𝑡 ≥ 0}, i.e.

𝜕 = {(𝑠(0), 𝑠0(0), 𝑣(0), 𝑣0(0), 𝑒(0), 𝑎(0), 𝑖(0)) ∣

(𝑠(𝑡), 𝑠0(𝑡), 𝑣(𝑡), 𝑣0(𝑡), 𝑒(𝑡), 𝑎(𝑡), 𝑖(𝑡)) ∈ 𝜕𝛤0, 𝑡 ≥ 0, 𝑘 = 1, 2, 3, 4}

ext we prove

𝜕 = {(𝑠, 𝑠0, 𝑣, 𝑣0, 0, 0, 0) ∣ 𝑠 ≥ 𝟎, 𝑠0 ≥ 𝟎, 𝑣 ≥ 𝟎, 𝑣0 ≥ 𝟎}. (3.13)

ssume (𝑠(0), 𝑠0(0),𝑣(0), 𝑣0(0),𝑒(0),𝑎(0),𝑖(0)) ∈ 𝑀𝜕 and the definition
f 𝑀𝜕 , it suffices to know

𝑒(𝑡), 𝑎(𝑡), 𝑖(𝑡)) = (𝟎, 𝟎, 𝟎), 𝑡 ≥ 0.

f not, for (𝑠(0), 𝑠0(0), 𝑣(0), 𝑣0(0), 𝑒(0), 𝑎(0), 𝑖(0)) ∈ 𝑀𝜕 and there exits
ome 𝑘0(1 ≤ 𝑘0 ≤ 𝑛) and 𝑡∗ ≥ 0, such that

𝑒𝑘0 (𝑡
∗), 𝑎𝑘0 (𝑡

∗), 𝑖𝑘0 (𝑡
∗)) > 𝟎 𝑓𝑜𝑟 𝑡∗ ≥ 0.

o the assumption might be 𝑒𝑘0 (𝑡
∗) > 0, 𝑎𝑘0 (𝑡

∗) = 0, 𝑖𝑘0 (𝑡
∗) = 0.

Set group-1, group-2, group-3 and group-4 divide into two sets 𝛺1
and 𝛺2, where 𝛺1 is the set of age group-𝑘 satisfying
(𝑒𝑘(𝑡∗), 𝑎𝑘(𝑡∗), 𝑖𝑘(𝑡∗)) = 𝟎, and 𝛺2 is the set of age group-𝑘 with at least
one compartment greater than 0 in compartment 𝑒𝑘(𝑡∗), 𝑎𝑘(𝑡∗), 𝑖𝑘(𝑡∗).
Neither set is empty, because set 𝛺1 is nonempty by definition of
𝑀𝜕 , and as can be seen from (𝑒𝑘0 (𝑡

∗), 𝑎𝑘0 (𝑡
∗), 𝑖𝑘0 (𝑡

∗)) > 𝟎, 𝛺2 is also a
non-empty set.

Without loss of generality, for any 𝑘 ∈ 𝛺2, assuming 𝑒𝑘(𝑡∗) >
0, 𝑎𝑘(𝑡∗) = 0, 𝑖𝑘(𝑡∗) = 0, then
𝑑𝑎𝑘
𝑑𝑡∗

= 𝜎𝑘𝑒𝑘(𝑡∗) + 𝜔𝑘−1𝑎𝑘−1(𝑡∗) > 0,

𝑑𝑖𝑘
𝑑𝑡∗

= 𝜙𝑘𝑒𝑘(𝑡∗) + 𝜔𝑘−1𝑖𝑘−1(𝑡∗) > 0.
(3.14)

hen there is enough small 𝜏1 > 0, such that

𝑘(𝑡1) > 0, 𝑎𝑘(𝑡1) > 0, 𝑖𝑘(𝑡1) > 0, for 𝑡∗ < 𝑡1 < 𝑡
∗ + 𝜏1, 𝑘 ∈ 𝛺2. (3.15)

n addition, set any 𝑘′ ∈ 𝛺1,

𝑑𝑒𝑘′
𝑑𝑡1

=
4
∑

𝑗=1
𝜆𝑘

′

1 𝐶𝑗𝑘′
1
𝑛∗𝑘′

𝑠𝑘′ (𝜀𝑎𝑗 + 𝑖𝑗 ) +
4
∑

𝑗=1
𝜆𝑘

′

2 𝐶𝑗𝑘′
1
𝑛∗𝑘′

𝑠0𝑘′ (𝜀𝑎𝑗 + 𝑖𝑗 )

+
4
∑

𝑗=1
𝜆𝑘

′

3 𝐶𝑗𝑘′
1
𝑛∗𝑘′

𝑣0𝑘′ (𝜀𝑎𝑗 + 𝑖𝑗 ) + 𝜔𝑘′−1𝑒𝑘′−1

≥𝐶𝑘𝑘′
1
𝑛∗𝑘′

(𝜀𝑎𝑘 + 𝑖𝑘)(𝜆𝑘
′

1 𝑠𝑘′ + 𝜆
𝑘′
2 𝑠

0
𝑘′ + 𝜆

𝑘′
3 𝑣

0
𝑘′ ) + 𝜔𝑘′−1𝑒𝑘′−1

>0.

Then there is enough small 𝜏2 > 0, such that

𝑒 (𝑡 ) > 0, 𝑡∗ < 𝑡 < 𝑡 < 𝑡∗ + 𝜏 , 𝑘′ ∈ 𝛺 . (3.16)
𝑘′ 2 1 2 2 1
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𝑎

Further,
𝑑𝑎𝑘′
𝑑𝑡2

= 𝜎𝑘′𝑒𝑘′ (𝑡2) + 𝜔𝑘′−1𝑎𝑘′−1(𝑡2) > 0,

𝑑𝑖𝑘′
𝑑𝑡2

= 𝜙𝑘′𝑒𝑘′ (𝑡2) + 𝜔𝑘′−1𝑖𝑘′−1(𝑡2) > 0,
(3.17)

then there is enough small 𝜏3 > 0, such that

𝑘′ (𝑡3) > 0, 𝑖𝑘′ (𝑡3) > 0, for 𝑡∗ < 𝑡1 < 𝑡2 < 𝑡3 < 𝑡
∗+𝜏3, 𝑘′ ∈ 𝛺1. (3.18)

To sum up, if 𝑡∗ < 𝑡 < 𝑡∗ + 𝜏3, there is (𝑠(𝑡), 𝑠0(𝑡), 𝑣(𝑡), 𝑣0(𝑡), 𝑒(𝑡), 𝑎(𝑡), 𝑖(𝑡))
not belong to 𝜕𝛤0, which contradicts the assumption that
(𝑠(0), 𝑠0(0), 𝑣(0), 𝑣0(0), 𝑒(0), 𝑎(0), 𝑖(0)) ∈ 𝑀𝜕 . Hence, the expression
Eq. (3.13) is holds.

