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Abstract: Cathepsin B activity was measured during processing in hams originating from the main
Italian prosciutto PDOs: Parma, San Daniele and Toscano. Sixty-five heavy pig thighs, from sixty-
five Italian large white x Italian Landrace pigs bred and slaughtered in the same conditions were
considered. Five thighs represented the post-mortem control time. The other 60 were distributed
one plant per PDO, following a balanced plan. The thighs were sampled at the biceps femoris in
groups of four per plant in the following ripening phases: salting, resting, drying, greasing, end
of curing. The activity of the Cathepsin B (U/g protein) was determined by means of fluorescence
measurements. The Cathepsin B ripening trend of the various PDOs was significantly different,
particularly during the initial and mid-curing stage. This activity correlates with the proteolysis index
through a PDO dependent pattern, indicating that different processing conditions can influence the
quality of prosciutto, since they determine its biochemical development.

Keywords: proteolysis; cathepsin B; dry-cured ham; Italian PDOs

1. Introduction

Almost 80% of pigs born and raised in Italy are destined for the market of traditional
Italian dry-cured ham (‘Prosciutto’), the production of which is largely controlled by a
protected designation of origin (PDO) to achieve products with reproducible, high-quality
sensory characteristics. The most important PDOs for Italian dry-cured ham are: PDO
Prosciutto di Parma (PA), PDO Prosciutto di San Daniele (SD), PDO Prosciutto Toscano
(TO), which processed 7.8, 2.5 and 0.30 million conforming thighs, respectively, in 2020 [1].

The processing conditions of the three PDO hams differ. SD is the only one that
retains the trotter. In the dressing phase, upon receipt of the thighs, TO is cut in a “V”
shape by removing a greater part of the skin than the other two PDO types, exposing a
larger portion of the semimembranosus muscle; this increases the penetration of salt into the
ham. The addition of salt to the fresh thigh (moisture 79%, water activity, aw 1; protein
15–23%; fat 2.5%; salt 1%) decreases the aw, ensuring the preservation of the dry-cured
ham (moisture 57–60%, aw 0.85, protein 29–31%, fat 3–4%, salt 5–6%) which, at the end
of a maturation period lasting at least 12 months, is 34–36% of the initial weight of the
green thigh [2]. The salt can be added to the three PDOs in different forms: rubbed in
dry and wet for PA, dry and ad libitum for SD, and dry and mixed with pepper and
vegetable flavorings for TO. The ‘ripasso’ i.e., the replacement of old salt with new during
salting, is only performed once for PA and SD and twice for TO. Ultimately, according to the
specifications of each PDO consortium (http://www.prosciuttodiparma.com/ (accessed on
14 November 2021); http://consorzio.prosciuttosandaniele.it/ (accessed on 14 November
2021); http://www.prosciuttotoscano.com/ (accessed on 14 November 2021)), the whole
salting phase duration is as follows. For PA, about one week plus a further 15–18 days
to obtain a second thin coating of salt. For SD, a number of days corresponding to the
thigh’s weight in kilograms. For TO, about 3–4 weeks. In the pre-resting phase, SD is
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pressed into a typical guitar shape, facilitating the penetration of the salt. The subsequent
phases of resting, rinsing, drying, and curing [3] are similar in the three PDOs except for
the ‘sugnatura’ (greasing, a phase in mid-curing during which the exposed lean surface is
covered with ‘sugna’, a mixture of flare fat and wheat or rice flour for drying control): for
TO, the classic sugna is supplemented by pepper and vegetable flavorings.

