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Apoptosis has been reported to induce changes in the remodelling of membrane lipids; after death receptor engagement, specific
changes of lipid composition occur not only at the plasma membrane, but also in intracellular membranes. This paper focuses on
one important aspect of apoptotic changes in cellular lipids, namely, the redistribution of the mitochondria-specific phospholipid,
cardiolipin (CL). CL predominantly resides in the inner mitochondrial membrane, even if the rapid remodelling of its acyl chains
and the subsequent degradation occur in other membrane organelles. After death receptor stimulation, CL appears to concentrate
into mitochondrial “raft-like” microdomains at contact sites between inner and outer mitochondrial membranes, leading to
local oligomerization of proapoptotic proteins, including Bid. Clustering of Bid in CL-enriched contacts sites is interconnected
with pathways of CL remodelling that intersect membrane traffic routes dependent upon actin. In addition, CL association with
cytoskeleton protein vimentin was observed. Such novel association also indicated that CL molecules may be expressed at the
cell surface following apoptotic stimuli. This observation adds a novel implication of biomedical relevance. The association of CL
with vimentin at the cell surface may represent a “new” target antigen in the context of the apoptotic origin of anti-vimentin/CL
autoantibodies in Antiphospholipid Syndrome.

1. Changes in Phospholipid Distribution
during Cell Apoptosis

Apoptosis or programmed cell death (PCD) constitutes a
physiological phenomenon that concerns any nucleated cell
but is particularly important in multicellular organisms,
where it can be paradoxically considered a vital process.
Apoptosis is critically important for fundamental processes,
such as cell turnover, hormone-dependent atrophy, embry-
onic development, chemical-induced cell death, and immune
system homeostasis [1–4].

Distinct morphological features and energy-dependent
biochemical mechanisms characterize apoptosis versus other

forms of cell death [2, 3]. In particular, apoptosis is accompa-
nied by ultrastructural alterations, including cell shrinkage,
cytoplasmic condensation, and DNA laddering [1, 4, 5], and
by several biochemical modifications, such as protein cleav-
age, protein cross-linking, DNA breakdown, and phagocytic
recognition [6]. Moreover, apoptosis has been reported to
induce changes in the remodelling of membrane lipids (for
a review, see [7]). Physiologically, eukaryotic cells maintain
asymmetrical, organelle-specific distributions of membrane
phospholipids. For example, phosphatidylcholine (PC) and
sphingomyelin (SM) are almost exclusively located in the
outer leaflet of the plasmamembrane, while phosphatidylser-
ine (PS) and 70% of phosphatidylethanolamine (PE) are
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located in the inner leaflet of the same membrane [8]. Many
proapoptotic stimuli induce PS translocation to the outer
membrane leaflet, which thus becomes a membrane “flag”
on apoptotic cells and thereby acts as a recognition signal for
phagocytosis [9–12].

Studies on transbilayer lipidmovements during apoptosis
have shown that PS translocation results from downregula-
tion of the adenosine triphosphate-dependent aminophos-
pholipid translocase and activation of a nonspecific lipid
scramblase [13], both of which occur downstream cas-
pase activation [6, 10]. Sorice et al. [14] reported lipid
changes at the cell surface of lymphocytes that appeared
to occur even before full caspase activation by the death
receptor Fas. In particular, mitochondria-specific negatively
charged lipid, 1,3-bis(sn-3-phosphatidyl)-sn-glycerol (cardi-
olipin, CL), appeared at the cell surface. Presumably, such
changes were connected to the alteration of membrane
traffic that is induced early after Fas triggering and occurs
independently of the activation of caspases and involves
various intracellular organelles including mitochondria (for
a review see [15]).

Thus, after death receptor engagement, specific changes
in the lipid composition occur not only at the plasma
membrane, but also in intracellularmembranes. In particular,
the most critical changes during apoptosis take place in
mitochondria, where they promote the permeabilization
of the outer mitochondrial membrane (OMM) to release
apoptogenic factors into the cytoplasm [16–18].