The open set 𝛤0 is positive invariant set, and 𝐸0 is globally asymp-
totically stable. By using abstract persistence theory, 𝐸0 is isolated
invariant set in 𝛤 , such that the orbit from 𝑀𝜕 is almost close to
equilibrium 𝐸0. Moreover, no subset of 𝐸0 forms a cycle in 𝜕𝛤0 and
𝑊 𝑠(𝐸0) ∩ 𝛤0 = ∅, where 𝑊 𝑠(𝐸0) = {𝑥0 ∈ 𝜕𝛤0 ∣ 𝑑(𝑥(𝑡, 𝑥0), 𝐸0) →
0}. Therefore, according to Theorem 4.6 in Thieme (1993), system
Eq. (2.3) is uniformly persistence with respect to (𝛤 , 𝛤0), i.e., Eq. (3.12)
is satisfied. □

4. Numerical simulations

In this section, contact patterns appropriate for the paper are first
discussed in Section 4.1. Secondly, the vaccination strategies were
evaluated from different perspectives through custom scenarios in 4.2
and data fitting was performed on the number of hospitalized patients
through the actual scenario of the Shanghai outbreak in 2022 see
Section 4.3.

4.1. Contact pattern

From several outbreaks in mainland China (Liaoning Province,
Hebei Province, Nanjing City and Zhengzhou City), epidemiological
survey of cases revealed heterogeneity in the age structure, see Fig.S6.
Many efforts have been made to find out contact patterns between age
groups. Regrouping the research results of 2020 (Prem et al., 2021),
that is, 16 groups of data (left panel) are merged into 4 groups (right
panel) in Fig. 2. The principle of reorganizing the contact pattern is
that the number of contacts before and after grouping is equal. The
contact pattern corresponds to an irreducible matrix (𝐶𝑖𝑗 )4×4, in which
each small cell quantitatively describes the average number of contacts
between two groups. The 𝑋-axis represents the contactee, and the 𝑌 -
axis is contactor. The darker the color, the greater the average number
of contacts. Taking 16 groups of contact matrices as an example, the
color of the diagonal is darker than that of the same row and column,
the contact between the same age group is the most, which is in line
with the characteristics of crowd behavior. It also qualitatively depicts
the social behavior between the same age group, such as work and
study.

4.2. Vaccination strategies

The part evaluates the impact of the combination of age group
vaccinations on the prevention and control of COVID-19 in the custom
scenarios. Taking the proportion of vaccinations required to achieve
herd immunity, effective reproduction number 𝑅𝑡 and control repro-
duction number 𝑅𝑐 as the evaluation criteria, the numerical results
are used to evaluate the optimal vaccination strategy under different
demands. In the custom scenarios, with the population distribution of
Taiyuan, Shanxi Province as the background provided by the Bureau
of Statistics (NBS, 2021). The contact pattern adopts the results of
Section 4.1. The vaccination rate was estimated from the vaccination
data of Shanxi Provincial Health Commission, and baseline parameters
are shown in Table 2. The initial value of infection are assumed
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according to the age distribution of cases in other provinces and cities.
The initial values as
𝑆1(0) = 162209, 𝑆2(0) = 957261, 𝑆3(0) = 3264139, 𝑆4(0) = 920452,

𝐸1(0) = 3, 𝐸2(0) = 27, 𝐸3(0) = 940, 𝐸4(0) = 440,

𝐴1(0) = 1, 𝐴2(0) = 14, 𝐴3(0) = 479, 𝐴4(0) = 224,

𝐼1(0) = 4, 𝐼2(0) = 36, 𝐼3(0) = 1271, 𝐼4(0) = 594

(4.1)

and the initial value of other variables is 0. In general, the custom
scenario is representative and conforms to the characteristics of the
outbreak in mainland China.

4.2.1. Evaluation criteria 1: Total immunized ratio and effective reproduc-
tion number 𝑅𝑡

The effective reproduction number 𝑅𝑡 is time-dependent and repre-
sents the expectation of secondary cases arising from a primary case
infected at time 𝑡. The value changes over the course of outbreak and
is used to assess the effectiveness of the current control (Thompson
et al., 2019). In this section, 𝑅𝑡 < 1 can be made by vaccination. In the
absence of vaccination 𝑅0 = 3.3243, which means that herd immunity
can be achieved if the vaccine coverage is 69.92%. Similar to the
calculation method of 𝑅0, 𝑅𝑡 can be solved numerically. In this paper,
the reasons such as vaccine failure and non-response are considered, the
overall vaccine coverage must be greater than 69.92%. In this part, we
propose 11 vaccination strategies, whose effects and costs are shown in
Table 3. The first column No. represents the coding of the vaccination
strategies, and the second column is the specific description of the
strategies. The coverage threshold set by the experiment and the actual
total vaccinated ratio were denoted as TH.Cov and TIR respectively. 𝑇
(𝑅𝑡 < 1) is the moment when 𝑅𝑡 < 1 for the first time. In addition, TIR
and 𝑇 (𝑅𝑡 < 1) were selected as evaluation indexes of strategy selection.

The strategies also takes into account the extremely important factor
of vaccine protection period 1∕𝜃. Once the protection period is over, the
vaccinated individuals will still regard as ‘‘susceptible’’ and be infected.
On 14 August 2020, the Center for Drug Evaluation of NMPA (2020)
issued the Guidelines for Clinical Evaluation of Novel Coronavirus
Preventive Vaccines (Trial), stating that ‘‘vaccines preferably provide
protection for 1 year or more, with at least 6 months’’. The experi-
ments select 10 months and 12 months respectively, corresponding to
situations A and B in Table 3. In addition, by the single day vacci-
nation amount in Shanxi Province, the daily dose accounts for about
0.012 of the total population. Therefore, the vaccination proportion
is selected to take 𝑝𝑖 = 0.01. Fig.S7 and Fig.S8 show the curves of
𝑅𝑡 and immunization number under different vaccination methods.
The right coordinate is the cumulative number of vaccinated, which
is represented by solid lines of different colors. The left coordinate is
𝑅𝑡, indicated by dark green dotted line that becomes solid if 𝑅𝑡 < 1.

In Table 3, the No. M1 to M5 strategies from single-group single-
stage (M1), double-group single-stage (M2-M4), and three-group single-
stage (M5) to compare the effects of vaccination schemes for 20
months. Neither single-group single-phase nor double-group single-
phase regimen achieved herd immunity throughout the trial period if
1∕𝜃 = 10 months. But if three groups were vaccinated simultaneously,
𝑅𝑡 < 1 on the 315th day, see Fig.S7(a). In view of the vaccine supply,
if doses are insufficient in the early stage and only some people can
be vaccinated first, so which group is most effective in controlling an
outbreak is worth investigating.

The No. M6-1 to M8-2 are multi-group multi-stage mixed vacci-
nation methods. The vaccination coverage threshold was set to be
0.75 and 0.1, which were higher and lower than the herd immunity
threshold 69%, respectively. If TH.Cov = 0.75 and 1∕𝜃 = 10 months,
the numerical results show that M6-1 achieves herd immunity earliest,
although the vaccination proportion is as high as 95.52%. The strategy
‘‘𝑝2 = 𝑝4 = 0.01 → 𝑝3 = 0.01’’ corresponds to Fig.S7(c), group-2 and
group-4 were selected to be vaccinated at a rate of 0.01 in Phase I.