The biochemical activities that occur during processing, which are dependent on both
the protein fraction and the lipid component, form the basis of the physical and chemical
changes described above, which in turn are responsible for the typical sensory properties
of the ham [4,5]. In general, the proteins are degraded by endoproteases into shorter
peptides, and these represent the substrate of the exopeptidases, which hydrolyze them
into free amino acids. It is now widely accepted that during ham maturation, proteins are
degraded by muscle proteolytic systems, which guarantees their physiological activation
and turnover in vivo [6]. The systems are distinguished by their different intracellular
locations and functional properties (substrate specificities, optimal pH, etc.): calpains,
cysteine-endopeptidases located in the cytoplasm; proteasome, a multi-enzymatic complex
with a high molecular weight, also located in the cytoplasm; and cathepsins, lysosomal
proteases of the papain family [7]. The latter are divided into cysteine, serine, and aspartyl
proteinases, and include both endo- and exo-peptidases activated by acid pH [8,9]. During
post-mortem, the proteolytic activity affects both myofibril and sarcoplasmatic proteins.
The contribution of calpains and the proteosome is limited, due to their low stability,
while the role of cathepsins is considered fundamental, particularly B, D and L which,
together with H, represent the most abundant lysosomal proteases in the muscle [10].
When released by the lysosomes, as occurs during post-mortem, these are controlled by
a family of inhibitory proteins called cystatins [11,12], which thus perform an essential
role in controlling proteolysis during the initial phases. In this period, cathepsin B appears
to be particularly active in relation to desmin, myosin, actin and tropomyosin I [13]. The
degradation of desmin is a critical phase during post-mortem, as the meat acquires its
characteristic tenderness and starts to lose water. The action of cathepsin B on desmin is
mediated by its exopeptidase activity, and by its dipeptidyl peptidase activity [14].

Cathepsin B is also fundamental to produce dry-cured ham and green thighs with
high activity have been reported to yield more proteolyzed dry-cured hams [15–17]. In
addition, cathepsin B is particularly stable compared with other cathepsins throughout
ham processing [18]. In any case, the transformation of fresh thighs into dry-cured ham in-
terferes with its normal enzymatic activity; indeed, various authors have noted that the salt
concentration, temperature, water activity, and pH interfere with cathepsin B [2,15,17–20].
These different technological conditions and the consequent intensity of proteolysis pro-
duce specific sensory properties in the hams [21,22], whose molecular mechanisms have
been studied thanks to proteomics approaches [23].

The purpose of this study is to investigate the influence of the production process
on cathepsin B activity in industrial conditions, measuring its variation in different pro-
cessing phases in hams from Parma and two other important Italian PDOs, San Daniele
and Toscano, obtained from coetaneous and homogeneous pigs bred together. The rela-
tionship between the intensity of the proteolysis and the sensory properties of the various
PDO hams is also discussed, utilizing the profile provided by trained assessors and the
consumer preferences for the three PDO as evaluated in already published papers [21,22].
To our knowledge, this is the first time San Daniele and Toscano cathepsin B trend during
seasoning has been examined and compared with Parma.

2. Materials and Methods
2.1. Thigh Origin

The test material comprised heavy pig thighs, with morphological characteristics suit-
able for the PDO chain, in line with the requirement of conformity with the specifications
of the relevant PDO prosciutto. The thighs came from 66 pigs, crosses of large white x
Landrace of Italian selection (ANAS), bred on a single farm with the same balanced diet
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and slaughtered in the same abattoir, in three batches of 22 pigs each, at 6 week intervals,
as described elsewhere, together with carcass and meat attributes [22,23].

2.2. Plan of Distribution and Ripening of the Thighs

Two thighs per slaughter batch were randomly obtained to gather the initial control
time 0 (T0), which ultimately included five thighs because one was accidentally lost. The
other 60 were distributed to three prosciutto plants belonging to the three different PDOs
(Parma, San Daniele, Toscano), in accordance with a balanced distribution plan. Each PDO
thus received 20 thighs, in batches of 10 from two of the three slaughters performed in
total. Upon entering the processing plant the weights were recorded after dressing (initial
weight).

The processing program was monitored, and the days since receipt recorded in the
following phases:

- T0, slaughter
- T1, out of salting (salting)
- T2, introduction to the resting room (resting)
- T3, after washing and drying (drying)
- T4, mid-curing, after greasing (greasing)
- T5, end of curing (curing)

Four thighs were sampled per prosciutto plant in each phase, apart from the first one
described above. During maturation the weight of all the thighs still present was recorded
in the following processing phases:

- out of salting
- pre- and post-trimming
- post-washing and drying
- pre- and post-sugnatura
- pre- and post-‘stuccatura’ (only for SD, a second greasing using ‘stucco’, a sugna

mixture richer in flour)
- end of curing.

These data were used to calculate the weight losses net of trimming subtractions and
additions of sugna and stucco, i.e., an estimate of the water losses on the specific day of
ripening on which the individual thigh was sampled. The losses were expressed in g/kg of
dressed-thigh (initial) weight.