Indeed, it is well known that apoptosis is accompanied by
mitochondrial perturbations, such as reduction ofmitochon-
drial transmembrane potential and increase ofmitochondrial
generation of superoxide anion [16–18]. Both events precede
nuclear DNA fragmentation. After the apoptotic signal, cells
sustain progressive lipid peroxidation, resulting from the
generation of lipid-diffusible reactive oxygen species [19].The
major sites of free radical generation include mitochondria,
endoplasmic reticulum (ER), and nuclear membranes [19–
22]. A structural defect in the innermitochondrialmembrane
which incorporates most mature CL has been reported [23,
24]. Two additional mechanisms have been proposed to
account for phospholipid movement to mitochondria, which
include the involvement of a collision-based mechanism
involving the ER and the mitochondria and the transient
fusion between ER and mitochondrial membranes [25, 26].
By studying the early dynamics of intracellular membranes
in Fas-mediated apoptosis, it has been reported that FasL
treatment induces intermixing of Golgi and mitochondrial
organelles [27–29]. Fas ligand-stimulated endocytosis also
leads to an early and directional “movement” of endocytic
vesicles towards the mitochondrial compartment [28]. This
scrambling seems to be not an isolated phenomenon, nor
restricted to lymphoid cells [27]. The intermixing of mem-
brane organelles also precedes any alteration of the main
cytoskeleton components, actin and tubulin. Hence, the
scrambling of diverse organelles occurs early after activation
of Fas and appears to reflect a global alteration in mem-
brane traffic, being particularly rapid in cells physiologically
sensitive to Fas-mediated death. We are thus beginning
to understand the early changes in mitochondrial lipids
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Figure 1: Cardiolipin-mitochondria association following apoptotic
triggering. T cells, untreated or treated with anti-CD95/Fas for
20min, were stained with MCL-BODIPY, a green fluorescent
analogue of CL [30, 31], and then with 50 nM Mitotracker red.
Projected images from 33 z-sections of 0.2 nm, obtained after 10
cycles of deconvolution, were acquired by using a state-of-the-art
Deltavision RT system.

that occur before, or concomitantly with the mitochondrial
outer membrane permeabilization [15]. In this scenario,
membrane lipids, including CL, diacylglycerol (DAG), and
lysolipids, play an essential role in facilitating the changes
in membrane traffic induced by Fas stimulation in sensitive
cells.

However, relatively little is known about the mechanisms
and intracellular pathways regulating CL membrane translo-
cation.

