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SPINA Carb: a simple mathematical 
model supporting fast in‑vivo 
estimation of insulin sensitivity 
and beta cell function
Johannes W. Dietrich1,2,3,4*, Riddhi Dasgupta5, Shajith Anoop5, Felix Jebasingh5, 
Mathews E. Kurian5, Mercy Inbakumari5, Bernhard O. Boehm6,7,8,9 & Nihal Thomas5,9

Modelling insulin‑glucose homeostasis may provide novel functional insights. In particular, simple 
models are clinically useful if they yield diagnostic methods. Examples include the homeostasis 
model assessment (HOMA) and the quantitative insulin sensitivity check index (QUICKI). However, 
limitations of these approaches have been criticised. Moreover, recent advances in physiological and 
biochemical research prompt further refinement in this area. We have developed a nonlinear model 
based on fundamental physiological motifs, including saturation kinetics, non‑competitive inhibition, 
and pharmacokinetics. This model explains the evolution of insulin and glucose concentrations 
from perturbation to steady‑state. Additionally, it lays the foundation of a structure parameter 
inference approach (SPINA), providing novel biomarkers of carbohydrate homeostasis, namely the 
secretory capacity of beta‑cells (SPINA‑GBeta) and insulin receptor gain (SPINA‑GR). These markers 
correlate with central parameters of glucose metabolism, including average glucose infusion rate 
in hyperinsulinemic glucose clamp studies, response to oral glucose tolerance testing and HbA1c. 
Moreover, they mirror multiple measures of body composition. Compared to normal controls, 
SPINA‑GR is significantly reduced in subjects with diabetes and prediabetes. The new model explains 
important physiological phenomena of insulin‑glucose homeostasis. Clinical validation suggests that 
it may provide an efficient biomarker panel for screening purposes and clinical research.

Abbreviations
ASIA  Analog Signal memory with Intrinsic Adjustment
BMI  Body mass index
CV  Coefficient of variation
DXA  Dual Energy X-ray absorptiometry
FFM  Fat-free mass
fsIGT  Frequently sampled intravenous glucose tolerance test
GBeta or  Gβ  Gain of beta-cells
GR  Insulin receptor gain
HbA1c  Glycohemoglobin
HEC  Hyperinsulinemic-euglycemic clamp
HOMA  Homeostasis model assessment
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IDE  Integrated development environment
IR  Insulin resistance
IRB  Institutional review board
MARD  Mild age-related diabetes
MOD  Mild obesity-related diabetes
MOE  Ministry of education
MiMe  Michaelis–Menten
NHANES  National health and nutrition examination survey
NoCoDI  Non-competitive divisive inhibition
OGTT   Oral glucose tolerance testing
ORDAC  Overrange detection and correction
QUICKI  Quantitative insulin sensitivity check index
ROI  Region of interest
SAID  Severe autoimmune diabetes
SIDD  Severe insulin-deficient diabetes
SIRD  Sever insulin-resistant diabetes
SPINA  Structure parameter inference approach
VD  Volume of distribution

Mathematical modelling, particularly when combined with computer simulation, is increasingly favoured in the 
field of diabetes  research1,2. Some of the published models may also be used for medical decision making and 
other diagnostic  purposes3,4, or for prognostic  assessment5. For example, this applies to the homeostasis model 
assessment/insulin resistance assessment/ß-cell function (HOMA-IR and HOMA-Beta)6 and the quantitative 
insulin sensitivity check index (QUICKI)7. More recently, models of the insulin-glucose feedback loop have 
been increasingly applied for therapeutic purposes as well, particularly in the context of sensor-augmented and 
closed-loop insulin delivery  systems8–11. The growing success in clinical applications of modelling are mainly a 
result of both advanced insights into the physiology of insulin-glucose homeostasis, the availability of continuous 
glucose measurement technologies and improved methods of numeric  simulation12.

However, modelling usually represents a necessary compromise between the two often opposing goals of 
simplicity and accurate reproducibility. The question frequently arises as to where to draw the line between sim-
plification and comprehensive coverage of physiological phenomena, and the location of this line may depend on 
the specific requirements of the application. Therefore, the classical models that underlie the methods of calculat-
ing HOMA and QUICKI provide an, although in some aspects over-simplified, reasonably pragmatic approach, 
since they facilitated the development of rapid and economically efficient diagnostic index  methods13. On the 
other hand, complex approaches such as the Sorensen model and its derivations are useful for comprehensive 
understanding of detailed causal  networks14,15, although they are less applicable for routine clinical purposes. Yet, 
the consistency and predictive power of the HOMA methodology is  limited16. This applies to both assessment 
of insulin  resistance17–19 and estimation of beta-cell  function20,21.

With the advent of novel nonlinear methods for modelling and simulating feedback loops, and owing to the 
continued evolution of physiological knowledge and metabolic pathways it is time to revisit the methodology of 
screening for both insulin resistance and beta-cell function.