When the number of vaccinations in the group reaches the established



Journal of Theoretical Biology 553 (2022) 111258M. Duan and Z. Jin
Fig. 2. Illustration of contact pattern. The left panel is contact pattern of 16 groups, and the right panel is 4 groups. The degree of color is proportional to the number of contacts.
Table 2
Baseline values.

Parameters Values Source

𝑏 2.1356e−05 NBS (2021)

𝐶𝑖𝑗

⎛

⎜

⎜

⎜

⎜

⎝

1.74 2.66 2.75 0.3
0.63 10.2 5.65 0.42
0.34 2.49 12.71 0.8
0.36 2.28 5.81 1.66

⎞

⎟

⎟

⎟

⎟

⎠

Derived from Prem et al. (2021)

𝜖 0.05 He et al. (2020)
𝜔𝑘 [1/418.65 1/3510.06 1/17482.69 0] 𝜔𝑘 = ( 1

Mean age in group-k - Mean age in group-(k-1) −
1

Average life span ) ×
1
365

𝜃𝑘 [1/180 1/180 1/180 1/180] Center for Drug Evaluation of NMPA (2020)
𝜎𝑘 [1/3 1/3 1/3 1/3] Davies et al. (2020)
𝜙𝑘 [1/5.1 1/5.1 1/5.1 1/5.1] Davies et al. (2020)
𝜇𝑘 [1/14 1/14 1/14 1/14] Assumed
𝛿𝑘 [1/12.9 1/12.9 1/12.9 1/12.9] Derived from Davies et al. (2020)
𝛾𝑘 [1/10 1/10 1/10 1/10] Wang et al. (2020)
𝜆𝑘1∕2∕3 [0.4 0.39 0.82 0.825] Bubar et al. (2021)
𝜓𝑒𝑞
𝑘 [1/8 1/8 1/8 1/8] Davies et al. (2020)
𝜓𝑎𝑞
𝑘 [1/5 1/5 1/5 1/5] Davies et al. (2020)
𝜓 𝑖𝑞
𝑘 [1/2.9 1/2.9 1/2.9 1/2.9] Davies et al. (2020)
𝛽 1/3 The population of custom scenario is about 5.3 million, so 𝛽 = 1∕3 is

adopted from the State Council statement.
𝜂 0.85 Assumed
𝜉𝑘 [0.001 0.001 0.001 0.001] Assumed
coverage threshold 0.75, stop (group-2) vaccination, and to vaccinate
the other two groups (group-4 and group-3) at a rate of 0.01 in Phase
II. If threshold 0.75 is reached in a certain group again, stop the
vaccination (group-4) and the other group (group-3) is continued to be
vaccinated until its coverage reaches 0.75, the vaccination is stopped.
At this time, the three groups is vaccinated at the rate of 0.01 until
the end. If TH.Cov = 0.1, the effects of three strategies are almost the
same. Compared with TH.Cov = 0.75, both 𝑇 and TIR are decreased,
which can be explained. In a short time, the immunization proportions
of the three groups all reached 0.1, and thereafter it is actually M5.
The indicator 𝑇 (𝑅𝑡 < 1) in the table are extremely similar, with a
maximum difference of 12 days compared with M5. However, is this
time difference sufficient? It is not known to buy time for sufficient
supply of vaccines. To be on the safe side, it may be safer to adopt the
M6-1 scheme in the early stage for 1∕𝜃 = 10 months.

Next, we will discuss the situation where 1∕𝜃 = 12 months, and
there is a significant improvement in each scheme compared to 10
months (Fig.S7, Fig.S8). The M4 scheme achieved herd immunity on
the 329th day, when only 78.06% of the total population was vacci-
nated. Programs M7-1 and M8-1 completed herd immunization 91 days
in advance, and the coverage of M6-1 is reduced by 6.95% compared
with 1∕𝜃 = 10 months. For scheme M5, the three groups could reach
𝑅 < 1 after 228 days of continuous inoculation at the same time.
9

𝑡

The mechanism that causes these changes is already evident, and the
immune protection period is prolonged, which is equivalent to the
slowing the outflow of the effectively immunized population. Ideally,
if the duration of protection approaches infinity or is longer than life
expectancy, it is equivalent to lifelong immunity. In this way, herd
immunity can be achieved if the vaccination coverage reaches 69.92%.
It is worth noting that the 𝑅𝑡 curve drops sharply as soon as the
‘‘group-3’’ are vaccinated in Fig.S7.

In summary, if the immune protection period is short, M6-1 strategy
can be adopted. Otherwise, M5 takes precedence, followed by M4.

4.2.2. Evaluation criteria 2: control reproduction number 𝑅𝑐
The previous subsection evaluated the vaccination strategies in

proposed scenarios with 𝑅𝑡 < 1 as the index. This subsection takes
control reproduction number 𝑅𝑐 as the evaluation index and focuses
on the influence of controllable factors on 𝑅𝑐 . It is not only related
to the characteristics of the vaccine, but also to social behavior and
the internal transmission mechanism of the disease. Within the scope
of limited capabilities, the influence of controllable variables on the
threshold and whether it has guiding significance for disease prevention
and control should be considered in scientific research. For the baseline
parameters at transmission in Table 2. The contribution of vaccination
rate 𝑝2, 𝑝3, 𝑝4 and social behavior variable 𝛽 to 𝑅𝑐 was assessed by
univariate, bivariate, and multivariate methods.
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Table 3
Results of vaccination strategies.

(A) 1∕𝜃 = 10 months (B) 1∕𝜃 = 12 months

No. Vaccination Strategy TH.Cova T(𝑅𝑡 < 1)b TIRc TH.Cov T(𝑅𝑡 < 1) TIR

M1 𝑝3 = 0.01 –d – – – – –
– – – – – –

M2 𝑝2 = 𝑝4 = 0.01 – – – – – –
– – – – – –

M3 𝑝3 = 𝑝4 = 0.01 – – – – – –
– – – – – –

M4 𝑝2 = 𝑝3 = 0.01 – – – – 329 78.06%– – – –

M5 𝑝2 = 𝑝3 = 𝑝4 = 0.01 – 315 94.34% – 228 88.01%– –

M6-1
𝑝2 = 𝑝4 = 0.01 →e 𝑝3 = 0.01 0.75 441 95.52% 0.75 368 88.57%

M6-2 0.1 325 94.45% 0.1 238 87.94%

M7-1
𝑝2 = 𝑝3 = 0.01 → 𝑝4 = 0.01 0.75 472 95.96% 0.75 381 90.68%

M7-2 0.1 327 94.42% 0.1 239 88.05%

M8-1
𝑝3 = 𝑝4 = 0.01 → 𝑝2 = 0.01 0.75 473 95.51% 0.75 382 90.58%

M8-2 0.1 327 94.42% 0.1 239 88.05%

aTH.Cov means threshold of coverage.
bT(𝑅𝑡 < 1) is the time when 𝑅𝑡 < 1 for the first time.
cTIR is the abbreviation of total immunized ratio, which is equal to total number of vaccinations divided by N.
d– means no data results during the whole experiment period.
e→ stands for switching vaccination groups.
i
d

Case 1. Univariate evaluation: continuous vaccination only for sin-
gle age groups.