2. Distribution Changes of Mitochondrial
Cardiolipin following Apoptotic Triggering

CL is considered to be a specific component of mitochondria,
since it is synthesized exclusively within the inner mitochon-
drial membrane (IMM), where it constitutes about 20% of
the total lipid composition [32]. CL is required for optimal
mitochondrial function and is known to provide essential
structural and functional support to several proteins involved
in mitochondrial bioenergetics [30, 32, 33]. Even if CL is
present almost exclusively within the IMM, it is also found in
the OMM and evenmore at the contact sites formed between
the inner and outer membranes [34]. Redistribution of CL
to the OMM became more evident under mild mitochon-
drial damage, since CL serves as a recognition signal for
dysfunctional mitochondria. In particular, it was observed
following CD95/Fas triggering. In Figure 1 is reported a
typical deconvolution imaging, showing the presence of CL
predominantly within mitochondrial membranes in control
cells. In cells stimulated with anti-CD95/Fas for 20min a
change in CL distributionwas observed, although association
with mitochondria remained evident. Changes in CL distri-
bution appear to occur prior or concomitantly to membrane
exposure of PS, but after the onset of an overproduction of
reactive oxygen species (ROS) [35].
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However, peroxidation of CL is far greater in response
to severe stress than under normal or mild-damage con-
ditions [36–38]. The accumulation of oxidized CL on the
OMM results in recruitment of Bax and formation of the
mitochondrial permeability transition pore (MPTP), which
releases cytochrome c (Cyt c) from mitochondria [39]. CL
can be considered a versatile phospholipid participating
in several mitochondria-dependent apoptotic steps [40],
including the modulation of the proapoptotic actions of
Bid and other Bcl-2 family proteins [7, 41] through specific
interactions [42, 43] (CL and Cyt c, t-Bid, and caspase-
8) which have now been clarified and the combination of
lipid-protein mixtures is becoming evident, that is, raft-
like microdomains containing CL, in the expression and
regulation of members of the apoptotic machinery [44–49].
In particular, raft-like microdomains may contribute to cell
polarization, mitochondrial oxidative phosphorylation, and
the release of apoptogenic factors [50–52] by recruitment of
Bcl-2 family proteins, including truncated Bid, t-Bid, and Bax
following CD95/Fas triggering [50, 51]. Thus, these dynamic
structures could act as a sort of signaling device and/or by a
“chamber” catalyzing key critical reactions as those determin-
ing apoptotic execution pathway [52, 53]. These mitochon-
drial raft-like microdomains are enriched in gangliosides
(GD3) and cholesterol (although with a content lower as
compared to plasma membrane), plus some other molecules,
such as VDAC-1 and the fission protein hFis1, which are
constitutively present. CL may be constitutively present in
raft-like microdomains of mitochondria [54], where it acts
as a mitochondria-associated platform that is required for
caspase-8 translocation, oligomerization, and activation after
CD95 stimulation [44]. The observation that CL may be
associated with mitochondrial raft-like microdomains is not
unexpected considering this lipid has four acyl groups, most
of which are highly unsaturated, and two phosphatemoieties.
Similar findings were obtained by Karbowski et al., who
demonstrated a recruitment of Bax to lipid microdomains
associated with mitochondrial fission sites during the early
steps of staurosporine-induced apoptosis [55].

These data supported the hypothesis that CL is an essen-
tial constituent of functional microdomains present within
the contact sites between the inner and outer mitochon-
drial membranes [30, 56–58] from which it may drive the
oligomerization and proapoptotic action of death inducing
proteins.

3. Cardiolipin-Bid Interaction following
Apoptotic Triggering

In this respect, CL acts as the mitochondrial receptor for
Bid [59], providing specificity for targeting of t-Bid to
mitochondria, regulating the oligomerization of Bax [60]
and mobilization of cytochrome 𝑐. It seems plausible that
targeting and recruitment of tBid to lipid microdomains,
most likely through CL binding, may be necessary for
formation of multiprotein complexes which regulate changes
in the mitochondrial morphology [43, 47, 61–63].

CL remodelling involves relocation to the outer mito-
chondrial membrane as well as to extramitochondrial com-
partments [64], with rapid deacylation into mono- and
dilysocardiolipin (with three and two acyl chains, resp.).
These metabolites are transported to the endoplasmic retic-
ulum (ER) for efficient reacylation into the mature forms
of CL found in mitochondria, in a process that seems to
be facilitated by lipid transfer proteins including Bid [43].
Interestingly, Bid has lipid transfer activity between ER and
mitochondria, since it preferentially interacts with negatively
charged phospholipids like PG [65], which are precursors of
CL. This suggests that Bid may be involved in the synthesis
or recycling of CL. Indeed, CL biosynthesis has been found
to be critically affected in a model of lipid-induced apoptosis
[66], consistent with the observation that the mitochondrial
content of CL decreases during apoptosis [67].

