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Abstract: The development of effective pharmacotherapy for major depression is important because it is such a wide-

spread and debilitating mental disorder. Here, we have reviewed preclinical and clinical studies on tianeptine, an atypical 

antidepressant which ameliorates the adverse effects of stress on brain and memory. In animal studies, tianeptine has been 

shown to prevent stress-induced morphological sequelae in the hippocampus and amygdala, as well as to prevent stress 

from impairing synaptic plasticity in the prefrontal cortex and hippocampus. Tianeptine also has memory-protective char-

acteristics, as it blocks the adverse effects of stress on hippocampus-dependent learning and memory. We have further ex-

tended the findings on stress, memory and tianeptine here with two novel observations: 1) stress impairs spatial memory 

in adrenalectomized (ADX), thereby corticosterone-depleted, rats; and 2) the stress-induced impairment of memory in 

ADX rats is blocked by tianeptine. These findings are consistent with previous research which indicates that tianeptine 

produces anti-stress and memory-protective properties without altering the response of the hypothalamic-pituitary-adrenal 

axis to stress. We conclude with a discussion of findings which indicate that tianeptine accomplishes its anti-stress effects 

by normalizing stress-induced increases in glutamate in the hippocampus and amygdala. This finding is potentially rele-

vant to recent research which indicates that abnormalities in glutamatergic neurotransmission are involved in the patho-

genesis of depression. Ultimately, tianeptine’s prevention of depression-induced sequelae in the brain is likely to be a 

primary factor in its effectiveness as a pharmacological treatment for depression. 
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INTRODUCTION 

 Depression is a widespread, recurrent mental disorder 
that has detrimental effects on individuals, as well as society, 
at large [44,189]. Although considerable progress has been 
made in characterizing the neurobiological sequelae that 
result from this disorder, the factors that are responsible for 
depression’s development and progression are not well un-
derstood. Research indicates that there is a heritable compo-
nent to depression, and, more recently, investigators have 
identified candidate genes that appear to increase one’s sus-
ceptibility for the disorder [98,184]. This area of research has 
provided insight into the etiology of depression with the 
finding that gene polymorphisms interact with environmental 
factors, such as stressful events, to increase the likelihood 
that a person will develop major depression [15,17,62,82, 
112,206]. 

 For the past few decades, the prevailing view has been 
that depression results from abnormally low levels of mono-
amine neurotransmitter substances (e.g., serotonin, norepi-
nephrine, dopamine), which is commonly known as the 
monoamine hypothesis [12,22,171]. Support for this hy-
pothesis was based on the incidental finding that efficacious 
antidepressants, such as monoamine oxidase inhibitors and 
tricyclics, increased monoamine neurotransmitter levels  
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[127]. Therefore, the primary focus of pharmacotherapy for 
depression has been to prescribe agents which are known to 
increase levels of the neurotransmitter serotonin, and today, 
selective serotonin reuptake inhibitors (SSRIs), such as 
fluoxetine, paroxetine and sertraline, are the most prescribed 
pharmacological treatments for this disorder [8,195]. 

 Recent research suggests that increasing the levels of 
monoamines provides only an indirect contribution to anti-
depressant actions [186]. Moreover, some findings are in-
consistent with the monoamine hypothesis of depression, 
thereby suggesting that the neurochemical basis of the disor-
der is more complicated than previously considered. For 
instance, traditional antidepressants ameliorate depressive 
symptoms only in a subset of patients, despite their low lev-
els of monoamines [12], and are largely ineffective for peo-
ple with severe forms of depression [113,137]. In these latter 
cases, clinicians may resort to electroconvulsive shock ther-
apy (ECT), which has proven to be one of the most effective 
treatments for severe, pharmacologically-resistant forms of 
depression [136,147]. Despite its effectiveness, however, 
ECT’s mechanism of action remains largely unknown.  