Ignoring the long-term adverse effects of vaccine on humans, only
the effect of population heterogeneity of vaccination on 𝑅𝑐 was in-
vestigated. In general, vaccine coverage rate 𝑝𝑖 has positive effect on
he reduction of 𝑅𝑐 , as shown in Fig.S9. The light pink is 𝑅𝑐 drop

area, and the basic reproduction number is 3.327 in the absence of
vaccination. When the coverage rate gradually increased to 0.01 in
different age groups, 𝑅𝑐 decreased to different degrees, among which
decreased by 59.2% if group-2 was inoculated alone. The change of 𝑅𝑐
is not obvious after the plunging area, but the partial enlarged view
(i.e. 𝑝𝑖 ∈ [0.05, 0.4]) shows that the three threshold curves still show a
downward trend. What is more worth mentioning is that the effect of
vaccination among adolescents and young adults is significant, while
in elderly is slightly weaker.

Case 2. Bivariate evaluation: continuous vaccination for double age
groups.

The contribution of different combinations to 𝑅𝑐 is assessed by
sing a dual vaccination method, that is, inoculating both age groups
imultaneously. Using the characteristics of the 2D contour map is
ame line equal height, different combination methods 𝑅𝑐 can present
consistent effect, which is lower than that at the origin. The vertical

evel colorbar depicts 𝑅𝑐 , and the change of color level corresponds to
he value change of 𝑅𝑐 . Fig. 3 panel (a) shows simultaneous inoculation
f ‘‘group-3 and group-4’’, the former 𝑝3 plays a leading role, and the
lderly group only slightly affects the threshold change when 𝑝4 <
0.1 × 10−3. Panel (c) is ‘‘group-4 and group-2’’, the elderly has limited
influence on the results, similar to (a). The most effective strategy is
‘‘group-3 and group-2’’. Not only does 𝑅𝑐 decrease the most, but also
the combination to reach a certain threshold is more flexible. Especially
in the early stage of the vaccine, the phase III clinical trial of the
young group is the earliest and the data is the most complete. Taking
the young and middle-aged group as the leading group of vaccination
coverage can reduce the coverage of other groups as much as possible.

Using gradient to further characterize the effect of coverage rate
𝑝𝑖 on 𝑅𝑐 . Assume that the coverage of two groups is (𝑝𝑖, 𝑝𝑗) and the
amount of change is (𝛥𝑝𝑖, 𝛥𝑝𝑗), the binary function linearly approximate

𝑅𝑐 (𝑝𝑖 + 𝛥𝑝𝑖, 𝑝𝑗 + 𝛥𝑝𝑗 ) ≈ 𝑅𝑐 (𝑝𝑖, 𝑝𝑗 ) + 𝛥𝑝𝑖
𝜕𝑅𝑐

|(𝑝𝑖 ,𝑝𝑗 ) + 𝛥𝑝𝑗
𝜕𝑅𝑐

|(𝑝𝑖 ,𝑝𝑗 )
10

𝜕𝑝𝑖 𝜕𝑝𝑗
and ▵𝑅𝑐 (𝑝𝑖, 𝑝𝑗 ) in vector form

𝛥𝑅𝑐 (𝑝𝑖, 𝑝𝑗 ) = ∇𝑅𝑐 |(𝑝𝑖 ,𝑝𝑗 ) ⋅ (𝛥𝑝𝑖, 𝛥𝑝𝑗 ),

where

∇𝑅𝑐 |(𝑝𝑖 ,𝑝𝑗 ) = (
𝜕𝑅𝑐
𝜕𝑝𝑖

,
𝜕𝑅𝑐
𝜕𝑝𝑗

)|(𝑝𝑖 ,𝑝𝑗 )

s the gradient of 𝑅𝑐 at (𝑝𝑖, 𝑝𝑗 ). 𝑅𝑐 changes the fastest along the gradient
irection, the rate of change is the gradient modulus |∇𝑅𝑐 |. In Fig. 4, 𝑅𝑐

changes little when 𝑝2 and 𝑝3 increases to a certain. In particular, panel
(c) shows the direction of negative gradient along which 𝑅𝑐 changes
the fastest and always has a positive effect on reducing the threshold. In
Fig.S10 panel (c), the arrow of any initial value is always perpendicular
to the 𝑝4 axis. That is, in the ‘‘group-3 and group-4’’ combination mode,
it is the most effective vaccination way to ensure that the young and
middle-aged group should be vaccinated as much as possible, and the
conclusion is consistent with panels (a) - (b).

Case 3. Multivariate evaluation: continuous vaccination for three
age groups.

The 3D slice map in Fig.S11 illustrates the influence of three groups
of immunization coverage rates on 𝑅𝑐 . The three-dimensional coordi-
nates are 𝑝2, 𝑝3 and 𝑝4 respectively. Taking slices of three dimensions
respectively, the overall change of 𝑅𝑐 is obvious, with 𝑝2, 𝑝3 playing a
decisive role.

Case 4. Multivariate evaluation: influence of 𝛽 and 𝑝𝑖 on 𝑅𝑐 .
In the model, 𝛽 is the mass testing rate, i.e. the nucleic acid testing

speed of all residents in a city with cases. The State Council has clarified
that cities with a permanent population of less than 5 million have the
ability to complete all nucleic acid tests within 2 days by coordinating
the resources in the province. For those over 5 million have the ability
to complete full testing within 3–5 days by coordinating provincial
resources and national support. If the testing ability is increased to 2
days, i.e. 𝛽 = 1∕2, the effect of experimental simulation is extremely
obvious (compare Fig. 3 and Fig.S12). The 𝑅𝑐 of dual-age combined
vaccination mode decreased significantly, and the infectivity decreased
by 30.2% compared with 𝛽 = 1∕3. The threshold of ‘‘group-3 and group-
2’’ gradually tends to below 1 with the increase of coverage. Even if the
vaccination is not carried out, 𝑅𝑐 reduced from 3.327 to 2.233. It can
be seen that the controllable variable 𝛽 plays an extremely important
role in the prevention and control of the epidemic. In particular, the
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Fig. 3. The 2D contour map of 𝑅𝑐 with 𝛽 = 1
3
. Panels (a)–(c) show the effect of simultaneous inoculation of ‘‘group-3 and group-4’’, ‘‘group-3 and group-2’’, and ‘‘group-4 and

group-2’’ on 𝑅𝑐 respectively. The colorbar represents the value of 𝑅𝑐 .
Fig. 4. Panels (a)–(c) represent the 𝛥𝑅𝑐 , magnitudes of gradient |∇𝑅𝑐 |, negative gradient direction represented by streamline of ‘‘group-2 and group-3’’ strategy respectively.
transmission capacity is 71.2% lower than that only the whole people
were tested but not vaccinated if 𝑝3 = 𝑝2 = 0.01 and 𝛽 = 1∕2.