2.3. Collection of the Sample for Analysis

A sample from the same location of the biceps femoris muscle of around 100 g was taken
from the thigh by cutting a 5 cm-thick slice transversally from the thigh, at about 8 cm from
the femoral head [21]. The sample was then divided into portions. The first portion was
ground and vacuum-preserved at a temperature of −20 ◦C until the determination of the
following:

- Moisture content [24];
- Sodium chloride content, using the Volhard method [24];
- aw (water activity; AquaLab Dew Point Water Activity Meter 4TE, Decagon Devices,

Inc., Pullman, WA, USA);
- Proteolysis index: the ratio between the Non Protein Nitrogen (NPN) and Total

Nitrogen (TN); i.e., NPN/TN × 100. The proteins were precipitated using 20% (w/v)
trichloroacetic acid and NPN and the TN contents were determined according to the
Kjeldahl method [24].

The second portion, of around 30 g, was vacuum-packed without grinding and frozen
at −20 ◦C until the determination of the enzymatic activity of the cathepsin B and protein
content.
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2.4. Extraction of Cathepsin B from Biceps Femoris

The biceps femoris sample was shredded with a scalpel, removing the fat and connective
tissue, and 300 mg were suspended in 3 mL extraction buffer comprising 50 mM Na
citrate, 1 mM Na2-EDTA, 0.2% Triton x-100 with pH 5.0 [18,20,25,26]. The solution was
homogenized twice for 20 s with Ultra-Turrax® T25 Digital, the first time at 16,000 rpm
and the second at 13,000 rpm. The homogenized solution was then centrifuged for 20 min,
11,000× g at 4 ◦C, and the precipitate discarded, while the supernatant liquid was used
to measure both cathepsin B activity and protein content in accordance with the method
reported in [27].

2.5. Quantification of Enzymatic Activity

The cathepsin B activity was determined by means of fluorescence measurements,
using Z-Arg.Arg-7-amido-4-merhylcoumarin hydrochloride (Z-RR-AMC; Sigma-Aldrich
S.r.l., Milan, Italy) as a specific substrate to avoid interference from the other cathepsins
contained in the extracts [13,28]. The measurement was performed using a microplate
spectrofluorometer (Molecular Devices, Spectra max Gemini xs; Molecular Devices Inc.,
Sunnyvale, CA, USA) with emission and excitation of 355 nm and 460 nm, respectively.
In each sample containing 2.5 µM Z-RR-AMC and 50 mM sodium phosphate buffer
pH 6.0, 4 mM EDTA, 2 mM DTT and 3.4 mL/L Brij 35 in 200 µL [18], 0.2–1.6 mU of
cathepsin B (Sigma-Aldrich S.r.l., Milan, Italy) or 20 µL of extract were added. The kinetics
were monitored for 30 min, with recording of the fluorescence every 30 s, at 37 ◦C. The
cathepsin B activity was calculated as micromoles of AMC released per minute at 37 ◦C,
thus expressing the activity in U/g protein or in U/g wet muscle.

2.6. Statistical Analyses

The statistical analysis of the data was performed by using the SPSS package, version
17 (SPSS Inc., Chicago, IL, USA). The carcass and fresh meat data were submitted to a
two-way variance design, considering the three-level ‘type of dry-cured Italian PDO ham’
and the five-level ‘ripening phase’ factors.

The physical, chemical and biochemical ham characteristics were individually an-
alyzed using the General Linear Model. First of all, a multiple covariance analysis was
performed for sixty independent hams cured for a different period of days (days of pro-
cessing, D), where the individual hams represent three categories (PA, SD and TO) of the
factor ‘type of dry-cured Italian PDO ham’ (Hi, with i = 1 . . . 3), in accordance with the
following model:

Yij = µ + Hi + b1i Dij + b2i Dij
2 + b3i Dij

3 + b4i Dij
4 + εij

where Yij is a physical, chemical, or biochemical characteristic measured on the ham j
(where j = 1 . . . 20) within the PDO ham type i at Dij days of processing. The value µ is the
mean term and εij is the error term due to the ham j within the PDO ham type i. For this
analysis, the covariates were added one at a time in sequential linear models, using the
forward selection method for testing the significance of adding the new covariate to the
previous model. The selected models were represented graphically. The purpose of the
multiple covariance analysis was to verify, in the selected model, whether the covariance
coefficients (bki, with k = 1 . . . 4) within the PDO ham type differed significantly from one
another, i.e., to investigate whether the multiple regression line of the physical, chemical
or biochemical ham characteristics on the respective day of processing were significantly
different for PA, SD, and TO. If the covariance coefficients differed significantly, a one-
way variance analysis was performed for the relevant characteristic, independently for
each processing phase, to compare the PDO ham types in the ‘salting’, ‘resting’, ‘drying’,
‘greasing’, or ‘curing’ phases.