 An alternative and well-established treatment for depres-
sion is tianeptine, an antidepressant which does not share 
pharmacological properties with TCAs, MAOIs or SSRIs 
[12,18,95,145,191]. Early studies suggested that tianeptine 
enhanced the uptake of serotonin [28,78,124,200], but more 
recent work indicates that tianeptine’s actions as an antide-
pressant are independent of modulating serotonin levels 
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[145,193]. Instead, tianeptine’s primary mode of action is to 
influence the expression of synaptic plasticity [18,36,55, 
77,120,121] via the modulation of glutamatergic neurotrans-
mission [88,118,158,159]. Tianeptine’s effectiveness in trea-
ting depression is of clinical, as well as conceptual, signifi-
cance. That is, the contrast in mechanistic actions between 
SSRIs and tianeptine, combined with the observation that 
both types of agents can treat depression, serves as a chal-
lenge to the heuristic value of the monoamine hypothesis of 
depression [66,135]. 

CHRONIC STRESS AND STRUCTURAL PLASTIC-

ITY IN THE HIPPOCAMPUS, PREFRONTAL COR-

TEX AND AMYGDALA 

 In recent years, researchers have suggested that depres-
sion is manifested through alterations in neuroplasticity, 
which involves structural and functional changes in how the 
brain processes information [55,77,191]. Investigators have 
contended that the emotional and cognitive components of 
depression manifest themselves as changes in neurochemical 
levels that ultimately produce significant alterations in brain 
morphology and, consequently, function [55]. In depressed 
patients, studies have described structural and functional 
alterations in three brain regions that are highly involved in 
emotional and cognitive processing: the hippocampus, pre-
frontal cortex and amygdala [174]. 

 In general, studies have reported significant reductions of 
hippocampal and prefrontal cortex volumes in depressed 
patients [74,111,194]. The hippocampus is a medial temporal 
lobe structure which is important for declarative memory in 
humans [49,182] and spatial working memory in rodents 
[20,21,79,128,129,207]. The prefrontal cortex is located in 
the anterior portion of the frontal lobe and plays an important 
role in complex cognitive processes, such as planning, deci-
sion-making and behavioral flexibility [13]. Depressed indi-
viduals exhibit impaired performance on hippocampus- and 
prefrontal cortex-dependent cognitive tasks, which corre-
sponds with reduced or abnormal activity in each of these 
brain regions when depressed patients engage in such tasks 
[47,126]. In contrast to the hippocampus and prefrontal cor-
tex, amygdala volumes of depressed patients are larger than 
those of healthy individuals following the first episode of 
depression [54]. However, with recurrent episodes, amygdala 
volumes in depressed patients tend to be smaller than those 
of controls [175]. Nevertheless, most work has reported that 
activity of the amygdala is increased in depressed individuals 
[43] and with successful treatment, significantly declines 
[178]. 

 It is well-established that stress significantly increases 
one’s likelihood of developing depression [81,132]. Exten-
sive preclinical research has shown that chronic stress pro-
duces behavioral alterations that are analogous to those ob-
served in depressed patients (e.g., anhedonia, learned help-
lessness, cognitive impairments) [4,56,114]. Thus, research-
ers have utilized animal models of stress effects on brain and 
behavior to potentially develop a better understanding of the 
neurobiological sequelae of this disorder. Animal models 
have shown that chronic stress significantly reduces the 
length, spine density and arborization of dendrites on neu- 

rons located in the prefrontal cortex [26,33,99,152,153] and 
hippocampus [31,87,97,106,108,122,198,203], while in-
creasing each one of these parameters on neurons in the 
amygdala [197,198]. Not surprisingly, then, these chronic 
stress regimens have been shown to produce significant im-
pairments of hippocampus-dependent (e.g., spatial learning) 
[14,92,104,139,181,185,211] and prefrontal cortex-depen-
dent (e.g., attention set-shifting, reversal learning) memory 
[26,99], while enhancing performance on tasks that are de-
pendent upon the amygdala (e.g., fear conditioning) [32, 
167]. Additionally, the same chronic stress that leads to hy-
pertrophy of cells in the amygdala increases the expression 
of anxiety-like behaviors in rats tested in the elevated plus 
maze [197,198]. 