The relationship between the three variables and 𝑅𝑐 is shown in
Fig. 5, where 𝛽 = 0:0.2:1, 𝑝3 = 𝑝2 = 0:0.0001:0.001 and fixed other
parameters. Light pink is the threshold surface, the upper part of the
surface is 𝑅𝑐 < 1. Rapid universal testing and small vaccinations
for adolescents and young and middle-aged groups, both of the two
measures are sufficient to against COVID-19 and to contain its spread.
The color on each slice of panel (b) corresponds to the value of col-
orbar, which matches and remains consistent with the policy opinions
reflected in panel (a). If 𝛽 = 1, i.e., complete all testing within one day,
𝑅𝑐 = 0.4. It is the most desirable scenario in the epidemic prevention
and control, which has greatly suppresses the spread of the epidemic.
However, this measure has also increased the pressure on medical
staff and testing personnel. Subsequently, the mixed sampling detection
technology issued by the State Council can be regarded as an important
measure to increase 𝛽.

In the COVID-19 prevention and control measures, we should ‘‘run
faster than the virus’’ - increase the 𝛽 to speed up the testing speed.
On the other hand, we should ‘‘fight against the virus’’ - increase ‘‘𝑝𝑖’’,
encourages voluntary COVID-19 vaccinations, and works to ensure all
people eligible for vaccination have access to it. To implement regular
epidemic prevention and control measures, vaccination is the general
trend. Only by establishing a universal immunity barrier can promote
the comprehensive restoration of social economy and living order.

4.3. A case study: the Shanghai COVID-19 outbreak

On February 24, 2022, Shanghai reported its first asymptomatic
local infection case. On April 11, differentiated prevention and control
by region were carried out based on the actual situation, with a total
of more than 600,000 local positive cases up to now. Therefore, in
order to visually reproduce the situation of COVID-19 transmission in
11
Shanghai, we eliminate the age heterogeneity within system Eq. (B.1)
and obtain the adjusted model Eq. (E.1) in Appendix E. As of February
15, Shanghai has completed 55.49 million doses of COVID-19 vaccines,
covering 95.1% of the city’s permanent population. In the process of
data fitting, we did not consider continuing to vaccinate the population,
so 𝛼 = 𝜉 = 𝑝 = 0. The number of local hospitalized cases notified by
Shanghai Municipal Health Commission from April 11 to May 16, 2022
was fitted based on the least square method.

Assume that 𝐻(𝑡) is the fitting the number of local cases being
treated in hospital at time 𝑡, and its change with time is determined
by the following ordinary differential equation

𝑑𝐻(𝑡)
𝑑𝑡

= 𝜌𝐻(𝑡) − 𝜐𝐻(𝑡) − 𝑏𝐻(𝑡).

The reported local hospitalized cases at time 𝑡 is 𝐻̃(𝑡). By using the least
squares method to estimate the unknown parameter values 𝜓𝐸 , 𝜌, 𝜆3 to
minimize the objective function

𝐽 =
36
∑

𝑡=1
|𝐻(𝑡) − 𝐻̃(𝑡)|2

The specific values of the initial variables and parameters used are
shown in Table 4.

As shown in Fig. 6(a), the fitted daily number of hospitalized cases
did well with the reported data, suggesting that the adjusted model
Eq. (E.1) is helpful to explain the transmission of Shanghai. More
interestingly, the proportion of positive cases hospitalized in Table 4
is 0.01317, which shows that vaccination reduced the emergency hos-
pitalizations after infection with Omicron. It can be seen from Fig. 6(b)
that accelerating the admission rate 𝜓𝐼 of symptomatic and speeding
up the testing rate 𝛽 have extremely important positive effects on
controlling the spread of COVID-19 in Shanghai.
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Table 4
Descriptions and estimations of initial variables and parameters of Shanghai outbreak.

Initial variables Values Sources Initial variables Values Sources

𝑆(0) 1 220 144 NBS (2021) 𝑆0(0) 0 Assumed
𝑉 (0) 7 367 347 Calculated 𝑉 0(0) 16 313 409 Calculated
𝐸(0) 200 000 LS 𝐴(0) 28 500 Assumed
𝐼(0) 2982 Assumed 𝑄(0) 205 617 Shanghai (2021)
𝐻(0) 6921 Shanghai (2021) 𝑅(0) 1786 Shanghai (2021)

Parameters Values Sources Parameters Values Sources

𝐶 2.3 Zhang et al. (2020) 𝑏 1.9726e−05 NBS (2021)
𝜖 0.35 Cai et al. (2022) 𝜃 0.0081 Calculated
𝜎 1/1.2 Cai et al. (2022) 𝜙 1/1.2 Cai et al. (2022)
𝜇 1/5.64 Cai et al. (2022) 𝛿 1/8.2 Calculated
𝛾 1/10 Wang et al. (2020) 𝜐 1/6 Cai et al. (2022)
𝜆1 1 Cai et al. (2022) 𝜆2 1 Assumed
𝜆3 0.6393 LS 𝜓𝐸 1/4.5 LS
𝜓𝐴 1/4 Assumed 𝜓𝐼 1/2.2 Cai et al. (2022)
𝛽 1/3 Assumed 𝜂 0.85 Assumed
𝛼 0 Assumed 𝜉 0 Assumed
𝜌 0.0137 LS 𝑝 0 Assumed
i

𝑡

5. Discussion

The main purpose of this paper is to provide a general modeling
framework for the spread of COVID-19 in China in the presence of NPIs
and imperfect vaccines to prevent infection against the original strain,
to preliminarily search for appropriate vaccination scheme. Using the
numerical results of different vaccination programs, the effectiveness
of active vaccination was fully demonstrated from the perspective of
control reproduction number 𝑅𝑐 and effective reproduction number
𝑅𝑡. However, the proposed model still has limitations in application
scenarios. First, this work is not suitable to explain the role of vaccines
in reducing infection for Omicron, but does not rule out the emergence
of vaccines against mutant strains. The paper will prepare for the
emergence of new vaccines in the future and provide modeling ideas.
Secondly, although the study has given vaccination recommendations
about different demands, there are still great challenges in the ‘‘last
mile of battle against COVID-19’’. The model cannot characterize the
role of vaccines in reducing severe illness and death and fails to
highlight the importance of vaccine doses in slowing the outbreak.
Thirdly, NPIs are highly targeted and more suitable for mainland China.
The fifth wave of the pandemic in Hong Kong showed significant age
heterogeneity in severe illness and mortality. It will be future work to
determine whether vaccination dose plays a significant role in prevent-
ing severe illness and death in an age stratification. Finally, the model
takes the positive or not as the isolation standard, and there is no class
corresponding to the actual data of confirmed or asymptomatic cases.
In short, vaccines are not a panacea, but they are not impossible either.
Implement normalized epidemic prevention and control measures, and
comprehensively promote the construction of immune barrier. Every
cloud has a silver lining, and one day we can win the battle against
COVID-19.
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Appendix A. Proof of Theorem 2.1

Proof. The system Eq. (2.2) exists a unique positive equilibrium,
denote as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑛∗1 = 𝑏
𝜔1 + 𝑏

,

𝑛∗2 =
𝜔1

𝜔2 + 𝑏
𝑏

𝜔1 + 𝑏
,

𝑛∗3 =
𝜔2

𝜔3 + 𝑏
𝜔1

𝜔2 + 𝑏
𝑏

𝜔1 + 𝑏
,

𝑛∗4 =
𝜔3
𝑏

𝜔2
𝜔3 + 𝑏

𝜔1
𝜔2 + 𝑏

𝑏
𝜔1 + 𝑏

.