After examining the sources of individual variability of each physical, chemical, and
biochemical ham characteristic, the degree of their association was evaluated. The strength
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of the linear relationship between each pair of quantitative variables was measured by
using the Pearson correlation coefficients.

3. Results

The initial weight of the thighs, measured immediately after dressing (Table 1), was
higher for the San Daniele than for the Toscano (p < 0.05), with the Parma having an
intermediate value.

Table 1. Weight of green thighs which produced the experimental hams, averaged as prosciutto PDO type marginal means.

Item
Prosciutto PDO Type

RSTD
Significance

Parma San Daniele Toscano PDO Ripening Phase (T) PDOxT

Initial thigh weight kg 14.20 a,b 14.43 a 13.59 b 0.993 0.03 0.15 0.78
a,b Means with different upper letter differ significantly (p ≤ 0.05).

Figure 1 shows the trend of the estimated water losses from the hams and the trend of
the water content of the biceps femoris muscle during processing, together with the days
from slaughtering of the various ripening phases. The change in the water losses during
maturation was significantly different in the three PDOs. The SD prosciutto, after undergo-
ing the greatest losses in the initial processing phases, slowed this trend from T4, reaching
an average value of 270 g/kg (STD 23.7 g/kg) initial weight at the end of maturation. This
value was statistically no different from that of the PA prosciutto (284 g/kg; STD 10.9 g/kg)
which, vice-versa, lost moisture more homogeneously during processing. The TO prosci-
utto presented a similar trend to the PA during the cold processing phases until drying
(T3), when it underwent an acceleration of dehydration during curing in comparison with
the other two types, so that at the end of maturation it was the product with the highest
water losses (on average 309 g/kg initial weight; STD 16.3 g/kg; p < 0.05).

Figure 1. Evolution of the moisture loss in the whole ham and of the moisture content in the biceps femoris muscle during the
processing of the main Italian prosciutto PDOs (obs. = observed mean with standard deviation values). Along the x–axis,
the days from slaughtering of the various ripening phases of the three PDOs ham are also reported (a, b, c: differences
between PDOs within a ripening phase p ≤ 0.05; α,β: differences between PDOs within the ripening phase p ≤ 0.10).
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The moisture content of the biceps femoris progressively diminished from the initial
value of 73% (STD 0.3%) in the raw thigh to approximately 55–60% in the cured ham, with
a trend that was statistically different in the three PDOs.

Figure 2 shows the change in the water activity and salt content in the three types of
prosciutto. In the TO, the water activity was significantly and increasingly lower than in
the other two PDOs, which presented similar, mainly linear decreasing trends. However,
the aw values were slightly but steadily higher for the PA than for the SD, which reached
values of around 0.90 at the end of maturation, higher than those of TO (0.86; STD 0.003;
p < 0.05). The change in the salt content was also different in the three PDOs; at the end of
processing program, TO had a sodium chloride content that was 1.5 times higher than PA
and SD, which presenting values around 5.8%.

Figure 2. Evolution of the salt content and aw in the biceps femoris muscle during the processing of the main Italian prosciutto
PDOs (obs. = observed mean with standard deviation values; a, b: differences between PDOs within the ripening phase
p ≤ 0.05).

Figure 3 shows the different change in proteolysis index during the PDO ham process-
ing. It is interesting to note that from sugnatura, the PA presented a significantly higher
proteolysis than the other two PDOs. At the end of ripening, the proteolysis index reached
the values of 28.6% (STD 0.99%), 24.6% (STD 0.33%), and 22.4% (STD 1.44%; p < 0.05) in the
PA, SD, and TO prosciutto, respectively.
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Figure 3. Evolution of the proteolysis index in the biceps femoris muscle during the processing of the main Italian prosciutto
PDOs (obs. = observed mean with standard deviation values; a, b, c: differences between PDOs within a ripening phase
p ≤ 0.05; α, β, γ: differences between PDOs within the ripening phase p ≤ 0.10).