 It is important to note that the effects of chronic stress on 
hippocampal [31,181] and prefrontal cortex [151] morphol-
ogy have been found to be reversible – that is, the dendrites 
re-grew when the stress was discontinued. This was not the 
case, however, for the effects of chronic stress on amygdala 
morphology or the amygdala-mediated expression of anxi-
ety-like behavior [199]. Additional work showed that the 
effects of chronic stress on these brain regions were medi-
ated by an interaction between glucocorticoids and NMDA 
receptor activity. Thus, chronic administration of corticos-
terone mimicked the effects of chronic stress on hippocam-
pal [109,181,208] and prefrontal cortex morphology [204], 
and the stress-induced dendritic retraction observed in the 
hippocampus was blocked by steroid synthesis inhibitors 
[107], as well as NMDA receptor antagonists [107] and 
agents that significantly reduced extracellular levels of glu-
tamate (e.g., phenytoin) [108,201]. These findings resonate 
with research in depressed patients, which indicates that 
these individuals have an overactive HPA axis [57,138] and 
abnormal brain glutamatergic levels [80,94,166]. 

TIANEPTINE PREVENTS CHRONIC STRESS-

INDUCED STRUCTURAL AND FUNCTIONAL 
CHANGES IN THE HIPPOCAMPUS, PREFRONTAL 

CORTEX AND AMYGDALA 

 Daily administration of tianeptine blocks the chronic 
stress-induced reduction of hippocampal volume [34], as 
well as the retraction of CA3 dendrites in the hippocampus 
[31,105,202]. In contrast, the SSRIs fluoxetine and fluvox-
amine were ineffective in preventing the stress-induced 
changes in CA3 morphology [105], suggesting that the ef-
fects of tianeptine and SSRIs may be mediated, at least in 
part, by different cellular and molecular mechanisms. Addi-
tional work has shown that tianeptine also prevents the ef-
fects of chronic stress on hippocampus-dependent learning 
and memory [30,104,212]. Investigators have yet to deter-
mine whether or not tianeptine prevents the effects of 
chronic stress on prefrontal cortex morphology. Considering 
tianeptine’s ability to block the effects of chronic stress on 
hippocampal structure and function, it is likely that ti-
aneptine would exert positive effects on the prefrontal cor-
tex, as well. Tianeptine also blocks the effects of chronic 
stress on hypertrophy of amygdala dendritic arbors, as well 
as the concurrent enhancement of anxiety-like behavior ac-
companying chronic stress [144]. These findings may be 
relevant to other work reporting that chronic tianeptine 
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treatment reduced the expression of auditory fear condition-
ing, an amygdala-dependent task [23]. 

MECHANISMS UNDERLYING TIANEPTINE’S EF-

FECTS ON CHRONIC STRESS-INDUCED CHANGES 

IN BRAIN STRUCTURE AND FUNCTION 

 The hippocampus is one of only two brain regions in the 
adult mammalian brain that produces new neurons, a process 
known as neurogenesis [48]. Although the functional role of 
neurogenesis has remained a highly debated topic, studies 
have provided evidence linking hippocampal neurogenesis 
with hippocampus-dependent learning [59,177]. In addition, 
several researchers have hypothesized that the pathogenesis 
of depression involves impaired hippocampal neurogenesis 
[42,46,65,69,169]. Accordingly, in animal models, chronic 
stress significantly reduces hippocampal neurogenesis [60, 
63,64,143,165,172] and increases apoptotic cell death in the 
hippocampus and temporal cortex [63,103,210]. Clinically 
effective antidepressants, including tianeptine, prevent the 
effects of chronic stress on hippocampal neurogenesis [34, 
42,172]. Tianeptine has also been reported to block the 
chronic stress-induced increase in apoptotic cell death in the 
temporal cortex [102], which may be related to its prevention 
of the chronic stress-induced reduction of cerebral metabo-
lites associated with neuronal viability (e.g., N-acetyl-aspa-
rtate) [34].

 Neurotrophic factors are significant regulators of cell 
survival and proliferation, thus making them vitally impor-
tant for the process of neurogenesis [68]. Some of the most 
extensively characterized neurotrophic factors include nerve 
growth factor (NGF), brain-derived neurotrophic factor 
(BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4). 
Numerous studies have shown that acute and chronic stress 
significantly reduce neurotrophic factor levels [172,179,180, 
190], but most studies have focused on the stress-induced 
reduction of BDNF levels in the hippocampus [3,10,90,131, 
146,155,161,162,165,170]. This effect has become the center 
of attention, at least in part, because several studies have 
reported significantly reduced levels of serum and hippo-
campal BDNF in depressed patients [6,75,176]. BDNF 
knock-out mice have been reported to exhibit morphological 
changes in the hippocampus that are comparable to those 
observed following exposure to chronic restraint stress [157]. 
Interestingly, investigators have shown that the efficacy of 
antidepressants in ameliorating behavioral symptoms of de-
pression, in depressed patients and animal models of stress, 
depends on their ability to increase BDNF levels [6,25,29]. 