For this purpose, we ventured to develop a novel model for insulin-glucose homeostasis, which amalgamates 
the targets of simplicity and accuracy. This model is primarily based on pharmacokinetic data and fundamental 
physiological principles including non-competitive inhibition and saturation kinetics, as they are described by the 
Monod equation and applied in Michaelis–Menten kinetics, receptor theory and the Langmuir adsorption model.

Our main goals were to provide a simple and physiologically comprehensible model, to enable “vertical 
translation” from the molecular to a whole-body scale and to provide the foundation of a cost-effective diagnostic 
procedure requiring not more than a single fasting measurement of insulin and glucose. In favour of this goal of 
simplification, some factors such as glucagon production and the impact of incretins were deliberately omitted.

The diagnostic procedure derived from the model was designed to deliver information on insulin sensitivity 
and beta cell function, which are represented in the main building blocks of the theory and have been established 
as pathophysiological substrate for the development of diabetes and its classification.

Methods
The methodology comprises four parts, (1) the development of a concise nonlinear mathematical model of 
insulin-glucose homeostasis, (2) the implementation of this model through computer simulation, (3) the deriva-
tion of static function tests for insulin sensitivity and beta-cell function, and (4) the validation of these structural 
parameters in ethnically different clinical cohorts.

Mathematical model. The subsequently described model is based on the nonlinear MiMe-NoCoDI plat-
form for endocrine feedback  loops22. This platform has, however with a different model structure, previously 
been successfully implemented for several endocrine control motifs including thyroid homeostasis and hypo-
thalamus–pituitary–adrenal (HPA)  axis23,24. It combines saturation kinetics (in the form of Michaelis–Menten, 
Monod or Langmuir equations, for stimulating pathways) and non-competitive inhibition (for inhibiting rela-
tions). Pharmacokinetic properties of distribution and elimination are modelled as first-order kinetics. For the 
purpose of modelling insulin-glucose homeostasis, the platform has been adapted to account for the specific 
causal interactions in this feedback control system on the basis of the available experimental evidence (Fig. 1). 
The supplementary material S1 can be accessed for a full mathematical exposition and dimensional analysis.
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The Rates of secretion or absorption are translated to concentrations by fundamental pharmacological prin-
ciples of elimination and distribution. This process is modelled with so-called ASIA (Analog Signal memory 
with Intrinsic Adjustment) elements implementing first-order kinetics in the time  domain22. It can be expressed 
in form of the von Bertalanffy growth function, where the change rate of the concentration substance y depends 
on a controlling input signal x(t), the volume of distribution VD and a clearance exponent (rate constant) β with

In steady state ( t → ∞ ), the concentration of y results as

where the input signal x∞ is assumed to be constant and α = 1/VD. The rate constant depends on

with regards to the half-life of a respective substance. The transitional behaviour is described as

Of note, in steady state, the behaviour of an ASIA element can be simplified as a linear factor G = α/β, so that

Therefore, we can define the ASIA element for glucose concentration as

Under this assumption the plasma glucose concentration G(t) can be approximated with

as a linear function of the glucose arrival rate R(t), which is defined as the sum of the regulated endogenous 
glucose production rate Q(t) and the intestinal glucose absorption rate W(t), so that Eq. (7) can be expressed 
in the form

as a linear function of glucose production and absorption.

(1)
dy

dt
=

x(t)

VD
− βy(t).

(2)[y]∞ =
αx∞
β

,

(3)β =
ln(2)

t1/2

(4)
[
y
]
(t) =

αx(t)

β
+ Ke−βt .

(5)[y]∞ = Gx∞

(6)G1 =
αG

βG
.

(7)G(t) = G1R(t)

(8)G(t) = G1[W(t)+ Q(t)]

Figure 1.  Information processing structure of the feedback model. [G](t): glucose concentration; S(t): insulin 
secretion rate; [I](t): insulin concentration; M(t): proximal insulin signalling; N(t) distal insulin signalling; P(t): 
constitutive glucose production rate; Q(t): regulated glucose production rate; W(t): intestinal glucose absorption 
rate; R(t): glucose arrival rate.  G1 and  G3 represent gains of ASIA elements (see text for their derivation). Units of 
measurement are displayed in the small rounded boxes with red margins.
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Although secondary insulin signalling N(t) is fed in via a non-competitive inhibiting mechanism

the insulin concentration itself undergoes saturation kinetics, which is expressed by the term

In summary, insulin concentration results as the weighted sum of W(t) and a non-competitive mechanism 
comprising basal glucose production P(t), insulin concentration I(t) and several constant structure parameters 
of the feedback loop (Table 1):

Similar to Eq. (6), the ASIA element for insulin concentration is defined as

Therefore, insulin concentration depends on glucose concentration and constant parameters with

With

and

the glucose concentration can be expressed in an iterative equation as

being dependent on P(t), W(t) and structure parameters only.
For the fasting steady-state (equifinal) case with W(t) = 0 and t → ∞ , the iterative Eq. (16) can be rewritten 

with a = 1+ K1 , b = K2 − G1P(∞) and c = −G1K2P(∞) as the quadratic equation

Since b < b2 − 4ac > 0 Eq. (17) has the two solutions

(9)Q(t) =
P(t)]

1+ N(t)

(10)N(t) =
GEGRI(t)

DR + I(t)
.