Figure 4 shows the temporal trend of the cathepsin B activity. At T0 (which is equal
for all the PDOs, as it corresponds to the fresh thighs), the average activity was 0.73 U/g
protein (STD 0.196 U/g), which corresponds to 0.057 U/g wet weight (STD 0.0133 U/g).
The cathepsin B activity trend was significantly influenced by the PDO type, i.e., by the
different processing conditions used to produce the three studied prosciuttos. At the end
of salting (T1), no differences were noted in comparison with T0 in any of the PDOs. In
T2, all three PDOs showed increased activity in comparison with T0; this was especially
marked in the SD and the TO. However, the differences between the three PDOs were not
statistically significant due to the huge variability of the data. In the drying phase (T3),
however, a considerable decrease in activity could be noted in comparison with T2 in all
three PDOs, chiefly in the SD and the TO. This marked decreasing trend continued for
the SD and TO hams during the first curing period, until sugnatura. In T4, the cathepsin
B activity in the three PDOs differed significantly. The SD presented the lowest activity
(0.23 U/g protein; STD 0.087 U/g), which correlates well with the relatively low level of
proteolysis that characterized this prosciutto in T4 (Figure 3).

Finally, in T5, at the end of ripening, all of the cured hams showed a distinctly lower
activity in comparison with that originally measured in the fresh meat (T0), and were not
dissimilar to one another.
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Figure 4. Evolution of the Cathepsin B activity in the biceps femoris muscle during the processing of the main Italian
prosciutto PDOs (obs. = observed mean with standard deviation values; a, b: differences between PDOs within a ripening
phase p ≤ 0.05; α, β: differences between PDOs within the ripening phase p ≤ 0.10).

To obtain a more comprehensive insight into the significance of the results, the asso-
ciations among the ham characteristics during processing were examined. A correlation
matrix is reported in Table 2 in order to provide more details on the effects of the parameters
on one another. The technological parameters were highly and linearly correlated with one
another and significantly linked to the enzymatic activity.

Table 2. Bivariate coefficient of correlation between ham characteristics (measured on biceps femoris if
not otherwise specified; no. of hams = 60).

Moisture
Loss of Ham

Moisture
Content aw Salt Content Proteolysis

Index

Cathepsin B activity −0.485 0.586 0.522 −0.541 −0.580
Moisture loss of ham −0.867 −0.870 0.868 0.851

Moisture content 0.950 −0.949 −0.771
aw −0.990 −0.741

Salt content 0.754
All the reported coefficients are significant (p ≤ 0.01).

To better understand the role of cathepsin B, its cumulative activity was calculated
as the definite integral at the various processing stages of the PDO trends depicted in
Figure 4. The proteolysis index was then regressed against the cumulative cathepsin B
activity as shown in Figure 5. The curves showed a comparable intersection value (average
proteolysis index equal to 12.9% at zero cathepsin B activity). However, as the cumulative
activity of the cathepsin B increased, the proteolysis increased, but at a different rate in the
various PDOs, as established by a parallelism test (p ≤ 0.05). With an accelerated speed, at
any level of cathepsin B activity, the proteolysis was greater in PA than in the saltier and
drier TO hams. The SA’s trend was intermediate, but more similar to the PA hams.
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Figure 5. Relationship between proteolysis index (PI) and Cathepsin B cumulative activity (CBc) of Parma, San Daniele and
Toscano PDO hams measured at five processing phases: individual observed values, obs., and second order polynomial
regression lines, PI = a + b1 CBc + b2 CBc2. In table, regression coefficients (a, b1 and b2), residual standard deviation
(RSTD), and coefficient of determination (R2) of each PDO curve are reported.

4. Discussion

The thighs processed in accordance with the three different PDO techniques were
derived from heavy pigs belonging to the same genetic type, bred and slaughtered in the
same conditions, and which were homogeneous in their carcass and meat quality [21–23].
The degree of green thigh weight variability within the PDO is comparable with that
observed in other experiments carried out in normal commercial conditions [29,30]. The
weight differences between PDOs depend on the dressing procedures, which involve more
extensive semimembranosus skinning in TO prosciutto and the retention of the trotter in SD
prosciutto.

