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ABSTRACT
Background. Tartary buckwheat (TB), a crop rich in protein, dietary fiber, and
flavonoids, has been reported to have an effect on Type II diabetes (T2D), hypertension
(HT), and hyperlipidemia (HL). However, limited information is available about the
relationship between Tartary buckwheat and these three diseases. The mechanisms of
how TB impacts these diseases are still unclear.
Methods. In this study, network pharmacology was used to investigate the relationship
between the herb as well as the diseases and the mechanisms of how TB might impact
these diseases.
Results. A total of 97 putative targets of 20 compounds found in TB were obtained.
Then, an interaction network of 97 putative targets for these compounds and known
therapeutic targets for the treatment of the three diseases was constructed. Based on
the constructed network, 28 major nodes were identified as the key targets of TB due
to their importance in network topology. The targets of ATK2, IKBKB, RAF1, CHUK,
TNF, JUN, andPRKCAweremainly involved in fluid shear stress and the atherosclerosis
and PI3K-Akt signaling pathways. Finally, molecular docking simulation showed that
174 pairs of chemical components and the corresponding key targets had strong binding
efficiencies.
Conclusion. For the first time, a comprehensive systemic approach integrating drug
target prediction, network analysis, and molecular docking simulation was developed
to reveal the relationships andmechanisms between the putative targets in TB and T2D,
HT, and HL.
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INTRODUCTION
Tartary buckwheat (TB; Fagopyrum tataricum) is widely distributed in the temperate zones
of the Northern Hemisphere in countries that include: China, Europe, North America,
Korea, and Japan (Campbell, 1997; Ohsako & Ohnishi, 2002). TB is a medicinal and edible
crop that is rich in carbohydrates, flavonoids, and chemical compounds, thus it can be used
to prevent cardiovascular diseases and diabetes because of its high nutritive value and special
effect on physiological regulation (Fabjan et al., 2003; Kreft, 2016; Lin, 1994; Wieslander,
1996). The rutin content in TB seed is approximately 100 times (0.8–1.7%) higher than
that in common buckwheat (F. esculentum) (0.01%) (Fabjan et al., 2003). The earliest
record of the medical function of TB in Chinese history traces back to about 2,000 years
ago (Lin, 1994). However it has only been in recent years that TB, a health-beneficial
crop, has attracted a large attention for its nutraceutical functions (Kreft, 2016; Prakash &
Deshwal, 2013).

Type II diabetes (T2D), hypertension (HT) and hyperlipidemia (HL) are three major
diseases with a high incidence in modern society, which have seriously damaged human
health. TB has been reported to have the ability to decrease the risk of type 2 diabetes
mellitus (T2DM) (Lee et al., 2012; Zhang et al., 2012); research on TB has indicated that
dietary Tartary buckwheat intake attenuates insulin resistance and improves lipid profiles
in patients with T2D (Qiu et al., 2016). A diet that includes TB can also reduce the blood
sugar levels of patients with T2D, demonstrating that TB can contribute to the effective
control of T2D (Lee et al., 2016; Zhou et al., 2015). Moreover, TB is able to antagonize the
increase of capillary fragility associated with hypertension in humans (Im, Huff & Hsieh,
2003; Kreft, Knapp & Kreft, 1999). Ethanol extract from buckwheat, rutin, and quercetin
have been proven to boost Akt phosphorylation and interrupt PPARγ degradation in the
hepatocyte cell line, leading to improved glucose uptake (Lee et al., 2012). TB rutin-free
extracts likely mediate the NO/cGMP pathways, thereby exerting endothelium-dependent
vasorelaxation action (Ushida et al., 2008). The endogenous vasodilators bradykinin and
NO were upregulated by TB sprouts, and, together with a lower level of the vasoconstrictor
endothelin-1, relieve hypertension and oxidative stress in vivo (Merendino et al., 2014).
In addition, Tartary buckwheat shell extract (TBSE) resists hyperlipidemia (Tong et al.,
2006). Based on an assay used in rats fed a high-fat diet, apparent reductions in weight
gain, plasma lipid concentrations, and atherogenic index were found in those rats with
diets supplemented with buckwheat leaf and flowers compared with those that received
no supplementation, demonstrating that buckwheat products are potential prevention
and curing agents of hyperlipidemia (Brenesel et al., 2013). Although TB has been well-
practiced in clinical medicine, the fundamental mechanisms and relationships between TB
compounds and the interaction of these three diseases remain elusive.