(11)G(t) = G1W(t)+
G1P(t)]

1+ GEGRI(t)
DR+I(t)

(12)G3 =
αI

βI
.

(13)I(t) =
G3GβG(t)

Dβ + G(t)
.

(14)K1 =
GEGRG3Gβ

DR + G3Gβ

(15)K2 =
DRDβ

DR + G3Gβ

(16)G(t + 1) = G1W(t)+
G1P(t)

1+ K1G(t)
K2+G(t)

(17)aG(∞)2 + bG(∞)+ c = 0.

Table 1.  Parameters used for predicting the steady state and for computer simulations.

Parameter Explanation Value Source or references

αG Dilution factor (1/VD) for glucose 0.11  L−1 32,53

βG Clearance exponent (rate constant) for glucose 7.1e–4  s−1 32,54

G1 αG/βG by definition

Gβ Secretory capacity of beta cells 2.8 pmol/s Estimated from NHANES data

Dβ EC50 of glucose at beta cells 7 mmol/L 55,56

αI Dilution factor (1/VD) for insulin 0.2  L−1 57

βI Clearance exponent for insulin 3.4e–3  s−1 58,59

G3 αI/βI by definition

GR Insulin receptor gain 2.3 mol/s Estimated from NHANES data

DR EC50 of insulin at its receptor 1.6 nmol/L 60

GE Effector gain 50 s/mol Calibration factor

P Constitutive endogenous glucose production 150 µmol/s Derived  from31,32

W Intestinal glucose absorption rate 0 µmol/s by definition
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The positive solution represents the equifinal glucose concentration G(∞) in the steady fasting state.

Computer simulations. In order to study the temporal behaviour of the feedback loop, the model has 
been implemented with a computer simulation (SimulaBeta)26. The software has been written in Object Pascal 
with the Lazarus IDE (version 2.0.10)27 for Free Pascal (version 3.0.4)28 and utilises the class library CyberUnits 
 Bricks29 for simulations in life sciences (version 1.1.1). Additional code for some visualisation purposes has been 
written in the language S with the R environment for statistical computation (version 3.6.3)30. The parameters 
used for simulation and steady-state prediction have been reported in Table 1. For simulation, the constitutive 
glucose production rate P0 was defined to be 150 µmol/s, so that it delivers a fasting regulated glucose arrival rate 
(R) between 10 and 100 µmol/s31,32 (see supplementary information S1 for a detailed explanation of its deriva-
tion).

Derivation of a structure parameter inference approach (SPINA) as static function test. Under 
the assumption of steady-state fasting conditions, the equations describing the behaviour of the feedback loop 
can be solved for constant structure parameters. Here, we were interested in the gains of beta cells (Gβ) and 
insulin sensitivity (GR).

From the model equations Gβ can be estimated as

and GR as

For a simplified notation, we will subsequently refer to Ĝβ as SPINA-GBeta and to ĜR as SPINA-GR, consistent 
with the notation used for model-based assessment of thyroid  homeostasis33.

Validation studies. The validity and diagnostic utility of the newly defined structure parameters were eval-
uated in two independent cohorts from the USA and India. For this purpose, we re-analysed anthropometric 
data and results of oral glucose tolerance testing from the NHANES 2007/2008 cohort for a potential correla-
tion to SPINA-GBeta and SPINA-GR34. Additionally, we calculated the same parameters in an independent 
cohort from rural India, based on observations from hyperinsulinemic-euglycemic clamp (HEC) studies in a 
homogenous cohort of Asian Indian males with low body mass  index35. Results for SPINA-GBeta and SPINA-
GR were compared with surrogate indices, namely HOMA-Beta, HOMA-IR and QUICKI. All biomarkers of 
insulin-glucose homeostasis were calculated from fasting glucose and insulin concentrations. In order to obtain 
information on re-test reliability and intra-individual clustering repeated measurements of fasting insulin and 
glucose concentrations were performed with an interval of four days between repeats.