The initial trend of SD water losses can be attributed to pressing and dry salting ad
libitum. In addition, the SD was characterized by a shorter pre-resting period (interval T1–
T2 in Figure 1, 3 weeks in the SD vs. 6 weeks in the PA and TO), so that it enters the resting
rooms—typified by a lower relative air humidity (RH: 70–80% instead of 80–85%)—earlier
than the other two PDOs. The final trend, however, can be explained by the application
for aesthetic reasons of the stucco. The greater expansion of the exposed muscle surface
encouraged the greater final dehydration of the TO prosciutto.

Among the main thigh muscles, the biceps femoris, owing to its internal position,
presents a higher residual moisture content [6] and a lower rate of salt diffusion [31,32]
than the exposed muscles and the whole thigh. In accordance with the overall moisture
loss, at the end of the curing period, the TO biceps femoris showed a lower moisture content
(54.8%; p < 0.05) than the PA and SD, which had similar values (60.5 and 61.1%).

As expected [2], the different processing conditions of the three Italian PDOs had a
significant influence on the final physical-chemical characteristics of the prosciutto. The
change in the salt content in the three PDOs was symmetrical in comparison with that
of aw, confirming the role of salt in immobilizing the bulk water within the tissues [31].
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The TO emerge as the ham that underwent the greatest losses of moisture and aw, and
featured the highest content of NaCl in comparison with the other two. These data are
consistent with a production process which, entailing more intense trimming and increased
salting, favors greater water loss and more intense assimilation of salt and, consequently,
allows more bulk water to be bound. At the end of curing, the SD and PA prosciutto
were characterized by comparable values of biceps femoris aw, moisture, and salt content.
However, these results derived from a different evolution of water losses during ripening,
which were earlier in the SD than the PA.

During dry-cured ham processing, an intense proteolysis occurs that mainly involves
calpain, cathepsin, dipeptidyl peptidase, and aminopeptidase [2,6,26]. Cathepsin B was
selected as the key proteinase effecting proteolysis and the evolution of its activity used for
comparing the main Italian PDOs through their processing procedures [17]. In comparison
with other muscles, internal muscles such as biceps femoris present a higher enzyme activity
for longer periods of time and, thus, increased proteolysis [6].

The value of cathepsin B activity in the fresh thighs (T0) falls within the range of
activity recorded in previous research, which is, however, very broad [11,13,20,25,33]. The
highest values in previous studies—around 1 U/g wet weight—were obtained, in some
cases, by treating the samples in such a way as to separate cathepsin B from its natural
inhibitor. Comparing this value with our data, one could therefore assume that in the fresh
meat, where the lysosomal structures are now damaged, a high percentage of enzyme is
bound to its inhibitor [20].

The wide observed levels of cathepsin B activity variability are in line with those
reported in previous studies that considered a comparable number of hams [13,18,34,35].
In this regard, it should be remembered that the enzymatic activity was measured in com-
mercial products, controlled through the homogeneity of the raw material, but processed in
ordinary production plants. A comparable trend, ascending in the first, salting and ripen-
ing, phases and descending in the successive phases, had already been shown, although
it was not correlated with the processing phases [11,36], and it may be attributable to the
progressive dehydration and decrease in the aw of the muscle. It can be hypothesized that,
after the clear increase in activity in T2, most probably due to cystatin release, this behavior
was a consequence of the denaturation of the unbound enzyme, which is particularly
susceptible to destabilization [37]. Such denaturation may in turn be attributed to the
relatively high rate of the dehydration process observed for SD during resting, and to
the variation in temperature between the resting and curing stages. On the other hand,
PA showed the highest activity (0.77 U/g protein), demonstrating that the processing of
this PDO ham, characterized by a lower moisture loss, inactivated the proteolytic enzyme
less noticeably. In accordance with these data, the PA exhibited a significantly higher
proteolysis level in T4 (Figure 3), suggesting that cathepsin B plays an essential role in this
maturation phase. The TO demonstrated intermediate activity, between the PA and the SD
(0.46 U/g protein), which was in agreement with its intermediate level of proteolysis. In
any case, further studies are necessary to define the molecular mechanisms responsible
for the different behavior in the three PDOs. It is interesting to note that the variation of
activity from the start of processing to the end of ripening is comparable to that found in
Spanish cured hams [38]. At this time, however, the proteolysis values differed among PDO
types. PA featured the highest values, which was probably because these were cumulative
and a consequence of the high level of cathepsin B activity in T4.