 Tianeptine’s ability to prevent the effects of chronic 
stress on neurogenesis may involve blocking the stress-
induced reduction of neurotrophic factor levels in the hippo-
campus [3]. Another study, although reporting no effect of 
stress or tianeptine on hippocampal BDNF, found that 
chronic tianeptine treatment significantly increased BDNF 
levels in the rat amygdala, independent of whether or not the 
rats were exposed to stress [157]. According to Reagan and 
colleagues, the amygdala may be the site of initiation of 
chronic stress-induced morphological changes in other brain 
regions, such as the hippocampus and prefrontal cortex 
[157,159]. In support of this hypothesis, clinical studies on 
depressed patients have reported that morphological changes 

in the amygdala precede those that are observed in the hip-
pocampus [117]. Therefore, tianeptine’s effectiveness as 
antidepressant treatment may result from its stabilization of 
neurotrophin levels in the amygdala. Future studies should 
be conducted to examine this hypothesis. 

STRESS, TIANEPTINE AND SYNAPTIC PLASTIC-

ITY IN THE HIPPOCAMPUS, PREFRONTAL COR-

TEX AND AMYGDALA 

 Researchers have also hypothesized that depression in-
volves a disruption of long-term synaptic plasticity [36,121]. 
To indirectly address this issue, investigators have examined 
the effects of stress on long-term potentiation (LTP), a 
physiological model of learning and memory involving an 
enhancement of synaptic efficacy following high-frequency 
stimulation of afferent fibers [156]. Extensive work has 
shown that stress impairs the induction of LTP in the hippo-
campus and prefrontal cortex, while facilitating its induction 
in the amygdala [37,39,41,85]. The stress-induced modula-
tion of synaptic plasticity has been shown to be mediated by 
interactions among glucocorticoids [89,110,115], glutama-
tergic NMDA receptors [84,116,148] and amygdala-induced 
modulation of hippocampal plasticity [1,2]. 

 Tianeptine has been shown to block the stress-induced 
impairment of LTP in the hippocampus and prefrontal cor-
tex, without interfering with the stress-induced enhancement 
of LTP in the basolateral amygdala (BLA) [72,164,173,196]. 
Tianeptine blocked the inhibitory effects of stress on hippo-
campal LTP and primed burst potentiation (PBP), a low-
threshold form of LTP, when it was administered before or 
after the stress experience [173,196]. Other antidepressants, 
including some SSRIs, have also been reported to block the 
effects of stress on LTP in the hippocampus and prefrontal 
cortex, although these effects have been less significant and 
more transitory in nature [164].  

MEMORY-PROTECTIVE EFFECTS OF TI-

ANEPTINE 

 Tianeptine administration, under non-stress conditions, 
has been shown to increase the magnitude of synaptic plas-
ticity (LTP and PB potentiation) in the hippocampal CA1 
region [173,196]. This finding suggests that tianeptine 
should enhance learning and memory. Indeed, studies have 
shown that tianeptine enhances spontaneous alternation be-
havior, as well as performance on discrimination tasks in the 
T-maze and radial arm maze [70,123]. In contrast, the SSRI 
fluoxetine impaired performance on the radial arm maze 
discrimination task [70], a finding that is relevant to other 
work reporting that fluoxetine impairs the induction of LTP 
in hippocampal slices [173]. Recent work from our labora-
tory has shown that the acute administration of tianeptine 
immediately before training in the radial-arm water maze 
(RAWM) enhanced long-term (24 hr) spatial memory [130]. 
The doses of tianeptine used in this experiment (1-10 mg/kg) 
are the same doses that have been shown to enhance hippo-
campal LTP and PB potentiation [173,196], and to block the 
effects of chronic stress on hippocampal morphology and 
hippocampus-dependent learning and memory. 