The inclusion criteria for the re-analysis of the NHANES cohort were the availability of data on oral glucose 
tolerance testing (OGTT) and the presence of somatometric measurements (body mass and length) as well as 
fasting glucose and insulin concentrations. Exclusion criteria were treatment with insulin or oral antidiabetic 
agents. The second validation was done from data from HEC studies in non-obese (BMI < 20 kg/m2), young, 
normoglycemic Asian Indian males from Southern India. The protocol for the comprehensive study was approved 
by the Institutional Review Board (IRB) of Christian Medical College, Vellore, India (Research Committee Min-
ute Number: 5879, 2006 and Administrative Committee Minute Number: 50-y: 6-2006) and was performed in 
accordance with the Declaration of Helsinki. This study included males aged between 18 and 22 years who were 
normoglycemic, normolipidemic individuals with no history of smoking or alcoholism, hepatic diseases, HIV, 
malignancies of any form and drug overuse. Informed consent was obtained from all subjects, prior to inclusion 
in the study. The participants underwent anthropometry and whole-body composition analysis by Dual Energy 
X-ray absorptiometry (DXA). The DEXA is a non-invasive, gold standard technique that uses a dual energy X 
ray beam to quantify soft tissues and bones. Measures of body composition, namely fat mass, lean mass and 
fat-free mass were quantified by a DEXA scanner (Hologic DEXA Discovery QDR 4500). The scanner was cali-
brated daily using an aluminum phantom. Bilateral sections and whole body composition data were obtained 
by analysis of the regions of interest (ROI) using APEX  software36. All subjects included in the HEC study were 
normoglycemic and healthy. They were not on any medications or supplements that could interfere with the 
results of insulin or glucose determinations, or the clamp procedures.

Hyperinsulinemic Euglycemic Clamp (HEC) methodology used in the study. Participants of the 
study were apprised on the clamp procedure. The eligible study participants reported to the metabolic study 
centre at 07:00 h after an overnight fast (lasting at least 8 h after dinner) and no consumption of any form of bev-
erages in the morning. A physician examined the vital physiological parameters, prior to the start of the hyper-
insulinemic euglycemic clamp (HEC) procedure. All participants underwent a non-tracer based 120-min HEC 
procedure for assessment of whole-body insulin sensitivity. In the HEC procedure, two indwelling intravenous 
catheters were inserted contralaterally in the veins of the antecubital fossa. In one catheter, a continuous insulin 
infusion was initiated, and the flow rate was maintained at 40 mU/kg/min using an automated infusion pump 

(18)G(∞)1,2 =
−b±

√
b2 − 4ac

2a
.

(19)Ĝβ =
[I](∞)(Dβ + [G](∞))

G3[G](∞)

(20)ĜR =
G1P(∞)(DR + [I](∞))

GE[I](∞)[G](∞)
−

DR

GE[I](∞)
−

1

GE
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(Terumo infusion pump TE-112) during the entire duration of the clamp. To maintain euglycemia (5 mmol/L), 
25% dextrose solution was infused with meticulously adjusted flow rates. The dextrose infusion rate was adjusted 
to maintain a stable plasma glucose concentration of 5 mmol/L throughout the clamp procedure. Plasma glucose 
levels were measured by drawing blood samples from the other antecubital vein, every 5 min, using a bedside 
glucose analyser (Analox GM-9D). Blood samples for biochemical estimation of insulin, C-peptide and plasma 
glucose were drawn at baseline and at the end of the steady state phase (i.e., last 30 min of the basal phase and 
the last 30 min of the clamp period)35. The measure of whole-body insulin sensitivity was designated as glucose 
disposal rate (M-value) and was derived during a steady state wherein euglycemia (5 mmol/L of plasma glucose) 
was achieved by infusing high levels of insulin during the 2-h HEC procedure. The steady-state was calculated 
between 60 and 120 min after the start of the insulin infusion, based on the formula of DeFronzo et al.37.

Laboratory procedures. In the group undergoing HEC plasma glucose levels were measured by the glu-
cose-oxidase method. Serum insulin and C-peptide levels were measured by the chemiluminescence method 
using diagnostic kits supplied by Siemens, on the Immulite 2000 system (Siemens Healthcare Diagnostic Prod-
ucts, Llanberis, Gwynedd, UK). Chemistry and Immunoassay controls supplied by Bio-Rad were used as inter-
nal precision controls (coefficient of variation (CV) 10.2% for insulin and 3.7% for C-peptide)35.

In the NHANES cohort fasting glucose concentration was measured with UniCel® DxC800 Synchron and 
Synchron LX20 assays (Beckman Coulter, Inc, Brea, Ca., USA) with an analytical range of 0.16–33.3 mmol/L 
and up to 66.7 mmol/l with ORDAC (overrange detection and correction). Serum insulin concentrations were 
determined with an ELISA kit (Mercodia AB, Uppsala, Sweden). The detection limit was 6 pmol/L. Whole-blood 
glycohemoglobin (HbA1c) concentrations were measured with an A1c 2.2 Plus or an A1c G7 HPLC Glycohe-
moglobin Analyzer (both Tosoh Medics, Inc., San Francisco, Ca., USA). The reportable range was between 3.4% 
and 18.8% or 3.0% and 19.0%, respectively.