The process of water loss from the whole ham during seasoning was determined and
accompanied by parallel changes in the biceps femoris parameters, such as the reduction in
moisture content and aw value and an increase of salt penetration and content. In its turn,
the cathepsin B activity was negatively correlated with moisture loss and salt concentration
and positively associated with moisture content and aw, which is in agreement with
the relationship reported in previous research [18,39]. The proteolysis index, which is
a cumulative variable that increases during seasoning due to the successive addition of
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the hydrolysis products, was correlated with the technological parameters in a direction
determined by the specific trends they each underwent during ripening.

The comparable intersection value of the different PDO types in Figure 5 confirms the
homogeneity of the fresh thighs. Moreover, this result indicates that muscle protein degra-
dation was initially driven by enzymes other than cathepsin B, particularly calpains [34],
that take part in the early breakdown of myofibrillar proteins during the salting and early
post-salting stages [6]. Starting in the salting and resting phases, the role of cathepsin B
became important and remained active throughout the whole curing process [13]. Dif-
ferent percentages of potential cathepsin B activity, measured in the assay under optimal
conditions, were effective on the muscle proteins during ripening in the three PDOs. A
discrepancy between the “potential” and “actual” cathepsin B activity has been reported
in Jinhua ham and assigned to the effect of the technological conditions, such as temper-
ature, salt content, and pH, on enzyme activity [18]. This might also have been the case
in our study, given that salt content strongly inhibited cathepsin B activity [18] and that
we observed the lowest proteolysis index in the saltier TO ham. However, the addition of
pepper and seasonings could also have further inhibited the enzyme activity during TO
ripening [40]. Moreover, an additional contribution related to the differential influence of
the three technological conditions on the muscle protein accessibility to the endoprotease
cannot be excluded, given that high salt also favors protein aggregation [41].

The different technological conditions and intensity of proteolysis produced specific
sensory properties in the various PDO hams, as demonstrated in the profile provided
by trained assessors and confirmed by consumer preferences. Indeed, the hams were
subjected to sensory analysis, both descriptive and hedonistic, the results of which are
being published elsewhere [21,22]. Briefly, the panelists perceived the TO hams as redder,
saltier, harder, more fibrous and drier than the PA and SD products [21,22]. This outcome
agrees with those of other authors [19,42], who showed that hardness decreases with
increasing proteolysis. Furthermore, the TO was characterized by a greater intensity of
pork flavor, as well as a more rancid flavor. The SD and PA hams were perceived as sweeter
and with less ageing flavor than the TO [21,22]. The PDO type also influenced consumer
satisfaction, the appreciation scores for the PA and SD differing from those for the TO, and
associated with quantitative descriptive analysis results according to consumer origin [22].
However, sensory defects, such as bitter taste [35], mushy texture, and pastiness [16,43]
detected in highly proteolyzed PA hams, were not perceived. This is likely to have been
because cathepsin B did not reach the required high thresholds of activity in the green
thighs.

5. Conclusions

The hams produced from homogeneous green thighs through the processing proce-
dures of the main Italian PDOs, Parma, San Daniele, and Toscano, revealed specific techno-
logical and biochemical characteristics, likely resulting in the peculiar sensory properties
highlighted in the parallel studies carried out on the same PDOs, and clearly perceived by
consumers.

Within this framework, the trend of cathepsin B activity during the ripening of the
various PDOs was significantly different, particularly in the intermediate curing phases.
This activity correlates with the proteolysis index through a PDO-dependent pattern.
Indeed, at the same cumulative level of cathepsin B activity, the saltiest and driest TO
ham, the only ham with pepper and seasonings added, differed from the others by a lower
proteolysis index. Then again, in the PA ham, which is known to be more prone to defects
related to excess proteolysis, the degradation effect on the muscular proteins was the
highest, suggesting the existence of conditions contributing to a higher “actual” cathepsin
B activity during ripening.
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