TB has been demonstrated that insulin resistance was attenuated and that lipid profiles
was also ameliorated in patients with T2D after dieting TB (>110 g/d) for four weeks (Qiu
et al., 2016). A research on 75% ethanol extract of TB (EETB) and rutin demonstrated
that both EETB and rutin suppresses the formation of fructosamine and α-dicarbonyl
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compounds to lower the level of AGEs (advanced glycation end-products). Hence, EETB
can be considered as a potential protective agent for diabetic patients (Lee, Lee & Lai, 2015).

In the past few years there has been a considerable interest in the improvement of
diabetic control to alter the glycemic impact on carbohydrates intake. A low glycemic index
(GI) diet has been related to advantages in the prevention and treatment of diabetes (Ajala,
English & Pinkney, 2013). Skrabanja et al. demonstrated the benefit of TB to reduce the
plasma glucose. When 10 healthy testers consumed different single dose diets, boiled TB
groats, bread with 50% TB groats and white wheat bread, the postpandrial plasma glucose
and insulin level were tested. The results showed those who consumed TB products or
groats had lower plasma glucose and insulin level compared with those who have white
wheat bread (Skrabanja et al., 2001). Lan et al. reached the same conclusion from a different
aspect. 10 T2D patients were randomly selected to consume TB or white wheat bread, and
the postpandrial 2 h plasma glucose in the subjects having TB showed a decrease of 51%
(p< 0.05) compared that in those have white wheat bread (Lan et al., 2013). Thus, TB will
be a potential treatment to reduce the risk for T2D and HT.

With the development of system biology, network biology, and polypharmacology came
the concept of network pharmacology, which was first proposed by Hopkins (2007) and
is based on the application of multiomics and systemic biological technology. Its aim
is to discover the synergistic effects and potential mechanisms of interaction between
multi-components and targets by analyzing complex and multilevel interactive networks.
Network pharmacology is widely used in drug discovery, target prediction, and mechanism
research, especially in traditional herbal medicine (Li et al., 2015; Zhang et al., 2016).
This article applies network pharmacology to investigate the mechanism of TB and its
interaction with T2D, hypertension, and hyperlipidemia at the target level. Our study
provides a comprehensive view of the relationships and mechanisms between TB and T2D,
HT, and HL.

MATERIALS AND METHODS
Composite compounds of Tartary buckwheat
We collected the composite compound data of Tartary buckwheat from the Universal
Natural Products Database (UNPD) (Gu et al., 2013) (http://pkuxxj.pku.edu.cn/UNPD/,
updated April 25 2013), which was specifically designed to store natural product structures
for drug discovery and network pharmacology. In total, the structural information of 20
Fagopyrum tataricum compounds was collected. Detailed information on the composite
compounds of Tartary buckwheat is provided in Table S1.

Known therapeutic targets of diseases
The known therapeutic target data for the treatment of T2D, HT, and HL were
collected from two resources: DrugBank (Law, 2014) (http://www.drugbank.ca/, version
4.0) and Online Mendelian Inheritance in Man (OMIM) (Hamosh et al., 2000) (http:
//www.omim.org/, last accessed: October 31, 2015). In the DrugBank database, the targets
were collected based on the following criteria: (1) they were FDA-approved therapeutic
targets of the three diseases; and (2) the targets of drugs were human genes/proteins.
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In the OMIM database, we used the keywords ‘‘Type 2 diabetes,’’ ‘‘hypertension,’’ and
‘‘hyperlipidemia’’ as the queries to search known therapeutic targets of diseases. After
removing the redundant results, there were 59, 279, and 20 known therapeutic targets for
the treatment of T2D, HT, and HL, respectively. Detailed information on the therapeutic
targets of the diseases is provided in Tables S2–S4.