Statistical methods. The Statistical analyses performed with custom S scripts written for the environment 
R 3.6.3 on  macOS30. Biomarkers in different groups (no diabetes, prediabetes and diabetes) were compared 
via Kruskal–Wallis tests and post-hoc pairwise Wilcoxon-Mann–Whitney U test. Alpha error correction for 
multiple testing was performed with the Benjamini–Hochberg procedure. Correlations between continuous 
variables were evaluated with Spearman’s rank correlation, and Zou’s procedure was used to obtain confidence 
intervals for comparing correlations for new and traditional  parameters38. Bland–Altman plots were used to test 
the agreement between traditional and novel calculated parameters. Ergodicity of biomarkers was evaluated as 
repeatability from intraindividual and interindividual variances with

In ergodic systems intraindividual statistical moments are equal or at least very similar to parameters of 
interindividual statistics. Intraindividual clustering implies low ergodicity.

Ethics approval and consent to participate. The NHANES protocol has been approved by the NCHS 
Research Ethics Review Board (ERB) of the US National Center for Health Statistics (Protocol #2005-06). The 
protocol for the glucose clamp study was approved by the Institutional Review Board (IRB) of Christian Medi-
cal College, Vellore, India (Research Committee Minute Number: 5879, 2006 and Administrative Committee 
Minute Number: 50-y: 6-2006). All research has been performed in accordance with the Declaration of Helsinki.

Results
Modelling and simulation results. With the standard parameters from Table 1, the mathematical model 
predicts steady-state values for metabolic variables that are located in a physiological range (Supplementary 
Table S1).

The transitional behaviour of the system in a dynamic simulation is shown for the different initial concen-
trations in Supplementary Fig. S3. Despite different values at initiation, the same physiological steady-state 
concentrations are achieved by the feedback loop.

With the parameters of Table 1 the results of simulated oral glucose tolerance tests (oGTT) and frequently 
sampled intravenous glucose tolerance tests (fsIGT) are within the time-dependent reference ranges of healthy 
 volunteers39,40 (Supplementary Table S2 and Supplementary Fig. S4).

Results of clinical validation. Records of 2472 subjects were selected from the NHANES cohort of 2007–
2008, and 100 subjects of a different cohort were included in the clamp study. The basic clinical characteristics of 
the study populations are reported in Table 2.

In the NHANES cohort, HOMA-Beta and SPINA-GR differed between diabetic, prediabetic and nondiabetic 
subjects (Table 3).

All calculated parameters correlated to anthropometric data, response to oGTT and HbA1c values in the 
NHANES cohort (Table 4 and Fig. 2), but most correlations were weakest for HOMA-Beta. SPINA-GR had a 
stronger correlation to oGTT results and HbA1c than all other parameters. With the exception of the triceps 
skinfold, SPINA-GBeta correlated more strongly to clinical parameters than the corresponding HOMA-Beta, 
in particular to the oGTT results.

(21)e =
Varinterindividual

Varintraindividual + Varinterindividual
.
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Likewise, all parameters showed correlations to the M value (measure of whole-body insulin sensitivity) 
in the glucose clamp experiment, and some of them also correlated to anthropometric measures (Table 4 and 
Figs. 2 and 3).

As expected, traditional (HOMA and QUICKI) and novel parameters (SPINA) are highly correlated, but 
Bland–Altman plots reveal proportional bias (supplementary Figs. S5–S7).

Re‑test reliability and ergodicity. All calculated parameters have a comparably high retest reliability, 
as quantified with Spearman’s rho from results in repeated measurements (Supplementary Table S3). Among 
the biomarkers for beta-cell function, SPINA-GBeta has a higher re-test reliability than HOMA-Beta. Based on 
Spearman’s rho, SPINA-GR is slightly more reliable than the other two markers for insulin sensitivity, although 
its repeatability quantified by e is lower. All biomarkers have low ergodicity as demonstrated by a quite high 
contribution of interindividual variance to the total variance (Supplementary Table S3).

Relation between insulin resistance and beta cell function. The results of both cohorts show a 
hyperbolic association between SPINA-GBeta and SPINA-GR in healthy volunteers (Fig.  4). Subjects with 
impaired glucose homeostasis (prediabetes) and diabetes are largely at the lower left edge of this hyperbolic 
region, indicating comparatively lower functional capacity of beta cells and/or insulin sensitivity.

Discussion
In this project, we have developed a novel mathematical model of insulin-glucose homeostasis that is founded in 
basic physiological and biochemical properties of the involved control motifs. Compared with the relatively more 
complex theories, e. g. the approaches by Sorensen, Misgeld et al. or Panunzi et al.14,15,41, it is a relatively simple 
model that synopses from several details and special interactions. On the other hand, key functional relationships 

Table 2.  Clinical characteristics of the two studied cohorts. Data are reported as mean ± SD or counts 
(percentage). ††† p < 1e–15 for the comparison of the cohorts.