We can frame the findings that Bid binds to CL [59]
and transports its precursors [65] in the context of CL
remodelling in mitochondrial membranes, which is likely to
be fundamental for their integrity. Preservation or alteration
of OMM integrity is essential to the anti- or proapoptotic
action of the different proteins of the Bcl-2 family [68].
The first factor that affects these death regulators is their
association with theOMM. Some, like Bcl-2 itself, are perma-
nent resident. Conversely, proapoptotic proteins, such as Bid
and Bim, predominantly reside in other cell compartments
but move to the OMM in response to apoptotic stimuli.
Because this mitochondrial relocation is relatively rapid and
generally precedes the membrane damage that allows the
release of cytochrome 𝑐 into the cytosol, it could derive
from some lipid signal generated by upstream activation
of phospholipid-mobilising enzymes. So far, emphasis has
been put on protein interactions and modifications that can
affect the mitochondrial association of proapoptotic Bcl-
2 proteins following death signalling [59, 68]. However,
several examples exist of proteins that rapidly associate with
mitochondria in response to a lipid signal, including Ca++-
independent phospholipase A

2
[69] and lipoxygenase [70].

Reversible association with intracellular membranes is
typical of proteins that transport lipids, such as fatty acid
binding proteins. Interestingly, several fatty acid binding
proteins are induced by Bcl-2 overexpression [71]. This
evidence has been connected with the antioxidant activity
associated with Bcl-2 expression [71], an activity which
may be linked to the catabolism of fatty acids [72]. The
protective antiperoxidative action of Bcl-2 resembles that
of some enzymes, especially phospholipid hydroperoxide
glutathione peroxidase, which directly counteracts damaging
oxygen radicals [67]. Further highlighting the connection
between Bcl-2 proteins and lipids, CL and its remodelling
metabolites are very prone to oxidation because they pre-
dominantly contain linoleoyl and arachidonoyl fatty acids,
which undergo peroxidation processes that are enhanced
during apoptosis [67]. However, we and others have found
that enhanced peroxidation of CL follows earlier changes
in cellular membranes that occur after apoptosis induction
by stimulation of death receptors such as Fas, for example
[15]. One of these early alterations is CL redistribution at
the cell surface after Fas stimulation [64], which may be
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due to part of the global alteration in membrane traffic that
occurs early after death induction. Mass spectrometry has
indeed shown that CL and its metabolites relocate from
mitochondria to other intracellular organelles during Fas-
induced apoptosis. Concomitantly, cytosolic Bid relocated to
the light membranes, including the plasma membrane and
associated vesicular systems. A direct Bid-CL interaction was
demonstrated by the observation that CL and its metabolite
monolysoCL coimmunoprecipitatedwith Bid, especially after
Fas stimulation, indicating a dynamic interaction of the
protein with CL and its metabolites [64]. The question that
has remained unanswered, so far, is whether these changes
in intracellular membranes and their lipid components are
associated with other processes that are altered early after
death receptor stimulation.

4. Cardiolipin Association with
Cytoskeleton Protein Vimentin following
Apoptotic Triggering

Aside from the alteration of intracellular membrane, cell
death signalling also induces rearrangement and aggregation
of cytoskeletal proteins [73]. These morphological changes
could be due to differential reorganization of the fundamental
cytoskeletal proteins, actin and tubulin, induced by enzymes
activated during cell death, in particular caspases [73]. Since
actin-mediated membrane traffic appeared to be the major
driver for the scrambling of mitochondrial membranes and
their constituent CL, cytoskeleton remodelling has been
implicated in apoptosis-induced redistribution of intracellu-
lar membrane components [74]. This could be accompanied
by the ability of microtubules to have spontaneous changes
in the polymerization and depolymerization activities during
apoptosis [75]. Interestingly, CL redistributionwas associated
with the cytoskeleton protein vimentin. Indeed, vimentin and
CL can interact on the cell surface of apoptotic cells, thereby
forming an immunogenic complex [76]. This binding occurs
quite early in the autophagic process and precedes caspase
activation, as revealed by kinetics studies on CL exposure on
the cell surface [14, 64].

Moreover, in vitro studies confirmed that vimentin has
high affinity binding with CL. In particular, vimentin was
shown to have a stronger interaction with CL compared with
other phospholipids, such as phosphatidylcholine and phos-
phatidylserine [77]. CL-vimentin bindingmay be attributable
to electrostatic interaction between positive charged amino
acids of vimentin and negative charged polar head of CL.