 Extensive research has shown that acute stress impairs 
hippocampus-dependent learning and memory in humans 
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and rodents [37,39,41,83,85]. We recently reported that ti-
aneptine, but not the anxiolytic propranolol, blocked the 
predator stress-induced impairment of rat spatial memory in 
the RAWM [24]. Tianeptine prevented the effects of stress 
on memory without altering the stress-induced increase in 
glucocorticoids, which suggests that tianeptine’s memory-
protective effects are independent of the stress-induced acti-
vation of the HPA axis. Moreover, the findings are consistent 
with in vivo electrophysiological studies reporting that ti-
aneptine blocked the effects of stress on hippocampal LTP 
without affecting stress-induced increases in corticosterone 
levels in rats [173]. 

 To extend this observation, we have tested whether ti-
aneptine could prevent the stress-induced impairment of spa-
tial memory in adrenalectomized (ADX) rats. If tianeptine’s 
mechanism of action is independent of the stress-induced 
increase in adrenal hormones, then tianeptine should prevent 
the effects of stress on hippocampus-dependent spatial mem-
ory in ADX rats. In this experiment, rats (250-275 g; Harlan 
Laboratories; Indianapolis, IN) underwent ADX or sham 
surgery, following previously-described methods [52,133]. 
The drinking water of ADX rats was composed of 0.9% sa-
line with 25 mg/l of corticosterone to prevent any adverse 
effects of corticosterone depletion on their physiology. One 
week following surgery, the rats were injected intraperito-
neally with tianeptine (10 mg/kg) or vehicle (0.9% saline, 1 
ml/kg) and then, 30 min later, they were given 12 trials to 
learn the location of a hidden escape platform, which was 

placed at the end of one of six arms, in the RAWM [24, 
38,140,142,211]. Arm entry errors (i.e., entries into arms that 
did not contain the hidden platform) served as an indicator of 
a rat’s memory for the hidden platform. Following training, 
the rats spent a 30 min delay period in their home cages (No 
Stress) or confined to a small plexiglas chamber near a cat 
(Stress) [24,142,168]. The 30 min delay period was termi-
nated with a single memory test trial in the RAWM, which 
was followed by the collection of a 0.5 ml sample of tail 
blood for subsequent analysis of corticosterone levels [24, 
142,168]. 

 As can be seen in the memory test trial data on the left 
side of Fig. (1), the control (i.e., non-stressed) rats demon-
strated excellent memory for the location of the hidden plat-
form, independent of whether or not they had undergone 
ADX surgery. This finding indicates that adrenal hormones 
are not necessary for spatial learning in the water maze and 
successful retrieval of short-term (30 min) hippocampus-
dependent memory. As shown on the right side of Fig. (1), 
water maze training increased serum corticosterone levels in 
sham-operated control rats, relative to control rats that had 
undergone the ADX procedure. We found that vehicle-
treated, adrenal-intact and ADX rats that were exposed to the 
cat during the 30 min delay period displayed significantly 
impaired performance on the memory test trial. This finding 
supports the notion that increased levels of glucocorticoids 
do not underlie the rapid impairing effects of stress on hip-
pocampus-dependent memory [140]. Most importantly, acute 

Fig. (1). Pre-training administration of tianeptine blocked the effects of predator stress on spatial memory in adrenalectomized (ADX) and 

adrenal-intact (Sham) rats without affecting corticosterone levels. Arm entry errors from the 12 acquisition trials in the RAWM (data not 

shown) were analyzed with a mixed-model ANOVA. This analysis revealed significant main effects of trials, F(11,693) = 19.59, and drug, 

F(1,63) = 4.28, and a significant Surgery x Stress x Drug interaction, F(1,63) = 4.18 (p’s < 0.05). While all groups made significantly fewer 

arm entry errors as trials progressed, tianeptine led to significantly more arm entry errors than vehicle in all groups except for the stress-

exposed ADX group. All other main effects and interactions were not significant. Arm entry errors from the 30 min memory test trial (left) 

were analyzed with a one-way ANOVA. This analysis revealed significant main effects of stress, F(1,63) = 20.64, and drug, F(1,63) = 9.22, 

as well as a significant Stress x Drug interaction, F(1,63) = 18.22 (p’s < 0.01). Vehicle-treated rats exposed to predator stress during the 30 

min delay period made significantly more arm entry errors than control (i.e., unstressed) rats. The administration of tianeptine prior to train-

ing blocked this effect in both ADX and sham-operated animals. Serum corticosterone levels (right) were analyzed with a one-way ANOVA. 