NHANES 2007/2008 cohort (n = 2474) Glucose clamp study in Asian Indian males (n = 100)

Age, years 43.3 ± 20.4 19.8 ± 1.0†††

Sex

Female 1242 (50.2%) 0 (0%)

Male 1232 (49.8%) 100 (100%)†††

Body surface area,  m2 1.9 ± 0.3 1.7 ± 0.1†††

Body mass index, kg/m2 27.5 ± 6.2 19.1 ± 2.8†††

Waist circumference, cm 94.6 ± 15.7 69.9 ± 7.4†††

Fat-free mass (FFM), kg N/A 43.4 ± 5.4

Triceps skinfold, mm 18.4 ± 8.3 N/A

Subscapular skinfold, mm 20.0 ± 8.4 N/A

Diabetes

No diabetes 2403 (97.1%) 100 (100%

Prediabetes 31 (1.3%) 0 (0%)

Diabetes 37 (1.5%) 0 (0%)

Fasting glucose (mmol/L) 5.7 ± 1.0 4.8 ± 0.4†††

Fasting insulin (pmol/L) 74.8 ± 60.4 24.6 ± 27.1†††

HbA1c (%) 5.5 ± 0.6 5.4 ± 0.4

M value (mg/kg/min) N/A 10.9 ± 3.8

Table 3.  Biomarkers of insulin-glucose homeostasis in subjects with diabetes, prediabetes and no diabetes of 
the NHANES cohort and in lean healthy volunteers of the Clamp cohort. Shown are means ± SEM. p * < 0.05, 
** < 0.01 compared to subjects without diabetes (comparisons for NHANES cohort only). †††p < 1e–15 for the 
comparison of the cohorts.

NHANES cohort Clamp cohort

No diabetes (n = 2403) Prediabetes (n = 31) Diabetes (n = 37) Volunteers (n = 100)

HOMA-Beta 122.4 ± 2.2 111.1 ± 12.2 83.1 ± 10.8** 61.7 ± 4.8†††

HOMA-IR 3.2 ± 0.1 4.5 ± 0.6 4.2 ± 0.5 0.9 ± 0.1†††

QUICKI 0.34 ± 0.00 0.32 ± 0.01 0.33 ± 0.01 0.42 ± 0.01†††

SPINA-GBeta (pmol/s) 2.83 ± 0.05 3.29 ± 0.37 2.53 ± 0.31 1.01 ± 0.10†††

SPINA-GR (mol/s) 2.34 ± 0.04 1.57 ± 0.19* 1.86 ± 0.30* 8.77 ± 0.64†††
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including receptor binding and pharmacokinetic properties are described based on physiological evidence. The 
design of this model is in direct concordance with the goals of the project, i.e., to develop an analytical solution 
of steady-state behaviour, to support vertical translation between molecular and whole-organism scales and to lay 
the foundations of cost-effective and robust diagnostic methods, by simply utilizing fasting insulin and glucose 
concentrations. On the basis of the MiMe-NoCoDI platform, it was possible to calibrate the model with physi-
ological data from cohort-based studies with a gold standard technique (the hyperinsulinemic euglycaemic clamp 
study). Under these premises, the fact that simulated concentrations for insulin and glucose were in the normal 
physiological range supports the assumption of the new model as a sufficient description for glucose homeostasis.

Table 4.  Correlations of calculated biomarkers to somatometric data and response to oral glucose tolerance 
testing (NHANES cohort) or M-value (clamp cohort), respectively. Shown are rho values of Spearman’s rank 
correlation. p * < 0.05, ** < 0.01, *** < 0.001, † < 1e–4, †† < 1e–6, ††† < 1e–15 for correlations. ∆ Different from 
correlation for corresponding HOMA parameter; ◊ different from correlation for QUICKI, based on Zou’s 
confidence intervals.