Vimentin is a type III cytoskeleton intermediate filament
protein that is ubiquitously expressed in mesenchymal cells.
The filaments of vimentin interact with elements of the
nucleus, endoplasmic reticulum, and mitochondria, playing
a very important role in supporting and anchoring various
organelles in the cytoplasm. In general, vimentin is con-
sidered as a component of the cytoskeleton responsible for
the maintenance of cellular integrity [78, 79]. Interestingly,
surface-expressed forms of vimentin have been discovered on
several cell types, including apoptotic neutrophils and T cells
[80, 81], activated macrophages [82], platelets [83], vascular

endothelial cells [84], brain microvascular endothelial cells
[85], and skeletal muscle cells [76]. In particular, rod and tail
domains of vimentin are exposed on the cell surface of human
apoptotic T lymphocytes [81], where vimentin anchors to the
inner side of plasma membrane by interaction with ankyrin
[86]. Boilard et al. [81] also showed that secreted human
group IIA phospholipase A

2
(PLA
2
) binds to vimentin on

the cell surface of apoptotic T lymphocytes. The interaction
between these two proteins enhanced the activity of PLA

2
,

suggesting that vimentin may play a role in PLA
2
-mediated

cellular arachidonic acid release [81].
However, the mechanisms by which vimentin reaches

the cell surface are not completely known. In this regard,
the possible association of vimentin with Bid suggests that
this molecule might be involved in the intracellular transport
not only of CL and its metabolites, but also of vimentin
and potentially account for their relocation onto the plasma
membrane of apoptotic cells.

5. Cardiolipin Exposure on the Cell
Surface during Apoptosis: A Trigger for
(Antiphospholipid Antibodies)

Several evidences showed that CL becomes exposed on the
plasma membrane of cells undergoing apoptosis induced by
death receptors, like CD95/Fas and tumor necrosis factor-
alpha (TNF-𝛼) [14, 64, 87]. Translocation onto the cell surface
implies a leakage of CL (and/or of its metabolites) from the
normal remodelling cycle [88], probably as a consequence
of an apoptosis-mediated increase of ER and secretory
membranes. Interestingly, mass spectroscopy analysis has
demonstrated an early degradation of mitochondrial CL
into its immediate metabolite, monolysocardiolipin, during
CD95/Fas-induced apoptosis [43]. In addition, it revealed
that CL and its metabolites relocated from mitochondria
to other intracellular organelles during apoptosis, with a
conversion into nonmitochondrial lipids.These findings have
been subsequently confirmed in human promonocytic U937
cells [64].

Both cytofluorimetric and scanning confocal microscopy
analyses revealed that anticardiolipin (aCL) IgG purified
from the serum of patients with the Antiphospholipid Anti-
body Syndrome (APS) binds toCL on the surface of apoptotic
cells. This analysis showed that CL molecules are exposed
on the cell plasma membrane time-dependently and that
their appearance precedes DNA degradation and cell lysis
by several hours. This finding suggested that CL molecules
may function as self-antigen molecules. Indeed, Casciola-
Rosen and coworkers [89] have shown aCL binding to surface
blebs of apoptotic cells, which would be consistent with the
clustering of aCL immunostaining in focal surface regions
that were detected in apoptotic cells. This indicates that cells
undergoing apoptosis expose CL on their surface in segre-
gated membrane regions that could enhance the binding of
circulating autoantibodies. Since binding of autoantibody to
one component of a multicomponent complex can influence
the subsequent processing and presentation of the other
antigens in the complex [90], it is possible that coating of
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apoptotic blebs by aCL enhances the immunogenicity of these
autoantigens [91]. When apoptosis occurs in a microenvi-
ronment in direct contact with the plasma, the procoagulant
role of the apoptotic surface may be expressed additionally
[92]. Opsonization of apoptotic cells by antiphospholipid
antibodies (aPL) has been shown to enhance recognition and
phagocytosis by macrophages, with massive TNF-𝛼 secretion
[93, 94]. The release of TNF-𝛼 may amplify this process by
inducing further apoptosis and promoting the maturation
of APC towards a more efficient antigen processing and
presentation capability.