Protein–protein interaction (PPI) data
PPI data were retrieved from eight public available databases: Biological General Repository
for Interaction Datasets (BioGRID) (Stark et al., 2011), Human Annotated and Predicted
Protein Interaction Database (HAPPI) (Chen, 2009), Human Protein Reference Database
(HPRD) (Keshava Prasad et al., 2009), High-quality INTeractomes (HINT) (Jishnu &
Yu, 2012), Molecular INTeraction Database (MINT) (Chatraryamontri, 2010), Online
Predicted Human Interaction Database (OPHID) (Brown & Jurisica, 2005), Database of
Interacting Proteins (DIP) (Xenarios et al., 2002), and Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING) (Szklarczyk et al., 2011). Detailed information from
the eight databases is provided in Table S5.

Target prediction of composite compounds
The Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese
Medicine (BATMAN-TCM) database (Liu et al., 2016b), which is aimed at the target
prediction of composite compounds of tartar buckwheat, was employed. In this database,
there are 6 basal principles for the measurement of drug-drug similarity that are based on
chemical structure (including FP2 fingerprint-based and functional group-based similarity
scores), side effects, the Anatomical, Therapeutic and Chemical (ATC) classification
system, drug-induced gene expression, and the text mining score of chemical-chemical
associations, and 3 scores to measure protein-protein similarity respectively based on
protein sequence, closeness in a protein interaction network and Gene Ontology (GO)
functional annotation. The default parameters were set for the putative targets of composite
compounds of Tartary buckwheat.

Network construction and analysis
The TB-composite compound-putative target-known therapeutic target network was
constructed to find the key target. Then, the target-pathway network was established to
find the relationship between the pathways and the key targets. The key target-pathway
networks would be used to explore core pathways that could play an important role in the
interaction mechanism of TB and the three diseases.

Cytoscape (Shannon et al., 2003) (http://www.cytoscape.org/, version 3.2.1) and
NAViGaTOR (http://ophid.utoronto.ca/navigator/, version 2.3) were employed to directly
visualize the networks. In addition, four topological features (‘Degree,’ ‘Betweenness,’
‘Closeness,’ and ‘K core’) were calculated using the igraph package, which is a powerful
tool for topological graphing in R (https://cran.r-project.org/).

The networks were simplified using the following procedure: (A) we deleted the nodes
that had degree values of less than 2-fold the median of all of the nodes in the network,
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and we then used the retained nodes to construct the hub network. (B) We retained the
nodes that were greater than the corresponding median values of the four topological
features: ‘Degree,’ ‘Betweenness,’ ‘Closeness,’ and ‘K core’ (Li et al., 2007).

Pathway enrichment analyses
The clusterProfiler package of R software (Yu et al., 2012) was employed to classify the
biological terms and to analyze the gene cluster enrichment automatically. The latest data
were obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database
(Kanehisa & Goto, 1999) for KEGG pathway enrichment analyses. P-values were set at 0.05
as the cut-off criterion, and the results of both analyses were annotated by Pathview (Luo,
2013) in the R Bioconductor package (https://www.bioconductor.org/).