HOMA-Beta HOMA-IR QUICKI SPINA-GBeta SPINA-GR

NHANES cohort

BMI 0.416††† 0.516††† − 0.516††† 0.500†††∆ − 0.513†††

Waist circumference 0.339††† 0.498††† − 0.498††† 0.456†††∆ − 0.502†††∆◊

Triceps skinfold 0.371††† 0.331††† − 0.331††† 0.363††† − 0.320†††∆◊

Subscapular skinfold 0.320††† 0.383††† − 0.383††† 0.375†††∆ − 0.381†††

2 h glucose in oGTT 0.050* 0.347††† − 0.347††† 0.235†††∆ − 0.368†††∆◊

Glucose rise in oGTT 0.091† 0.245††† − 0.245††† 0.187†††∆ − 0.256†††∆◊

HbA1c − 0.063*** 0.219††† − 0.219††† 0.104††∆ − 0.243†††∆◊

Clamp cohort

BMI 0.193 0.056 − 0.054 0.089∆ − 0.049

Waist circumference 0.374*** 0.274** − 0.275** 0.295** − 0.273**

WHR 0.276** 0.245* − 0.242* 0.248* − 0.250*

Truncal fat 0.379*** 0.412*** − 0.412† 0.408† − 0.411†

Fat (DXA) 0.409† 0.427† − 0.428† 0.429† − 0.429†

FFM 0.238* 0.078 − 0.077 0.113∆ − 0.071

M value − 0.361*** − 0.311** 0.314** − 0.334*** 0.305**

Figure 2.  Circular Maps of the correlation networks of novel biomarkers for insulin-glucose homeostasis 
with anthropometric and experimental data in the NHANES cohort (A) and the clamp study (B). Shown are 
significant correlations (p < 0.05) only, and line thickness indicates the strength of negative (blue) or positive 
(red) correlation. A green segment in the inner ring indicates a reduction of the corresponding biomarker in 
subjects with diabetes.
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From the equations, we have derived methods to calculate constant structural parameters of the feedback loop, 
i.e. the secretory capacity of beta cells (Gβ or SPINA-GBeta) and the insulin receptor gain (GR or SPINA-GR), 
and we validated these parameters in two different ethnic cohorts from two continents, one representing a group 
of lean young insulin-sensitive men from India and the other one (US citizens from the NHANES 2007/2008 
study) being a population-based sample that included older and obese subjects. In both cohorts, SPINA-GBeta 
and SPINA-GR correlated to key markers of body composition including waist circumference, waist to hip ratio, 
fat distribution and fat content. More importantly, they also correlated with the results of oral glucose tolerance 

Figure 3.  Correlations of SPINA-GBeta and SPINA-GR to waist circumference, fat content and the M value of 
glucose clamp investigation. p values refer to Spearman’s rho. For greater clarity regression lines of linear models 
were added together with 95% confidence bands.

Figure 4.  Plot of SPINA-GBeta against SPINA-GR, suggesting a compensatory rise of beta cell function in the 
case of declining insulin sensitivity in subjects with normal glucose homeostasis (green dots). This ability of beta 
cell compensation if partly lost in subjects with prediabetes (orange dots) or diabetes (red dots).
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testing, HbA1c concentration and the glucose disposal rate in a glucose clamp investigation. Additionally, SPINA-
GR was significantly reduced in subjects with both diabetes and prediabetes from the NHANES study.

When analysing the fit between traditional and novel parameters, some spurious correlations are to 
be expected, since HOMA, QUICKI and SPINA employ fasting concentrations of insulin and glucose. The 
Bland–Altman plots show, however, systematic differences, proving that the approaches do not provide the same 
information. Therefore, the new static function tests cannot be replaced by the established ones (supplementary 
Figs. S5–S7).

SPINA-GBeta is similar in the three subgroups of the NHANES cohort (Table 4). This observation may 
reflect the heterogenous nature of type 2 diabetes comprising subjects with low (SIDD and MARD subtypes) 
and normal or even compensatory enhanced beta cell function (SIRD and MOD subtypes)42. This assumption 
is supported by the observation that SPINA-GBeta correlates positively to BMI, waist circumference and body 
fat content and negatively to the M value in the clamp investigation.

Plotting SPINA-GBeta against SPINA-GR shows that most subjects with normal glucose homeostasis are 
within a hyperbolic region, where increased beta cell function compensates for declining insulin sensitivity 
(Fig. 4). This compensatory capacity may reflect dynamic compensation, where the proliferation of beta cells 
is stimulated by increased  demand43. It declines, however, in prediabetes and even more in some subjects with 
diabetes, which have in part considerably reduced beta-cell function and/or insulin sensitivity. However, the 
structural parameters of some of the volunteers classified as healthy in the NHANES cohort were located external 
to the region of physiological compensation as well. Their parameters may indicate a grey zone of undiagnosed 
prediabetes or even diabetes, where glucose toxicity or the proliferation of senescent cells annihilate the process 
of dynamic  compensation44.

The NHANES datasets do not contain any information on a potential allocation of diabetic subjects to the 
recently defined novel subtypes of  diabetes42. From theoretical considerations we expect the SAID and SIDD 
subtypes to be located in the lowest region of Fig. 4 (representing very low SPINA-GBeta), SIRD in the left part of 
the plot (characterised by low SPINA-GR) and MOD in the lower left region below and/or left of the hyperbolic 
normal cohort (marked by a combination of comparatively low SPINA-GBeta and SPINA-GR). These assump-
tions should be confirmed by a dedicated analysis including diabetic subjects with pre-defined modern diabetes 
classification, however.