Thus, during apoptosis, CL becomes exposed on the
surface of cells, as revealed by using purified aCL antibodies
obtained from patients with APS; this evidence could suggest
how CL molecules may function as self-antigen molecules
[95].

In fact, aCL antibodies are the hallmark of APS [92] and
are used for its diagnosis, but different reports showed that
the “true” antigens for aCL binding are phospholipid-binding
proteins that are described as phospholipid cofactors [96, 97].
However, the chemistry of the acyl chains of CL is important
not only for the intrinsic immunogenicity of CLmolecule, but
also for the binding to the phospholipid cofactors, including
𝛽2-glycoprotein I (𝛽2-GPI) [98, 99].

Vimentin, similarly to 𝛽2-GPI, could therefore act as a
cofactor for the presentation of CL to the immune sys-
tem, potentially enhancing its antigenicity. Recently, a pro-
teomic approach identified vimentin as the main endothelial
molecule recognized by aPL [77]. Interestingly, almost all the
APS patients displayed the presence of anti-vimentin/CL
complex antibodies. This finding suggests that vimentin
may be considered a “new” antigenic cofactor for aPL
in APS. This finding is not completely surprising because
a significant correlation between anti-vimentin and aCL
antibodies has been already reported [100]. Moreover, their
particular role in the pathogenesis of thrombotic events in
autoimmune diseases has been described [31]. In particular,
Leong et al. demonstrated that anti-vimentin antibodies lead
to activation of platelets and leukocytes, as revealed by
induced expression of P-selectin, fibrinogen, tissue factor,
and formation of platelet-leukocyte conjugates via platelet-
activating factor [101]. Furthermore, platelet vimentin may
regulate fibrinolysis in plasma and thrombus formation by
binding platelet-derived fibronectin-plasminogen activator
inhibitor complexes [102]. Moreover, anti-vimentin/CL anti-
bodies may exert their pathogenic role by triggering a signal
transduction pathway involving Toll-like receptor 4, IRAK
phosphorylation, and NF-𝜅B activation, with consequent
release of proinflammatory and procoagulant factors [77].

In any case, the mechanism through which the vimentin/
CL acquires an antigenic power is still unknown. Despite
this, apoptosis is a pathophysiological mechanism which
determines the exposure to the plasma membrane not only
of CL, but also of vimentin (Figure 2) [14, 80].

The presence of autoantibodies in some systemic dis-
eases may arise from abnormal exposure of autoantigens
on apoptotic cells. In fact, in many autoimmune diseases,
such as Systemic Lupus Erythematosus (SLE) or APS, it is
possible to detect the presence of high amounts of apoptotic
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Figure 2: Schematic drawing depicting the intracellular traffic of
cardiolipin and its metabolites following apoptotic triggering.

cells compared to the control samples [103]. In this regard,
apoptotic cells may provide an abundant source of antigens,
and their exposure on the cell surface of apoptotic cells
may represent an in vivo trigger for the production of
autoantibodies.

6. Conclusions

Translocation of CL on the surface of apoptotic cells and its
interactionwith protein cofactor(s) such as vimentin produce
a new twist in the ever evolving APS field, because it rep-
resents a novel potential trigger for “antiphospholipid anti-
bodies.” Vimentin/CL complex as a “new” target antigen in
APS unveils possible lines of therapeutic intervention in
those patients with clinical signs suggestive of APS, who are
persistently negative for the conventional tests but positive
for anti-vimentin/CL antibodies [77, 104]. In addition, the
knowledge of new antigenic targets may contribute to point-
ing out the risk stratification of the disease, taking into
account first the potential combinations/panels of available
aPL tests.
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