Molecular docking simulation
LibDock was implemented in the Discovery Studio 2.5 (DS 2.5) software to determine
the molecular docking simulation. It is an efficient and powerful tool to validate the
binding ability of candidate targets to composite compounds of herbs. All of the crystal
structure data of the targets were directly retrieved from the RCSB Protein Data Bank
(http://www.rcsb.org/pdb/home/home.do, last accessedDec 27, 2016). The high-resolution
crystal structure was a priority for verification. We then utilized the customizable scoring
function from LibDock to calculate the docking score to measure the binding ability of
each candidate target of the corresponding compound. The docking scores of the candidate
targets with a strong binding ability to their corresponding compounds were greater than
the median value of the all of the docking scores.

RESULTS AND DISCUSSION
Putative targets for Tartary buckwheat
A total of 20 ingredients in TB were retrieved from the Universal Natural Products
Database (UNPD). The detailed information about these molecules is provided in
Table S1. Following the drug target predicted by BATMAN-TCM, 97 putative targets
of the 20 ingredients of TB were identified (Table S6). In addition, known therapeutic
targets of the three diseases were collected from two public databases (described in the
‘Materials and Methods’ section). We obtained 59, 279, and 20 known therapeutic targets
for the treatment of T2D, HT, and HL, respectively. Interestingly, 8 and 1 putative
targets of TB were significant proteins for HT and HL, respectively (Fig. 1). PPARG
(Peroxisome proliferator-activated receptor gamma) was shared by PT, T2D, and HT;
ABCA1 (ATP-binding cassette sub-family A member 1) was shared by PT, T2D, and HL;
PPARA (Peroxisome proliferator-activated receptor alpha) was shared by PT, HT, and HL;
and SLC6A4 (Sodium-dependent serotonin transporter) was shared by PT, T2D, HT, and
HL (Table S7). SLC6A4 plays a significant role in regulating serotonin for the availability of
other serotonin system receptors (Comings et al., 1999; Zhang et al., 2007). PPARA is a key
regulator of lipid metabolism (Gorla-Bajszczak et al., 1999; Laurent et al., 2013). ABCA1
functions as a key gatekeeper influencing intracellular cholesterol transport (Kathiresan
et al., 2008; Singaraja et al., 2003). PPARG is important for its regulation of adipocyte
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Figure 1 Venn diagram showing the overlap of significant targets in PT, T2D, HT, and HL. PT, puta-
tive targets, green; T2D, type II diabetes, blue; HT, hypertension, pink; and HL, hyperlipidemia, yellow.

Full-size DOI: 10.7717/peerj.4042/fig-1

differentiation and retention of glucose homeostasis (Katanotoki et al., 2013; Mukherjee et
al., 1997; Park et al., 2011). Out of the 97 putative targets of TB compounds, there were 13
that were related to these three diseases, suggesting the possibility of TB as their treatment.

Identification of the underlying pharmacological mechanisms of TB
on the three diseases
A network was constructed based on TB-composite compound-putative targets and known
therapeutic targets of the diseases to elucidate the pharmacological mechanisms of TB on
these three diseases. Protein-protein interaction (PPI) data of the putative targets and
the known therapeutic targets of the three diseases were collected from eight public PPI
databases (as described in the Materials and methods section). The network consisted of
455 nodes and 1,748 edges in total. Two-fold the median value of degree was set as the
threshold. The network was reconstructed after deleting the nodes that were less than the
threshold. As a result, the nodes were reduced from 455 to 132, and the edges from 1,748 to
1,010 in the reconstructed network. In order to determine the key targets in the network,
four attributes (‘Degree,’ ‘Betweenness,’ ‘Closeness,’ and ‘K core’) were calculated in the
topological networks. The network was further simplified with these four values, and the
key target information was finally obtained. The four topological features were used to
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Figure 2 Interaction network between chemical components of TB, their putative targets, and known
therapeutic targets of the three diseases built and visualized with Cytoscape. Blue line, linked PT and
their targets; purple, linked T2D and their targets; green, linked HL and their targets; yellow, linked HT
and their targets; and light blue, linked chemical components and their targets.