(A.1)

In order to prove its global asymptotic stability, it is sufficient to prove
that the solution is locally asymptotically stable and globally attractive.
The Jacobian matrix at equilibrium (𝑛∗1 , 𝑛

∗
2 , 𝑛

∗
3 , 𝑛

∗
4) is

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎝

−(𝑏 + 𝜔1) 0 0 0
𝜔1 −(𝑏 + 𝜔2) 0 0
0 𝜔2 −(𝑏 + 𝜔3) 0
0 0 𝜔3 −𝑏

⎞

⎟

⎟

⎟

⎟

⎠

(A.2)

and the corresponding characteristic equation is

(𝜆 + (𝑏 + 𝜔1))(𝜆 + (𝑏 + 𝜔2))(𝜆 + (𝑏 + 𝜔3))(𝜆 + 𝑏) = 0.

Its eigenvalues have negative real parts, i.e. 𝜆𝑖 < 0. The equilibrium is
locally asymptotically stable.

From the first equation
𝑑𝑛1
𝑑𝑡

= 𝑏 − 𝜔1𝑛1 − 𝑏𝑛1

s first-order inhomogeneous differential equation, and its solution is

lim
→∞

𝑛1 =
𝑏

𝑏 + 𝜔1
= 𝑛∗1 .

Similarly, lim𝑡→∞ 𝑛2 = 𝑛∗2 , lim𝑡→∞ 𝑛3 = 𝑛∗3 , lim𝑡→∞ 𝑛4 = 𝑛∗4. The equi-
librium of Eq. (2.2) is globally attractive. Therefore, the equilibrium
(𝑛∗, 𝑛∗, 𝑛∗ ∗
1 2 3 , 𝑛4) is globally asymptotically stable. □
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Appendix B. The initial model of Fig.S1

The mathematical model corresponding to Fig.S1 in the text is
established according to the population as follows

⎧
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𝑑𝑆𝑘
𝑑𝑡

= 𝑏𝑁𝛿𝑘,1 −
4
∑

𝑗=1
𝜆𝑘1𝐶𝑗𝑘

𝑆𝑘
𝑁𝑘

(𝜀𝐴𝑗 + 𝐼𝑗 ) − (1 − 𝛿𝑘,1)𝑝𝑘𝑆𝑘 − 𝑏𝑆𝑘

+ 𝜔𝑘−1𝑆𝑘−1 − 𝜔𝑘𝑆𝑘
𝑑𝑆0

𝑘
𝑑𝑡

= (1 − 𝛿𝑘,1)𝑝𝑘(1 − 𝛼𝑘)𝑆𝑘 −
4
∑

𝑗=1
𝜆𝑘2𝐶𝑗𝑘

𝑆0
𝑘

𝑁𝑘
(𝜀𝐴𝑗 + 𝐼𝑗 ) − 𝑏𝑆0

𝑘

+ 𝜔𝑘−1𝑆0
𝑘−1 − 𝜔𝑘𝑆

0
𝑘

𝑑𝑉𝑘
𝑑𝑡

= (1 − 𝛿𝑘,1)𝑝𝑘𝛼𝑘𝑆𝑘 − (1 − 𝜉𝑘)𝜃𝑘𝑉𝑘 − 𝜉𝑘𝑉𝑘
− 𝑏𝑉𝑘 + 𝜔𝑘−1𝑉𝑘−1 − 𝜔𝑘𝑉𝑘

𝑑𝑉 0
𝑘

𝑑𝑡
= (1 − 𝜉𝑘)𝜃𝑘𝑉𝑘 −

4
∑

𝑗=1
𝜆𝑘3𝐶𝑗𝑘

𝑉 0
𝑘
𝑁𝑘

(𝜀𝐴𝑗 + 𝐼𝑗 )

− 𝑏𝑉 0
𝑘 + 𝜔𝑘−1𝑉 0

𝑘−1 − 𝜔𝑘𝑉
0
𝑘

𝑑𝐸𝑘
𝑑𝑡

=
4
∑

𝑗=1
𝜆𝑘1𝐶𝑗𝑘

𝑆𝑘
𝑁𝑘

(𝜀𝐴𝑗 + 𝐼𝑗 ) +
4
∑

𝑗=1
𝜆𝑘2𝐶𝑗𝑘

𝑆0
𝑘

𝑁𝑘
(𝜀𝐴𝑗 + 𝐼𝑗 )

+
4
∑

𝑗=1
𝜆𝑘3𝐶𝑗𝑘

𝑉 0
𝑘
𝑁𝑘

(𝜀𝐴𝑗 + 𝐼𝑗 )

− (𝛽𝐸𝑘 +
4
∑

𝑗=1
𝜓𝐸𝑄𝑗 𝜂𝐶𝑗𝑘

𝐸𝑘
𝑁𝑘

𝐸𝑗 +
4
∑

𝑗=1
𝜓𝐴𝑄𝑗 𝜂𝐶𝑗𝑘

𝐸𝑘
𝑁𝑘

𝐴𝑗

+
4
∑

𝑗=1
𝜓𝐼𝑄𝑗 𝜂𝐶𝑗𝑘

𝐸𝑘
𝑁𝑘

𝐼𝑗 )

− 𝜎𝑘𝐸𝑘 − 𝜙𝑘𝐸𝑘 − 𝜓
𝐸𝑄
𝑘 𝐸𝑘 − 𝑏𝐸𝑘 + 𝜔𝑘−1𝐸𝑘−1 − 𝜔𝑘𝐸𝑘

𝑑𝐴𝑘
𝑑𝑡

= −(𝛽𝐴𝑘 +
4
∑

𝑗=1
𝜓𝐸𝑄𝑗 𝜂𝐶𝑗𝑘

𝐴𝑘
𝑁𝑘

𝐸𝑗 +
4
∑

𝑗=1
𝜓𝐴𝑄𝑗 𝜂𝐶𝑗𝑘

𝐴𝑘
𝑁𝑘

𝐴𝑗

+
4
∑

𝑗=1
𝜓𝐼𝑄𝑗 𝜂𝐶𝑗𝑘

𝐴𝑘
𝑁𝑘

𝐼𝑗 )