This analysis revealed significant main effects of surgery, F(1,41) = 129.71, and stress, F(1,41) = 49.75, and a significant Surgery x Stress 

interaction, F(1,41) = 46.08 (p’s < 0.0001). Water maze training significantly increased corticosterone levels in sham-operated control rats, 

relative to ADX controls. Predator stress significantly increased corticosterone levels in sham-operated, but not ADX, rats, an effect that was 

independent of tianeptine treatment. For the water maze data, the dashed line at 2.5 errors indicates chance level of performance [40]. * = p < 

0.05 relative to no stress groups and tianeptine-treated stress groups;  = p < 0.05 relative to stress groups and ADX-no stress groups; # = p < 

0.05 relative to no stress groups and ADX-stress groups. 
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administration of tianeptine prior to water maze training pre-
vented the stress-induced impairment of spatial memory in 
both ADX and sham-operated animals, without having any 
significant effect on serum corticosterone levels. 

 In conjunction with our prior work [24], these findings 
provide convincing evidence that tianeptine’s memory-
protective effects are not accomplished via the modulation of 
stress-induced increases in glucocorticoid levels. This series 
of electrophysiological and behavioral experiments supports 
the hypothesis that tianeptine enables hippocampus-depen-
dent information to be stored more efficiently, thereby pro-
tecting its retrieval from being disrupted by stress. 

MECHANISMS UNDERLYING TIANEPTINE’S AN-

TIDEPRESSANT AND MEMORY-PROTECTIVE 
PROPERTIES 

 Although it initially appeared that tianeptine’s antide-
pressant action was attributable to its effects on serotonin 
reuptake [78,96], recent work indicates that its therapeutic 
effects may be more associated with its modulation of the 
glutamatergic system [18,77]. Glutamate is the primary exci-
tatory neurotransmitter of the central nervous system, and 
one of its roles is to regulate calcium influx by acting on 
postsynaptic AMPA and NMDA receptors [160]. Studies 
have shown that depressed patients exhibit elevated gluta-
mate levels in plasma, CSF and post-mortem brain samples, 
which supports current views implicating the dysregulation 
of glutamate transmission in the pathogenesis of depression 
[80,94,166].  

 Extensive work has implicated hyperactivity of the glu-
tamatergic system in the deleterious effects of stress on brain 
structure and function. Experiments conducted primarily on 
the hippocampus have shown that stress significantly in-
creases glutamate levels [7,100,101,125,159], inhibits glu-
tamate uptake [209], increases the expression and binding of 
glutamate receptors [11,93,119] and increases calcium cur-
rents [73]. Accordingly, researchers have shown that admini-
stration of NMDA receptor antagonists blocks the effects of 
stress on behavioral, morphological and electrophysiological 
measures of hippocampal function [84,107,141]. 

 Tianeptine appears to protect the hippocampus and pre-
frontal cortex from the deleterious effects of stress by nor-
malizing the stress-induced modulation of glutamatergic 
activity. For instance, tianeptine blocked the stress-induced 
increase in NMDA channel currents, as well as the ratio of 
NMDA:non-NMDA receptor currents, in the CA3 region of 
the hippocampus [88]. Tianeptine also inhibited the acute 
stress-induced increase in extracellular levels of glutamate in 
the basolateral amygdala (BLA), while having no effect on 
the stress-induced increase in these levels in the central nu-
clei of the amygdala (CeA) [159]. Interestingly, as men-
tioned above, tianeptine had no effect on the stress-induced 
enhancement of LTP in the BLA [196]. This finding sug-
gests that the stress-induced enhancement of LTP in the BLA 
may involve NMDA-independent forms of synaptic plastic-
ity, such as voltage-gated calcium channel-dependent LTP 
[91].  