Full-size DOI: 10.7717/peerj.4042/fig-2

retain the nodes that were over the median in the rebuilt network. The median values
of ‘Degree,’ ‘Betweenness,’ ‘Closeness,’ and ‘K core’ were 10.0000, 38.2517, 0.0034, and
8.0000, respectively. Therefore, targets with ‘Degree’ > 10.0000, ‘Betweenness’ > 38.2517,
‘Closeness’ > 0.0034, and ‘K core’ > 8.0000 were defined as the key targets (Table S8). As a
result, the network that was rebuilt with the key targets had 29 nodes and 163 edges (Fig. 2).

Lines with different colors were employed to show their importance from the targets
to their corresponding sources (PT, T2D, HT, and HL) in our network, and diameter
was used to denote degree. A larger node diameter represented a higher degree in the
network, and vice versa. Similarly, with the targets, those with the higher degree played a
more important role in the network. Compared with all of the other targets, SRC (Proto-
oncogene tyrosine-protein kinase Src), JUN, and IL1B (Interleukin-1 beta) had the highest
degree number (19), which indicated that these targets play key roles in the regulation of
T2D, HT, and HL. Our results agreed well with previous research, demonstrating that JUN
modulated smooth muscle cell proliferation in response to vascular angioplasty (Hu et al.,
1997), SRC modulated endothelial cell angiogenic activities (Desjarlais et al., 2017), and
that IL1B has been associated with the development of chronic inflammation in obesity
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(Maldonado-Ruiz et al., 2017; Osborn et al., 2008). Moreover, PT, T2D, HL, and HT were
linked to 10, 4, 1, and 17 key targets in the network, respectively. Specifically, UNPD28717
(salicylic acid) was linked to nine key targets, indicating that it may mediate these targets to
regulate blood-vessel dilation, inflammatory cytokine, and adipose tissue (Liu et al., 2016a;
Tang & Dong, 2017).

Pathway analysis to explore the underlying mechanisms of TB and
the three diseases
In order to investigate the relationship and mechanisms between the targets and the
pathways, a target-pathway network was constructed (as described in the ‘Materials
and Methods’ section). The KEGG database was used to describe KEGG pathways, to
systematically analyze gene functions, and to provide a reference knowledge base linking
genomes to functional information. In total, 48 pathwayswere obtained by igraph to analyze
the KEGG enrichment of key targets. The pathway-target network contained 76 nodes (48
pathways and 28 targets) and 352 edges. The median values of ‘Degree,’ ‘Betweenness,’
‘Closeness,’ and ‘K core’ were 7.0000, 23.3158, 0.0059, and 6.0000, respectively (Table S9).
AKT2, IKBKB, RAF1, TNF, and CHUK were in the top-ranking positions in the pathway-
target network. Additionally, the results indicated that some targets had been hit by
multiple pathways in the pathway-target network. ATK2, IKBKB, RAF1, CHUK, TNF,
JUN, and PRKCA were linked by 42, 32, 29, 26, 26, 24, and 17 pathways (Fig. 3). AKT2
(RAC-beta serine/threonine-protein kinase) is responsible for the regulation of glucose
uptake by mediating insulin-induced translocation (Hers, Vincent & Tavaré, 2011; Zhang
et al., 2006). IKBKB (inhibitor of nuclear factor kappa-B kinase subunit beta) plays
an essential role in the NF-kappa-B signaling pathway (hsa04064), which is activated by
multiple stimuli, such as inflammatory cytokines (Mercurio et al., 1997). RAF1 (RAF proto-
oncogene serine/threonine-protein kinase) is involved in proliferation and angiogenesis
(Chong, Lee & Guan, 2001; Yao et al., 1995).