In the cohort undergoing the hyperinsulinaemic euglycaemic clamp study that included healthy, lean, young 
men, the correlations of the novel biomarkers were akin to that of established parameters (HOMA-Beta, HOMA-
IR and QUICKI). In the NHANES cohort with its higher proportion of older and obese subjects, however, the 
correlations were considerably stronger with the novel biomarker panel. This applies particularly to SPINA-
GBeta, which shows a significantly stronger correlation with all markers of glucose homeostasis when compared 
to the corresponding HOMA-Beta parameter. SPINA-GBeta also correlates better with most markers of body 
composition, with the exception of the triceps skinfold. This advantage of the application in subjects with insulin-
resistance reflects the nonlinear nature of the equations used in the new model, which as a result accounts more 
appropriately for the saturation effects in the context of higher glucose and/or insulin concentrations. Results of 
longitudinal measurements suggest that SPINA-GBeta, which demonstrates both higher intraindividual rho and 
repeatability (e) compared to HOMA-Beta, may be a more reliable biomarker for insulin-glucose homeostasis 
when compared with traditional parameters. The situation is less clear for HOMA-IR, which displays a lower 
e and higher Spearman’s rho when compared with the traditional parameters. In general, the low ergodicity of 
the calculated parameters indicates that they may represent personalised markers of the metabolic program-
ming in individuals rather than an overall metabolic pattern of the whole cohort. This implies a high degree 
of intraindividual clustering in insulin-glucose homeostasis, similarly to other endocrine feedback loops, e.g., 
thyroid  homeostasis45.

Another advance of the new approach is that it circumvents the “HOMA-blind”  zone46. Owing to the calcu-
lation formula HOMA-Beta cannot be sensibly determined if the fasting glucose concentration is equal or less 
than 3.5 mmol/l (63 mg/dl). In the situation of a high insulin level combined with a low glucose concentration 
HOMA-Beta would theoretically get a negative value, although the secretory capacity of beta cells is high in this 
situation (e.g. in insulinoma or nesidioblastosis). In contrast to HOMA-Beta, the equation for SPINA-GBeta is 
not affected by this disadvantage and can be calculated over the whole range of possible values for insulin and 
glucose concentration.

Altogether, mathematical modelling based on non-linear physiological interactions provides novel insights 
into the physiology of insulin-glucose homeostasis. Additionally, it lays the foundation for the development 
of novel calculated parameters covering beta-cell function and insulin sensitivity with a higher physiological 
validity than traditional parameters of the HOMA family. If confirmed by subsequent studies, the novel param-
eters may be of value for future metabolic research and for screening purposes as well. This may be especially 
important in the context of ongoing discussions in relation to the utility of calculated parameters of carbohydrate 
metabolism for purposes of precision diabetes diagnostics and personalised  treatments47,48.

Future investigations might also evaluate the novel parameters in pregnancy (including gestational diabetes 
mellitus), ageing and chronic illness. From theoretical reflections a combination of reduced SPINA-GBeta and 
SPINA-GR may be expected in the senium and chronic illness marked by type 1 allostatic load, whereas reduced 
SPINA-GR may be compensated by increased SPINA-GBeta in type 2 allostatic load and normal pregnancy. In 
gestational diabetes we expect some forms of allostatic failure, marked by significantly reduced SPINA-GR and 
not (or only insufficiently) elevated SPINA-GBeta. These hypotheses have to be validated in carefully planned 
future studies.
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Limitations. Important modifiers of insulin production and glucose metabolism, e. g. the effects of incre-
tins, glucagon, somatostatin, glucocorticoids, thyroid hormones, cytokines, adipokines, gut microbiota and the 
autonomic nervous  system49–51 have not been included in our model. Consequently, the current model will not 
be able to decipher the impact of these modifiers on the metabolic pattern of an individual. However, the modu-
lar structure of the model holds the potential to include additional metabolic modifiers, if required.

Another limitation is the small sample size and low mean BMI of the subjects included in the clamp cohort. 
The resulting low covariance may be the main reason as to why the correlations of all calculated parameters 
with the M value are rather weak. Therefore, additional validation studies are needed, not only to reassess the 
findings reported here but to obtain an idea as to whether these results apply to other ethnic populations as well. 
Generally, it is to be expected that most correlations may be stronger in more heterogeneous ethnic cohorts.

Conclusions
In summary, our modelling approach represents a compromise between simplicity and physiological fidelity. It 
tries to implement a balance point between simple descriptions of the insulin-glucose feedback control covered 
by the homeostasis model assessment and complex models which include those by Sorensen and others. Herein 
we provide the theoretical basis for a simple and inexpensive static function test based on single fasting insulin 
and glucose determinations, which has the potential to supplement the currently available spectrum of tests. If 
further validated, our model might especially be of value in the growing number of adults affected worldwide 
by the metabolic syndrome and type 2 allostatic  load52.

Data availability
Original data from the NHANES 2007/2008 cohort can be obtained from https:// www. cdc. gov/ nchs/ nhanes/ 
index. htm. The datasets used and analysed from the glucose clamp study are available in the online supplement 
to this publication. Likewise, S scripts used for evaluations have been provided in the supplementary material 
to this article. The simulation software SimulaBeta is available along with source code and ready-to-use applica-
tions for macOS and Windows from https:// simul abeta. sourc eforge. io/ or via Zenodo from https:// doi. org/ 10. 
5281/ zenodo. 49228 00.
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