 In contrast to tianeptine, administration of the SSRI 
fluoxetine increased baseline and stress-induced levels of 

glutamate in the BLA and CeA [159]. This finding may ex-
plain why SSRIs are anxiogenic early in the treatment phase 
and exert therapeutic antidepressant and anxiolytic effects 
only after a substantial delay [23,58]. Moreover, investiga-
tors have shown that acute administration of the SSRI citalo-
pram enhanced the acquisition of auditory fear conditioning, 
while chronic treatment with citalopram impaired the acqui-
sition and expression of conditioned fear [23]. Acute treat-
ment with tianeptine, in contrast, had no effect on auditory 
fear conditioning, but when given chronically, exerted ef-
fects comparable to those of citalopram. Thus, tianeptine 
demonstrates long-lasting anxiolytic and antidepressant ef-
fects that are similar to SSRIs, without the adverse acute 
effects typically found with these agents. 

 Tianeptine’s effect on glutamatergic activity in amygdala 
may play an important role in its ability to reverse the effects 
of chronic stress on amygdala morphology and the expres-
sion of anxiety-like behaviors. In addition to its glutamater-
gic modulation, tianeptine reduces the expression of cortico-
tropin-releasing hormone (CRH) mRNA in the amygdala and 
the bed nucleus of the stria terminalis (BNST), a brain region 
that is highly innervated by amygdala fibers [86]. CRH neu-
rotransmission in both of these regions has been implicated 
in the expression of anxiety-like behaviors, and several stud-
ies have reported significantly elevated CSF CRH levels in 
depressed patients [67,76,183]. If the amygdala is the site of 
the initiation of chronic stress-induced functional changes in 
other brain regions, such as the hippocampus and prefrontal 
cortex, then tianeptine’s ability to stabilize amygdala activity 
could underlie its widespread anti-stress effects. 

 Chronic stress has been shown to increase expression of 
the glutamate transporter, GLT-1, which is important for 
removing excess glutamate from synaptic regions [158]. This 
effect was specifically observed in the CA3 region of the 
hippocampus, the primary area exhibiting significant mor-
phological alterations following chronic stress. Researchers 
have postulated that the up-regulation of GLT-1 levels in this 
region is a compensatory response to chronic elevations of 
extracellular glutamate levels. Importantly, tianeptine has 
been shown to block the stress-induced increase in hippo-
campal GLT-1 levels. In theory, tianeptine accomplishes this 
feat by normalizing stress-induced glutamate levels in  
the hippocampus, thereby removing the stimulus (i.e., exces-
sive glutamate) which necessitates increased expression of 
GLT-1. 

 Despite its ability to normalize the stress-induced in-
crease in NMDA receptor currents, tianeptine also increases 
basal excitatory synaptic transmission in hippocampal cir-
cuits, predominantly via enhancing AMPA EPSCs [88]. In 
addition to NMDA receptors, AMPA receptors play an im-
portant role in excitatory synaptic transmission and the in-
duction of long-term synaptic plasticity [154]. Recent work 
has reported that tianeptine modulates the phosphorylation of 
AMPA receptor subunits in the hippocampus [186]. Other 
antidepressants, such as SSRIs and tricyclics, have been 
shown to increase phosphorylation of the Ser845 site on the 
glutamate receptor subunit 1 (GluR1) of hippocampal AMPA 
receptors [45,187]. Investigators found that chronic, but not 
acute, tianeptine treatment significantly increased phosphory-
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lation of the Ser831 and Ser845 sites on the GluR1 of 
AMPA receptors in the CA3 region of the hippocampus 
[186]. Typically, phosphorylation of the Ser831 and Ser845 
sites of AMPA receptors occurs via protein kinase A (PKA) 
and calcium/calmodulin-dependent protein kinase II (CaM-
KII) or protein kinase C (PKC), respectively, and potentiates 
AMPA currents in the hippocampus [9,163]. Thus, the ti-
aneptine-mediated increase in the phosphorylation of the 
serine sites on the GluR1 of AMPA receptors could explain 
the finding of a tianeptine-induced enhancement of AMPA 
EPSCs in the study of Kole et al. [88], which may also be 
relevant toward understanding tianeptine’s effectiveness as 
an antidepressant. 