Pathways related to these targets were shown to have more significant features (Fig. 3).
Among the pathways, hsa5200 (a pathway in cancer) exhibited the highest number of target
connections (degree = 15), followed by hsa05418 (a fluid shear stress and atherosclerosis
pathway) with 14 targets, and hsa04151 (a PI3K-Akt signaling pathway) with 11 targets,
respectively. These high-degree pathways were closely related to vascular conditions and
inflammation. The hsa5200 pathway was the underlying mechanism of inflammation
and involved in multiple targets, such as PPARG, JUN, CHUK, IKBKB, AKT2, and
RAF1 (Andersen et al., 2017; Kolb, Sutterwala & Zhang, 2016). The fluid shear stress and
atherosclerosis pathway plays an important role in atherosclerosis, and it is associated with
systemic risk factors, including hypertension, hyperlipidemia, and diabetes mellitus (Cheng
et al., 2006;Malek, Alper & Izumo, 1999). The PI3K-Akt signaling pathway is one of the best
characterized downstream effectors of insulin and belongs to insulin-activated intracellular
pathways (Westermeier et al., 2011). In addition, we found that some pathways discovered
in this study, such as the insulin resistance pathway, AGE-RAGE (Advanced glycation end
products) signaling pathway (Hegab et al., 2012; Roy, 2013), and insulin signaling pathway
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Figure 3 The target-pathway network. Pink dots are targets, purple diamonds are pathways, and the dot
size and diamond size represent node degree value.

Full-size DOI: 10.7717/peerj.4042/fig-3

(Table S10), have a direct relationship with the three diseases. Overall, the key targets are
significantly associated with these pathways that might play a role in the progression of the
three diseases.

Molecular docking validation
The computational docking technique, as a structure-based method, is an invaluable tool
in drug discovery and design. This technique can help researchers discover the relationships
between the constituents of TCM and network targets (Luo et al., 2014a; Luo et al., 2014b;
Yu et al., 2016). The Libdock module of the DS2.5 software was used for molecular analog
docking to obtain the effective dockings of TB and its key targets and to get docking scores.
The score was greater than the median value (86), indicating a strong binding capacity
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Figure 4 The target-composite compound network. Blue dots are chemicals, while pink dots are key tar-
gets. The size of the edges are docking scores, and the size of the dots are node degrees.

Full-size DOI: 10.7717/peerj.4042/fig-4

between the composite components of TB and the molecular targets in this study. In
total, we obtained 174 docking results. Among these results, JUN received the highest
score of 170.967 with chemical UNPD51223 (Table S11). The docking score results were
used to construct the target-composite component network (Fig. 4). The target-composite
compound network contains 38 nodes (21 targets and 17 composite compounds) and
174 edges. In addition, the line width shows the docking value, meaning a thicker line
represents a higher docking value and vice versa. As a result, JUN, TNF, PPARA, PPP2CA,
PPARG, and IKBKB had a high degree value and larger molecular analog docking scores
(Table S12). These targets were proven to bind to multiple chemicals.

CONCLUSIONS
Tartary buckwheat has a very high nutritional value and is of great medicinal value to treat
T2D, hypertension, and hyperlipidemia. Our studies investigated the relationships between
TB and the three diseases using network pharmacology. In total, 97 putative targets were
obtained from 20 composite components of TB. The TB-composite compound-putative
target-known therapeutic target networks reveals that 28 key targets play a significant
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role in their interplay. To further study the relationships and underlying mechanisms
between the key targets and pathways, key target-pathway networks were constructed.
ATK2, IKBKB, RAF1, CHUK, TNF, JUN, and PRKCA were mainly involved in fluid shear
stress and the atherosclerosis pathways, pathways in cancer, and the PI3K-Akt signaling
pathway. Moreover, 174 candidate molecular analog docking results were obtained based
on the calculation of chemical molecules from the molecular analog docking experiment.
These results provide strong evidence that TB is a potential treatment to T2D, HL and
HT, and that this comprehensive systemic approach integrating drug target prediction,
network analysis, and molecular docking simulation is a useful tool to reveal relationships
and mechanisms between the putative targets in TB and T2D, HT, and HL.
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