+ 𝜎𝑘𝐸𝑘 − 𝜇𝑘𝐴𝑘 − 𝜓
𝐴𝑄
𝑘 𝐴𝑘 − 𝑏𝐴𝑘 + 𝜔𝑘−1𝐴𝑘−1 − 𝜔𝑘𝐴𝑘

𝑑𝐼𝑘
𝑑𝑡

= −(𝛽𝐼𝑘 +
4
∑

𝑗=1
𝜓𝐸𝑄𝑗 𝜂𝐶𝑗𝑘

𝐼𝑘
𝑁𝑘

𝐸𝑗 +
4
∑

𝑗=1
𝜓𝐴𝑄𝑗 𝜂𝐶𝑗𝑘

𝐼𝑘
𝑁𝑘

𝐴𝑗

+
4
∑

𝑗=1
𝜓𝐼𝑄𝑗 𝜂𝐶𝑗𝑘

𝐼𝑘
𝑁𝑘

𝐼𝑗 )

+ 𝜙𝑘𝐸𝑘 − 𝛿𝑘𝐼𝑘 − 𝜓
𝐼𝑄
𝑘 𝐼𝑘 − 𝑏𝐼𝑘 + 𝜔𝑘−1𝐼𝑘−1 − 𝜔𝑘𝐼𝑘

𝑑𝑄𝑘
𝑑𝑡

= 𝛽(𝐸𝑘 + 𝐴𝑘 + 𝐼𝑘) +
(𝐸𝑘 + 𝐴𝑘 + 𝐼𝑘)

𝑁𝑘

×
4
∑

𝑗=1
𝜂𝐶𝑗𝑘(𝜓

𝐸𝑄
𝑗 𝐸𝑗 + 𝜓

𝐴𝑄
𝑗 𝐴𝑗 + 𝜓

𝐼𝑄
𝑗 𝐼𝑗 )

+ 𝜓𝐸𝑄𝑘 𝐸𝑘 + 𝜓
𝐴𝑄
𝑘 𝐴𝑘 + 𝜓

𝐼𝑄
𝑘 𝐼𝑘 − (1 − 𝜌𝑘)𝛾𝑘𝑄𝑘 − 𝜌𝑘𝑄𝑘 − 𝑏𝑄𝑘

+ 𝜔𝑘−1𝑄𝑘−1 − 𝜔𝑘𝑄𝑘
𝑑𝐻𝑘
𝑑𝑡

= 𝜌𝑘𝑄𝑘 − 𝜐𝑘𝐻𝑘 − 𝑏𝐻𝑘 + 𝜔𝑘−1𝐻𝑘−1 − 𝜔𝑘𝐻𝑘

𝑑𝑅𝑘
𝑑𝑡

= 𝜉𝑘𝑉𝑘 + 𝜇𝑘𝐴𝑘 + 𝛿𝑘𝐼𝑘 + (1 − 𝜌𝑘)𝛾𝑘𝑄𝑘 + 𝜐𝑘𝐻𝑘

− 𝑏𝑅𝑘 + 𝜔𝑘−1𝑅𝑘−1 − 𝜔𝑘𝑅𝑘
(B.1)

Furthermore, 𝑁𝑘 = 𝑆𝑘 +𝑆0
𝑘 +𝑉𝑘 +𝑉

0
𝑘 +𝐸𝑘 +𝐴𝑘 + 𝐼𝑘 +𝑄𝑘 +𝐻𝑘 +𝑅𝑘 (𝑘 =

1, 2, 3, 4).
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Appendix C. The disease-free equilibrium of system (2.3)

Using the method of solving 𝑠𝑘 in the text, the inhomogeneous linear
system of other variables is solved respectively, and can be obtained

𝑠0∗1 = 0, 𝑠0∗2 =
𝑝2(1 − 𝛼2)
𝑏 + 𝜔2

𝑠∗2 , 𝑠
0∗
3 =

𝑝3(1 − 𝛼3)𝑠∗3 + 𝜔2𝑠0∗2
𝑏 + 𝜔3

,

𝑠0∗4 =
𝑝4(1 − 𝛼4)𝑠∗4 + 𝜔3𝑠0∗3

𝑏
,

𝑣∗1 = 0, 𝑣∗2 =
𝑝2𝛼2

(1 − 𝜉2)𝜃2 + 𝜉2 + 𝑏 + 𝜔2
𝑠∗2 , 𝑣

∗
3 =

𝑝3𝛼3𝑠∗3 + 𝜔2𝑣∗2
(1 − 𝜉3)𝜃3 + 𝜉3 + 𝑏 + 𝜔3

,

∗
4 =

𝑝4𝛼4𝑠∗4 + 𝜔3𝑣∗3
(1 − 𝜉4)𝜃4 + 𝜉4 + 𝑏

,

0∗
1 = 0, 𝑣0∗2 =

(1 − 𝜉2)𝜃2
𝑏 + 𝜔2

𝑣∗2 , 𝑣
0∗
3 =

(1 − 𝜉3)𝜃3𝑣∗3 + 𝜔2𝑣0∗2
𝑏 + 𝜔3

,

𝑣0∗4 =
(1 − 𝜉4)𝜃4𝑣∗4 + 𝜔3𝑣0∗3

𝑏
,

𝑒∗1 = 𝑒∗2 = 𝑒∗3 = 𝑒∗4 = 𝑎∗1 = 𝑎∗2 = 𝑎∗3 = 𝑎∗4 = 𝑖∗1 = 𝑖∗2 = 𝑖∗3 = 𝑖∗4
= 𝑞∗1 = 𝑞∗2 = 𝑞∗3 = 𝑞∗4 = ℎ∗1 = ℎ∗2 = ℎ∗3 = ℎ∗4 = 0,

𝑟∗1 = 0, 𝑟∗2 =
𝜉2

𝑏 + 𝜔2
𝑣∗2 , 𝑟

∗
3 =

𝜉3𝑣∗3 + 𝜔2𝑟∗2
𝑏 + 𝜔3

, 𝑟∗4 =
𝜉4𝑣∗4 + 𝜔3𝑟∗3

𝑏
.

Appendix D. The explanation of Eq. (3.2)

(i)  linearized at the disease-free equilibrium 𝐸0, then

𝐹 =
⎛

⎜

⎜

⎝

𝐹11 𝐹12 𝐹13
𝐹21 𝐹22 𝐹23
𝐹31 𝐹32 𝐹33

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝟎 𝜀𝐹13 𝐹13
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎

⎞

⎟

⎟

⎠

(D.1)

here

13 =

⎛

⎜

⎜

⎜

⎜

⎝

𝐹 (1)
13 0 0 0
0 𝐹 (2)

13 0 0
0 0 𝐹 (3)

13 0
0 0 0 𝐹 (4)

13

⎞

⎟

⎟

⎟

⎟

⎠

×

⎛

⎜

⎜

⎜

⎜

⎝

𝐶11 𝐶21 𝐶31 𝐶41
𝐶12 𝐶22 𝐶32 𝐶42
𝐶13 𝐶23 𝐶33 𝐶43
𝐶14 𝐶24 𝐶34 𝐶44

⎞

⎟

⎟

⎟

⎟

⎠

nd
(𝑘)
13 = 1

𝑛∗𝑘
(𝜆𝑘1𝑠

∗
𝑘 + 𝜆

𝑘
2𝑠

0∗
𝑘 + 𝜆𝑘3𝑣

0∗
𝑘 ).