 Recent work has also reported that tianeptine has anti-
convulsant properties. Uzbay and colleagues found that ti-
aneptine reduced the intensity [27] and delayed the onset 
[192] of pentylenetetrazole-induced seizures in rodents. The 
latter effect was blocked by the administration of caffeine, a 
nonspecific adenosine receptor antagonist, and 8-cyclo-
pentyl-1,3-dipropylxanthine, an A1 receptor-specific antago-
nist. However, administration of the A2 receptor-specific 
antagonist, 8-(3-chlorostyryl) caffeine, had no effect on the 
tianeptine-induced delay of seizure onset, suggesting that 
tianeptine’s anticonvulsant properties are dependent upon 
activation of A1 adenosine receptors. Since previous work 
has shown that activation of A1 adenosine receptors has anx-
iolytic effects [53,71,149,150], this specific category of 
adenosinergic receptors could be responsible, at least in part, 
for tianeptine’s anxiolytic effects in rodents [23,50,51,144] 
and in the depressed population [35,205]. 

SUMMARY AND CONCLUSIONS 

 Depression is a common mental disorder for which effec-
tive pharmacological treatments are lacking. Investigators 
have utilized animal models of depression to develop a better 
understanding of the neurobiological basis of this disorder, 
which could ultimately produce improved treatment options 
for the patient. We have reviewed the findings of preclinical 
research demonstrating that tianeptine prevents the deleteri-
ous effects of stress on physiology and behavior. Tianeptine 
prevents chronic stress-induced morphological changes in 
the hippocampus and amygdala and blocks the effects of 
acute stress on synaptic plasticity in the hippocampus and 
prefrontal cortex. We have also reviewed findings demon-
strating that tianeptine has memory-protective properties, in 
which tianeptine-treated rats exhibited intact hippocampus-
dependent memory despite their being exposed to powerful 
fear-provoking stressors. Tianeptine’s prevention of the ad-
verse effects of stress on brain and behavior is likely to con-
tribute to its effectiveness as a treatment for people suffering 
from major depressive disorder. Although the antidepressant 
effects of tianeptine in people have been obtained through 
chronic administration, studies on the acute effects of ti-
aneptine provide researchers with important information 
regarding tianeptine’s mechanism of action and ways in 
which its use may be expanded in humans. 

 Tianeptine’s actions do not appear to involve the modula-
tion of stress-induced changes in HPA activity. We previ-
ously reported that tianeptine blocked the stress-induced 
impairment of spatial memory without affecting the stress-

induced increase in glucocorticoid levels. Here, we have 
found that tianeptine prevented the acute stress-induced im-
pairment of spatial memory in adrenalectomized rats, 
thereby demonstrating conclusively that elevated levels of 
glucocorticoids are not necessary for acute stress to affect 
memory, nor are they involved in tianeptine’s protective 
actions on memory. More recent work has suggested that 
tianeptine’s antidepressant effects may be attributable to its 
normalization of the stress-induced alterations of glutama-
tergic neurotransmission [18,77]. This finding resonates with 
accumulating evidence that has implicated abnormal gluta-
mate activity in the pathogenesis of depression. Other re-
search has shown that tianeptine has anticonvulsant proper-
ties, which are dependent upon adenosine receptor activa-
tion. Given the involvement of adenosine receptors in anx-
iolytic effects on behavior, tianeptine’s antidepressant effects 
could also involve modulation of adenosinergic neurotrans-
mitter systems. 

 In summary, tianeptine is a well-described antidepressant 
with effective actions against stress-induced sequelae of the 
nervous system. It is as effective as SSRIs in treating depres-
sion, produces fewer adverse side effects and reduces anx-
ious symptoms associated with depression without the need 
for concomitant anxiolytic therapy [5,16,19,61,188]. It is 
therefore relevant to note that tianeptine ameliorates symp-
toms in people with post-traumatic stress disorder (PTSD) 
[134] and in recent work has been shown to block the effects 
of intense stress on behavior and cardiovascular systems in 
an animal model of PTSD [212]. Thus, the well-described 
antidepressant and memory protective properties of ti-
aneptine indicate that, in addition to its effectiveness as a 
treatment in mood disorders, it potentially has broader appli-
cations, as in the treatment of anxiety. 
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