(ii)  linearized at the disease-free equilibrium 𝐸0, then

𝑉 =
⎛

⎜

⎜

⎝

𝑉11 𝑉12 𝑉13
𝑉21 𝑉22 𝑉23
𝑉31 𝑉32 𝑉33

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝑉11 𝟎 𝟎
𝑉21 𝑉22 𝟎
𝑉31 𝟎 𝑉33

⎞

⎟

⎟

⎠

(D.2)

where

𝑉11 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑉 (1)
11 0 0 0

−𝜔1 𝑉 (2)
11 0 0

0 −𝜔2 𝑉 (3)
11 0

0 0 −𝜔3 𝑉 (4)
11

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑉22 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑉 (1)
22 0 0 0

−𝜔1 𝑉 (2)
22 0 0

0 −𝜔2 𝑉 (3)
22 0

0 0 −𝜔3 𝑉 (4)
22

⎞

⎟

⎟

⎟

⎟

⎠

,

33 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑉 (1)
33 0 0 0

−𝜔1 𝑉 (2)
33 0 0

0 −𝜔2 𝑉 (3)
33 0

0 0 −𝜔3 𝑉 (4)
33

⎞

⎟

⎟

⎟

⎟

⎠

,

21 =

⎛

⎜

⎜

⎜

⎜

⎝

−𝜎1 0 0 0
0 −𝜎2 0 0
0 0 −𝜎3 0
0 0 0 −𝜎4

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑉31 =

⎛

⎜

⎜

⎜

⎜

⎝

−𝜙1 0 0 0
0 −𝜙2 0 0
0 0 −𝜙3 0
0 0 0 −𝜙4

⎞

⎟

⎟

⎟

⎟

⎠

,

and
𝑉 (𝑘)
11 = 𝛽 + 𝜎𝑘 + 𝜙𝑘 + 𝜓

𝑒𝑞
𝑘 + 𝑏 + 𝜔𝑘, 𝑉 (𝑘)

22 = 𝛽 + 𝜇𝑘 + 𝜓
𝑎𝑞
𝑘 + 𝑏 + 𝜔𝑘,

(𝑘)
33 = 𝛽 + 𝛿𝑘 + 𝜓

𝑖𝑞
𝑘 + 𝑏 + 𝜔𝑘.

ppendix E. An adjusted model for the outbreak in Shanghai

In this section, age heterogeneity of system Eq. (B.1) is ignored to

btain the adjusted model as follows corresponding to Fig.S3(b) for
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Fig. 5. Left panel is the 3D curved surface of 𝑅𝑐 , the upper part of light pink surface is 𝑅𝑐 < 1. Right panel is slice map correspond with left panel, X–Y plane is coverage rate

combination of group-2 and 3, 𝑍-axis represents the change of 𝛽, the colorbar is the value of 𝑅𝑐 .
Fig. 6. The fitting results and PRCCs for Shanghai. Panel (a) is the fitting results of the reported local hospitalized cases in Shanghai from April 11 to May 16, 2022. Panel (b)

is the value of partial rank correlation coefficient between control reproduction number and parameters 𝑝, 𝜓𝐼 , 𝜃, 𝛽.
data fitting of Omicron outbreak in Shanghai.
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

𝑑𝑆
𝑑𝑡

= 𝑏𝑁 − 𝜆1𝐶
𝑆
𝑁

(𝜀𝐴 + 𝐼) − 𝑝𝑆 − 𝑏𝑆,

𝑑𝑆0

𝑑𝑡
= 𝑝(1 − 𝛼)𝑆 − 𝜆2𝐶

𝑆0

𝑁
(𝜀𝐴 + 𝐼) − 𝑏𝑆0,

𝑑𝑉
𝑑𝑡

= 𝑝𝛼𝑆 − (1 − 𝜉)𝜃𝑉 − 𝜉𝑉 − 𝑏𝑉 ,

𝑑𝑉 0

𝑑𝑡
= (1 − 𝜉)𝜃𝑉 − 𝜆3𝐶

𝑉 0

𝑁
(𝜀𝐴 + 𝐼) − 𝑏𝑉 0,

𝑑𝐸
𝑑𝑡

= 𝜆1𝐶
𝑆
𝑁

(𝜀𝐴 + 𝐼) + 𝜆2𝐶
𝑆0

𝑁
(𝜀𝐴 + 𝐼) + 𝜆3𝐶

𝑉 0

𝑁
(𝜀𝐴 + 𝐼)

− (𝛽𝐸 + 𝜙𝐸𝜂𝐶
𝐸
𝑁
𝐸 + 𝜙𝐴𝜂𝐶

𝐸
𝑁
𝐴 + 𝜙𝐼𝜂𝐶

𝐸
𝑁
𝐼)

− 𝜎𝐸 − 𝜙𝐸 − 𝜓𝐸𝐸 − 𝑏𝐸,
𝑑𝐴
𝑑𝑡

= −(𝛽𝐴 + 𝜙𝐸𝜂𝐶
𝐴
𝑁
𝐸 + 𝜙𝐴𝜂𝐶

𝐴
𝑁
𝐴 + 𝜙𝐼𝜂𝐶

𝐴
𝑁
𝐼)

+ 𝜎𝐸 − 𝜇𝐴 − 𝜓𝐴𝐴 − 𝑏𝐴,
𝑑𝐼
𝑑𝑡

= −(𝛽𝐼 + 𝜙𝐸𝜂𝐶
𝐼
𝑁
𝐸 + 𝜙𝐴𝜂𝐶

𝐼
𝑁
𝐴 + 𝜙𝐼𝜂𝐶

𝐼
𝑁
𝐼)

+ 𝜙𝐸 − 𝛿𝐼 − 𝜓𝐼𝐼 − 𝑏𝐼,
𝑑𝑄
𝑑𝑡

= 𝛽(𝐸 + 𝐴 + 𝐼) + 𝜂𝐶(𝜙𝐸𝐸 + 𝜙𝐴𝐴 + 𝜙𝐼𝐼)(
𝐸
𝑁

+ 𝐴
𝑁

+ 𝐼
𝑁

)

+ 𝜓𝐸𝐸 + 𝜓𝐴𝐴 + 𝜓𝐼𝐼 − (1 − 𝜌)𝛾𝑄 − 𝜌𝑄 − 𝑏𝑄,
𝑑𝐻
𝑑𝑡

= 𝜌𝑄 − 𝜐𝐻 − 𝑏𝐻,

𝑑𝑅

(E.1)
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⎪

⎩

𝑑𝑡
= 𝜉𝑉 + 𝜇𝐴 + 𝛿𝐼 + (1 − 𝜌)𝛾𝑄 + 𝜐𝐻 − 𝑏𝑅.
where 𝐶 represents the average number of contacts, and the meanings
of other parameters are consistent with the previous text.

Appendix F. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.jtbi.2022.111258.
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